Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32"

Transcrição

1 1 Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32 Nos exercícios de 1 a 9, classi car e apresentar, formalmente, solução (ou candidata a solução) para as seguintes edo s de primeira ordem: 1. dx = y2 + 2xy : x 2 2. y x y = 3x: 3. e y dx + (xe y + 2y) = 0: 4. dx = x + y x y : 5. (x 2 2y 2 )dx + xy = 0: 6. (2y x 3 )dx = x: 7. x 2 dx = x y : 8. dx = yex : 9. xy 0 = y + 2xe y=x : 10. Resolva as seguintes equações ou pvi s: (i) dx = x2 1 y 2 : (ii) dx = y cos x 1 + 2y 2 ; y(0) = 1: (iii) y 0 + y 2 sen x = 0: (iv) xy 0 = p 1 y 2 : 11. Resolva o pvi y 0 = 3x2 3y 2 4 ; y(1) = 0 ; e determine um intervalo no qual a solução é válida. 12. Mostre que a expressão x + y + e xy = 0 de ne implicitamente y = (x) como uma solução da equação não-linear (1 + xe xy ) dx yexy = 0 :

2 2 13. Resolva as seguintes equações: (i) 2x + y 2 + 2xyy 0 = 0: (ii) 4sen x sen 3y cos x dx 3 cos 3y cos 2x = 0: (iii) dx = 3x2 + 6xy 2 6x 2 y + 4y 3 : (iv) (y cos x + 2xe y ) + (sen z + x 2 e y 1)y 0 = 0: (v) (3xy + y 2 ) + (x 2 + xy)y 0 = 0: (vi) e y dx + (xe y + 2y) = 0: (vii) ydx + (x 2 y x) = 0: 14. Mostre que qualquer equação separável M(x) + N(y)y 0 = 0 também é exata. 15. Ache o valor da constante b para o qual a equação (xy 2 + bx 2 y)dx + (x + y)x 2 = 0 é exata e, em seguida, resolva a equação para este valor de b. 16. Mostre que se M = Q ; onde Q = Q(y) é uma função de y somente, então a equação M(x; y) + N(x; y)y 0 = 0 Z tem um fator integrante da forma (y) = exp Q(y) : N x M y 17. Mostre que o pvi tem in nitas soluções. dt = y1=3 ; y(0) = 0 ; 18. Com respeito a equações de primeira ordem, existe uma classe de equações chamadas de homogêneas (não confundir com a noção geral de equação homogênea que você já conhece). Uma função f = f(x; y) é dita homogênea de grau n sse f(tx; ty) = t n f(x; y) para todos os valores convenientemente restritos de x; y e t, inclusive t podendo depender de x. Uma edo Mdx + N = 0 é dita homogênea (neste sentido) sse M e N são funções homogêneas de mesmo grau. Neste caso, a equação pode ser escrita como dx = f(x; y) ; (1) M(x; y) onde f(x; y) = é uma função homogênea de grau zero (num domínio N(x; y) onde o denominador não se anule). Como f(tx; ty) = t 0 f(x; y) = f(x; y); em particular para t = 1 = x, obtemos f(x; y) = f(1 ; y = x):

3 3 (i) Mostre que a mudança de variáveis y = zx (mais precisamente, y(x) = xz(x)), transforma (1) na seguinte equação separável: dz f(1; z) z = dx x (2) (ii) Resolva as seguintes edo s: a) xy 0 = p x 2 + y 2 ; (b) (x 2 2 y 2 )dx + xy = 0: 19. Encontre uma família de curvas ortogonais às curvas que satisfazem a edo x 2 1 y + 3xy + 0 2y2 = 0: 20. Usando o fato de que duas retas no plano xy com inclinações m 1 ; m 2, respectivamente que se interceptam com um ângulo satisfazem a relação (tan )(1 + m 1 m 2 ) = m 2 m 1 ; encontre uma família de curvas que se interceptam num ângulo de 45 o as curvas da família dada por x 2 + y 2 = c 2 : 21. Resolva o pvi dx = y 3 1 2xy 2 ; y(0) = 1: 22. Seja (x o ; y o ) um ponto arbitrário no plano e considere o pvi y 0 = y 2 ; y(x o ) = y o : Explique por quê este problema tem uma solução única em algum intervalo jx x o j h: Considerando as soluções que passam por (0; 0) e (0; 1), mostre que nem sempre acontece de a solução ser válida no domínio de de nição da equação, que no caso é R. 23. Mostre que f(x; y) = p y (i) não satisfaz a condição de Lipschitz no retângulo jxj 1 e 0 y 1; (ii) satisfaz a condição de Lipschitz no retângulo jxj 1 e c y d ; onde 0 < c < d: 24. Considere o pvi y 0 = jyj ; y(x o ) = y o : (i) Para que pontos (x o ; y o ) o teorema de Picard de existência e unicidade implica que este problema tem solução única em algum intervalo jx x o j h? (ii) Para que pontos (x o ; y o ) este problema realmente tem solução única em algum intervalo jx x o j h? (iii) Usando o método das aproximações sucessivas, encontre uma sequência de funções que converge para a solução do pvi com uma condição inicial escolhida no domínio estabelecido em (ii),

4 4 25. Considere o seguinte pvi: y 0 = 2x(1 + y) ; y(0) = 0: (i) Escolha um intervalo de de nição do problema de forma que você possa garantir que ele tenha uma e somente uma solução. O teorema de existência e unicidade que você terá que se referir garante que a solução é global (i.e., vale em todo o intervalo de de nição do problema)? (ii) Compare a solução aproximada (pelo método das aproximações sucessivas) com a solução exata do problema. 26. Considere o pvi: dx = y cos x ; y(0) = 1 : 1 + 2y 2 (i) Mostre que nenhuma solução não-trivial da edo cruza o eixo dos x s. (ii) Mostre que a solução do pvi satisfaz jy(x) 1j 1 2 p 2 jxj: (Note que esse ítem ca mais fácil se você considerar diretamente o pvi em vez de sua solução). 27. Enuncie e prove um teorema de existência e unicidade para um pvi da forma: dx = f(x) ; y(a) = Resolva x 2 + xy = sen x ; y(1) = 2: dx (Dê um intervalo de de nição seguro para a equação). 29. Apresente algum intervalo onde o pvi y 0 = y 2 ; y(0) = 1 tenha solução única. Justi que sua resposta e encontre esta solução. 30. Consdere o pvi abaixo. Estabeleça a região no plano xy onde as hipóteses do teorema de existência e unicidade são satisfeitas e apresente a conclusão que você obter com base no teorema. dx = ln jxyj ; y(x 1 x 2 + y 2 o ) = y o : 31. Mostre que a substituição z = ax + by + c transforma a edo y 0 = f(ax + by + c) em uma equação a variáveis separáveis. Aplique este método para resolver as seguintes equações: (i) y 0 = (x + y) 2 (ii) y 0 = sen 2 (x y + 1):

5 5 32. Uma extensão natural da edo linear de primeira ordem é a chamada equação de Riccati: y 0 = p(x) + q(x)y + r(x)y 2 : (3) (i) Mostre que, se y = y 1 (x) é uma solução particular de (3), então a solução geral tem a forma y(x) = y 1 (x) + z(x), onde z = z(x) é a solução geral da equação de Bernouilli z 0 (q(x) + 2r(x)y 1 )z = r(x)z 2 (que, por sua vez, pode ser transformada numa equação linear mediante a substituição w = z 1 ). (ii) Ache a solução geral da equação y 0 = y x + x3 y 2 x 5 : (Obs.: Ache uma solução particular y 1 (x) por inspeção i.e., chute, bom senso, tentativa e erro). 33. Transforme (sem precisar resolvê-lo) o pvi abaixo em um outro pvi equivalente onde a condição inicial é dada na origem t = 0 : 34. Sem calcular a solução do pvi y 0 = t 2 + y 2 ; y(1) = 2: dx = y cos x ; y(0) = 1 ; 1 + 2y 2 mostre que a diferença entre o valor de y(2) e 1 não é maior que 35. Resolva as seguintes edo s e pvi: (i) y 00 = y 0 + (y 0 ) 3 : (ii) ydx + (x 2 y x) = 0 (iii) y 0 + p(t)y = 0 ; y(0) = 1 ; onde p(t) = 36. Use redução de ordem para achar a solução do pvi abaixo: y 00 + y = 0 ; y(0) = y 0 (0) = 1: p 2 2 : 2 ; se 0 t 1 1 ; se t > Resolva a seguinte edo: (x + y)dx + x ln x = 0 ; x 2 (0; 1): 38. Ache a solução geral de (e x sen y 2y sen x)dx + (e x cos y + 2 cos x) = 0: 39. Encontre uma solução fraca ( contínua, podendo deixar de ser derivável em algum ponto) para o seguinte problema: 8 y 2 + 2xy y 0 = f(x; y) ; y(1) = 1 >< ; se 1 x 3 x 2 2 ; onde f(x; y) = 2 >: 4 ; se 3 2 x < 2

6 6 40. Ache a solução geral das edo s abaixo: (i) y y = t 2 e 3t + 6: (ii) 2y y 0 + y = t sen t: (iii) y 00 + y = 3 sen 2t + t cos 2t (iv) y 00 y 0 2y = cosh 2t: 41. Ache a solução do pvi dado: (i) y 00 2y 0 3y = 3te 2t ; y(0) = 1 ; y 0 (0) = 0: (ii) y y 0 + 5y = 4e t cos 2t ; y(0) = 1 ; y 0 (0) = 0: 42. Ache a solução de classe C 1 do seguinte problema: 8 < t ; se 0 t y 00 + y = ; y(0) = 0 ; y 0 (0) = 1: : e t ; se t > Plote o termo não-homogêneo e a solução como funções do tempo t 0. (Sug.: Resolva primeiro o pvi em 0 t ; em seguida, resolva para t >, determinando as constantes neste caso a partir das condições de continuidade em t = :) 43. Determine quais das seguintes equações abaixo são exatas e resolva aquelas que são: (i) x ydx = 0: y (ii) (y x 3 )dx + (x + y 3 ) = 0: (iii) 1 y sin x y + x y 2 sin x y dx = 0: 44. Encontre todas as soluções da edo dx = 2xp y 1: 45. A equação dx + p(x)y = q(x)yn ; que é conhecida como equação de Bernoulli, é linear quando n = 0 ou 1. Mostre que ela pode ser reduzida a uma equação linear para qualquer valor de n através da mudança de variável z = y 1 n. Aplique este método para resolver a equação xy 0 + y = x 4 y 3 :

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da EDO indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C 1 e 2t + C 2 e 3t ; :: x 10 : x + 6x = 0: (c) y = ln

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS Uma equação diferencial é aquela em que a função incógnita aparece sob a forma da sua derivada. Havendo uma só variável independente as derivadas são ordinárias e a equação é denominada

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a) R = (x; y) 2 R 2 ; jxj 1; 0 y (b) R

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

1.1 Domínios e Regiões

1.1 Domínios e Regiões 1.1 Domínios e Regiões 1.1A Esboce a região R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto (A), fechado (F), limitado (L), compacto (K), ou conexo (C). (a) R = (x; y) 2 R

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

Lista de exercícios de MAT / II

Lista de exercícios de MAT / II 1 Lista de exercícios de MAT 271-26 / II 1. Converta os seguintes números da forma decimal para a forma binária:x 1 = 37; x 2 = 2347; x 3 =, 75; x 4 =(sua matrícula)/1; x 5 =, 1217 2. Converta os seguintes

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Notas de aulas - 21 de Maio de 2003 Computação, Engenharia Elétrica e Engenharia Civil Prof. Ulysses Sodré ii Copyright c 2002 Ulysses Sodré. Todos os direitos reservados.

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

x exp( t 2 )dt f(x) =

x exp( t 2 )dt f(x) = INTERPOLAÇÃO POLINOMIAL 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia Aproximação

Leia mais

1. Extremos de uma função

1. Extremos de uma função Máximo e Mínimo de Funções de Várias Variáveis 1. Extremos de uma função Def: Máximo Absoluto, mínimo absoluto Seja f : D R R função (i) Dizemos que f assume um máximo absoluto (ou simplesmente um máximo)

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 13 de junho de 2011 (versão Ia)

DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC MAT1157 Cálculo a uma Variável A G3 13 de junho de 2011 (versão Ia) DEPARTAMENTO DE MATEMÁTICA CICLO BÁSICO DO CTC PUC-RIO MAT1157 Cálculo a uma Variável A G3 13 de junho de 2011 (versão Ia) Início: 7:00 Término: 8:35 Nome: Matrícula: Turma: Questão Valor Grau Revisão

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

Funções de duas (ou mais)

Funções de duas (ou mais) Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4)

Leia mais

Estudo das Equações Diferenciais Ordinárias de Primeira Ordem

Estudo das Equações Diferenciais Ordinárias de Primeira Ordem Estudo das Equações Diferenciais Ordinárias de Primeira Ordem Ricardo Aparecido de Moraes 11 de novembro de 2011 1 Sumário 1 Introdução às Equações Diferenciais 4 1.1 Denições..................................

Leia mais

Cálculo Diferencial e Integral I Vinícius Martins Freire

Cálculo Diferencial e Integral I Vinícius Martins Freire UNIVERSIDADE FEDERAL DE SANTA CATARINA - CAMPUS JOINVILLE CENTRO DE ENGENHARIAS DA MOBILIDADE Cálculo Diferencial e Integral I Vinícius Martins Freire MARÇO / 2015 Sumário 1. Introdução... 5 2. Conjuntos...

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS CONCEITOS BÁSICOS Definição: Uma Equação Diferencial Ordinária (EDO) de ordem n é uma igualdade do tipo ( n) F(, y, y,, y ) 0 () n ( n dy Onde F é uma função de n+ variáveis

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares

Exercícios de MATEMÁTICA COMPUTACIONAL. 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares Exercícios de MATEMÁTICA COMPUTACIONAL Mestrado Integrado em Engenharia Biomédica 1 0 Semestre de 2009/2010 Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x) e x = 0. a) Prove que

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57 Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE Definição e representação Aula 2 p.2/57 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência

Leia mais

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO).

LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO). LISTA DE EXERCÍCIOS DE CAMPOS CONSERVATIVOS NO PLANO E NO ESPAÇO. CURVAS PARAMETRIZADAS, INTEGRAIS DE LINHA (COM RESPEITO A COMPRIMENTO DE ARCO. PROFESSOR: RICARDO SÁ EARP OBS: Faça os exercícios sobre

Leia mais

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização:

INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA 2 a LISTA DE EXERCÍCIOS DE MAT CÁLCULO II-A. Última atualização: INSTITUTO DE MATEMÁTICA - UFBA DEPARTAMENTO DE MATEMÁTICA a LISTA DE EXERCÍCIOS DE MAT 4 - CÁLCULO II-A Última atualização: --4 ) Nos problemas a seguir encontre a área das regiões indicadas: A) Interior

Leia mais

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa 1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz

Leia mais

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas

Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas Cálculo Diferencial e Integral 1 Lista de Exercícios Aplicação de Derivadas 1) Esboce o gráfico da função f(x) = x + e responda qual é a taxa de variação média dessa função quando x varia de 0 para 4?

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo II Resolução Numérica de Equações Não-Lineares 1. Considere a equação sin(x)

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 22 07/2014 Resolução Numérica de Equações Diferenciais Ordinárias Objetivo: Resolver Equações Diferenciais Ordinárias utilizando

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias 4 Equações Diferenciais Ordinárias 4.1 Descrição Matemática da Dinâmica de Sistemas Suponhamos que a função y = f(x) expressa quantitativamente um fenômeno. Ao estudar este fenômeno é em geral impossível

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

Equações diferenciais para licenciatura em matemática

Equações diferenciais para licenciatura em matemática Equações diferenciais para licenciatura em matemática Equações diferenciais para licenciatura em matemática Universidade Federal de Minas Gerais Reitor: Clélio Campolina Diniz Vice-Reitora: Rocksane de

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Patrícia Nunes da Silva Este livro está registrado no EDA da Fundação Biblioteca Nacional/MinC sob número 350.448, Livro 646, folha 108. i PREFÁCIO As equações diferenciais

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Ficha prática n o 1 - Cálculo Diferencial em IR n 1. Para cada um dos seguintes subconjuntos de IR, IR 2 e IR 3, determine

Leia mais

CCI-22 LISTA DE EXERCÍCIOS

CCI-22 LISTA DE EXERCÍCIOS CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

Universidade Federal do Espírito Santo Prova de Cálculo I: Integral Prof. Lúcio Fassarella DMA/CEUNES/UFES Data: 30/07/2014

Universidade Federal do Espírito Santo Prova de Cálculo I: Integral Prof. Lúcio Fassarella DMA/CEUNES/UFES Data: 30/07/2014 Universidade Federal do Espírito Santo Prova de Cálculo I: Integral Prof. Lúcio Fassarella DMA/CEUNES/UFES Data: /7/14 Aluno: Matrícula. Nota: : :.Observações: I A prova tem duração de 1 min; não é permitido

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II. A C Tort. 25 de setembro de y (x) + p(x)y(x) = g(x).

Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II. A C Tort. 25 de setembro de y (x) + p(x)y(x) = g(x). Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II A C Tort 25 de setembro de 2012 1 O fator integrante Suponha que a EDO de primeira ordem seja da forma: Multiplicando a EDO por

Leia mais

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo

Comprimento de Arco. 1.Introdução 2.Resolução de Exemplos 3.Função Comprimento de Arco 4.Resolução de Exemplo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprimento de Arco

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Departamento de Física Universidade Federal da Paraíba 24 de Junho de 2009 Motivação Problemas envolvendo equações diferenciais são muito comuns em física Exceto pelos mais simples, que podemos resolver

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Cálculo Diferencial e Integral I CDI I

Cálculo Diferencial e Integral I CDI I Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

Equações Diferenciais e Equações de Diferenças

Equações Diferenciais e Equações de Diferenças Equações Diferenciais e Equações de Diferenças Jaime E. Villate Faculdade de Engenharia da Universidade do Porto Dezembro de 21 Última revisão: 26 de Abril de 211 Equações Diferenciais e Equações de Diferenças

Leia mais

Especialização em Matemática - Estruturas Algébricas

Especialização em Matemática - Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática - Estruturas Algébricas Prof a.: Elisangela Farias e Sérgio Motta FUNÇÕES Sejam X e Y conjuntos.

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

Aula 06: Funções e seus Gráficos

Aula 06: Funções e seus Gráficos GST1073 Fundamentos de Matemática Aula 06: Funções e seus Gráficos Fundamentos de Matemática Aula 6 Funções e seus Gráficos Objetivos Gerais: Modelar e solucionar vários tipos de problemas com o uso do

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

Frações Parciais e Crescimento Logístico

Frações Parciais e Crescimento Logístico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Frações Parciais e

Leia mais

Colectânea de Exercícios, Testes e Exames de Matemática, para Economia e Gestão

Colectânea de Exercícios, Testes e Exames de Matemática, para Economia e Gestão Colectânea de Exercícios, Testes e Exames de Matemática, para Economia e Gestão Bruno Maia bmaia@ual.pt a edição 4 A colectânea encontra-se protegida por direitos de autor. Todos os direitos de autor ou

Leia mais

Prova Escrita de MATEMÁTICA

Prova Escrita de MATEMÁTICA Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta

Leia mais

Soluções abreviadas de alguns exercícios

Soluções abreviadas de alguns exercícios Tópicos de cálculo para funções de várias variáveis Soluções abreviadas de alguns exercícios Instituto Superior de Agronomia - 2 - Capítulo Tópicos de cálculo diferencial. Domínio, curva de nível e gráfico.

Leia mais

Edo s de Segunda Ordem

Edo s de Segunda Ordem Capítulo 5 Edo s de Segunda Ordem Neste capítulo estamos interessados em estudar equações de segunda ordem, isto é, edo s do tipo: F (x, y(x), y (x), y (x)) = 0 Achar soluções gerais de qualquer tipo de

Leia mais

LINEARIZAÇÃO DE GRÁFICOS

LINEARIZAÇÃO DE GRÁFICOS LINEARIZAÇÃO DE GRÁFICOS Física Básica Experimental I Departamento de Física / UFPR Processo de Linearização de Gráficos O que é linearização? procedimento para tornar uma curva que não é uma reta em uma

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: CALCULO B UNIDADE III - LISTA DE EXERCÍCIOS Atualizado 2008.2 Domínio, Imagem e Curvas/Superfícies de Nível y2 è [1] Determine o domínio

Leia mais

Andréa Maria Pedrosa Valli

Andréa Maria Pedrosa Valli 1-24 Equações Diferenciais Ordinárias Andréa Maria Pedrosa Valli Laboratório de Computação de Alto Desempenho (LCAD) Departamento de Informática Universidade Federal do Espírito Santo - UFES, Vitória,

Leia mais

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície:

Intuitivamente, podemos pensar numa superfície no espaço como sendo um objeto bidimensional. Existem outros modos de se representar uma superfície: Capítulo 3 Integrais de superfícies 3.1 Superfícies no espaço Definição 3.1 Uma superfície S no espaço é definida como sendo a imagem de uma aplicação contínua r : K R R 3, (u, v) K 7 r (u, v) =(x (u,

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

, a equação. x, y x, y k. u, u, k. x, y 2, 3 k. 1, 2, k. Exemplo: Determina uma equação reduzida da reta que tem declive 3 e ordenada na origem 2.

, a equação. x, y x, y k. u, u, k. x, y 2, 3 k. 1, 2, k. Exemplo: Determina uma equação reduzida da reta que tem declive 3 e ordenada na origem 2. Escola Secundária de lberto Sampaio Ficha Formativa de Matemática Geometria I Inclinação e declive de uma reta no plano; ângulo de duas retas; retas perpendiculares. º no Equação vetorial da reta: Dado

Leia mais

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. 3.1 A Circunferência EXERCÍCIOS & COMPLEMENTOS 3.1 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa elos ontos A (5; 1) ; B (4; 2) e

Leia mais

Diferenciais inexatas e o fator integrante

Diferenciais inexatas e o fator integrante Métodos Matemáticos 202 Notas de Aula Equações Diferenciais Ordinárias III A C Tort 2 de outubro de 202 Diferenciais inexatas e o fator integrante imos que a EDO implícita: é exata se e apenas se: M(x,

Leia mais

Capítulo 4 - Equações Não-Lineares

Capítulo 4 - Equações Não-Lineares Capítulo 4 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Ano - Eng. Civil, Química e Gestão Industrial Carlos Balsa Métodos Numéricos 1/

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Aula 19 Teorema Fundamental das Integrais de Linha

Aula 19 Teorema Fundamental das Integrais de Linha Aula 19 Teorema Fundamental das Integrais de Linha MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade

Leia mais

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada

4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. cos (1=t), para 0 < t 1 e y 0 (0) = 0. Sendo esta derivada 4.1 Curvas Regulares 4.1A Esboce o grá co de cada curva dada abaixo, indicando a orientação positiva. (a) ~r (t) = t~i + (1 t)~j; 0 t 1 (b) ~r (t) = 2t~i + t 2 ~j; 1 t 0 (c) ~r (t) = (1=t)~i + t~j; 1 t

Leia mais

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo:

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo: 1. O valor do limite L = lim se encontra no intervalo: a) 0 L 1 b) 1 L c) L 3 d) 3 L 4 e) L 4. A função f(x) é continua em x= quando f() vale: = + 3 10 () = a) - b) -5 c) d) 5 e) 7 3. A derivada da função

Leia mais

y y(y + 3x) em frações parciais: 1 u + 1 A(u + 1) + Bu = 1 A = 1, B = 1 du u(u + 1) u + 1 u 2 u + 1

y y(y + 3x) em frações parciais: 1 u + 1 A(u + 1) + Bu = 1 A = 1, B = 1 du u(u + 1) u + 1 u 2 u + 1 Turma A Questão : (3,5 pontos) Instituto de Matemática e Estatística da USP MAT455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 03-0//03 (a) Determine a solução y da equação

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

Introdução às Equações Diferenciais

Introdução às Equações Diferenciais Introdução às Equações Diferenciais Prof. Eduardo Nobre Lages - EES/CTEC/UFAL enl@ctec.ufal.br Contatos: enlages@hotmail.com edunol UFAL Promoção: PEC/Engenharia Civil/UFAL Maceió/AL Novembro-Dezembro/2004

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Parte A 1. Identifique e esboce as superfícies quádricas x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2

Leia mais

Proposta de Teste Intermédio Matemática A 12.º ano

Proposta de Teste Intermédio Matemática A 12.º ano Proposta de Teste Intermédio Matemática A 1.º ano Nome da Escola Ano letivo 0-0 Matemática A 1.º ano Nome do Aluno Turma N.º Data Professor - - 0 GRUPO I Os cinco itens deste grupo são de escolha múltipla.

Leia mais

II. Funções de uma única variável

II. Funções de uma única variável II. Funções de uma única variável 1 II.1. Conceitos básicos A otimização de de funções de de uma única variável consiste no no tipo mais elementar de de otimização. Importância: Tipo de problema encontrado

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [.

Consideremos uma função definida em um intervalo ] [ e seja ] [. Seja um acréscimo arbitrário dado a, de forma tal que ] [. 6 Embora o conceito de diferencial tenha sua importância intrínseca devido ao fato de poder ser estendido a situações mais gerais, introduziremos agora esse conceito com o objetivo maior de dar um caráter

Leia mais

Se a função de consumo é dada por y = f(x), onde y é o consumo nacional total e x é a renda nacional total, então a tendência marginal ao consumo é ig

Se a função de consumo é dada por y = f(x), onde y é o consumo nacional total e x é a renda nacional total, então a tendência marginal ao consumo é ig ELEMENTOS DE EQUAÇÕES DIFERENCIAIS AULA 01: INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS TÓPICO 02: REVENDO TÉCNICAS DE INTEGRAÇÃO VERSÃO TEXTUAL Este tópico objetiva reapresentar as principais técnicas de integração.

Leia mais

Curso de Geometria Analítica

Curso de Geometria Analítica Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática - Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 10 - Posições relativas entre Pontos Retas e Planos. I.

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Equações Diferenciais Lineares Prof. Ms. Hallyson Gustavo G. de M. Lima Pombal - PB Conteúdo Introdução 3. Definições

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jx 1j x, se x 2

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 06 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 06 Aplicação de AutoValores - Usando autovalor para encontrar pontos

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO

UNIVERSIDADE FEDERAL DE PERNAMBUCO CÁLCULO L1 NOTAS DA VIGÉSIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula, consideraremos mais uma técnica de integração, que é conhecida como substituição trigonométrica. Esta técnica pode

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais