Multiplicidade geométrica

Tamanho: px
Começar a partir da página:

Download "Multiplicidade geométrica"

Transcrição

1 Valores e Vectores Próprios - ALGA - /5 Multiplicidade geométrica Chama-se multiplicidade geométrica de um valor próprio ao grau de indeterminação do sistema (A I n ) X : O grau de indeterminação de corresponde ao número de parâmetros livres na expressão geral dos vectores próprios associados a : Exemplos Todos os valores próprios calculados nos exemplos anteriores têm multiplicidade geométrica, excepto no exemplo da página, em que o valor próprio tem multiplicidade geométrica ; como se pode veri car através do exemplo da página 5 A matriz A 5 5 tem um único valor próprio, 5; com multiplicidade 5 algébrica : Os vectores próprios associados a 5 são as soluções não nulas do sistema cuja matriz é A 5I 5 : Como esta matriz tem característica ; o grau de indeterminação do sistema é e, portanto, 5 tem multiplicidade geométrica : Neste último exemplo constata-se que as multiplicidades algébrica e geométrica de um valor próprio podem ser diferentes Pode-se, no entanto, provar a seguinte relação entre as multiplicidades: Teorema A multiplicidade geométrica de um valor próprio de uma matriz é menor ou igual à sua multiplicidade algébrica Deste teorema conclui-se facilmente o seguinte corolário: Corolário: Se um valor próprio tem multiplicidade algébrica ; a sua multiplicidade geométrica é também : Subespaços próprios Se é um valor próprio da matriz A, chama se subespaço próprio de ao conjunto U formado pela matriz nula e por todos os vectores próprios associados ao valor próprio : U fx n : AX Xg : O subespaço próprio de um valor próprio é constituído pela solução geral do sistema (A I n ) X n e a multiplicidade geométrica de é o número de parâmetros livres nessa solução

2 Valores e Vectores Próprios - ALGA - /5 5 Veri ca-se que: Se X ; X U então X + X U Daqui conclui-se que: Se X e X são vectores próprios da matriz A associados ao valor próprio ; então X + X ou é a matriz nula ou é um vector próprio de A associado ao valor próprio Se X U e k R, então kx U : Daqui conclui-se que: Se X é um vector próprio da matriz A associado ao valor próprio e k é um número real, então kx ou é a matriz nula ou é um vector próprio de A associado ao valor próprio Exemplos: Para A Para A Para A tem-se U ( y 5 tem-se U p 8 >< 5 tem-se U >: y Valores próprios e invertibilidade 8 >< >: z ; y R ) p p z e U ( y 9 > 5 ; z R >; : 9 > 5 ; y; z R >; ; y R Se uma matriz A admite o valor próprio, então é raiz do polinómio característico de A; isto é, det (A I n ) e a matriz tem determinante nulo, pelo que não é invertível Por outro lado se A não é invertível, car (A) < n e o sistema AX n tem soluções não nulas, ou seja, existe X tal que AX n e, portanto, é valor próprio de A: Acabámos de mostrar que: ) : Teorema: Uma matriz A não é invertível se e só tem como valor próprio ou Teorema: Uma matriz A é invertível se e só se não tem como valor próprio

3 Valores e Vectores Próprios - ALGA - /5 Pode-se então enunciar o seguinte resultado: Teorema: Seja A uma matriz quadrada de ordem n São equivalentes as a rmações: (a) car (A) < n: (b) A matriz A não é invertível (c) det (A) (d) O sistema AX é indeterminado (e) A matriz A admite o valor próprio : Diagonalização de matrizes Uma matriz A diz-se semelhante a uma matriz B se existir uma matriz P; invertível, tal que B P AP: Proposição: Se uma matriz A é semelhante a uma matriz B, então A e B têm o mesmo polinómio característico e, portanto, os mesmos valores próprios Demonstração: Se A é semelhante a B, existe P; invertível, tal que B P AP: Então: det (B xi n ) det P AP xi n det P AP xp P det P (A xi n ) P det P det (A xi n ) det P (det P ) det (A xi n ) det P det (A xi n ) : Uma matriz A diz-se diagonalizável se é semelhante a uma matriz diagonal, isto é, se existirem matrizes D; diagonal, e P; invertível, tais que D P AP: À matriz P chama-se matriz diagonalizante Exemplos: Qualquer matriz diagonal é diagonalizável, pois qualquer matriz é semelhante a si própria De facto A In AI n : A matriz A é diagonalizável, pois Observações: Se uma matriz A é diagonalizável os seus valores próprios são as entradas diagonais da matriz D a que A é semelhante; pois, pela proposição acima, os seus valores próprios são os mesmos da matriz D, ou seja, as suas entradas diagonais:

4 Valores e Vectores Próprios - ALGA - /5 Quando uma matriz é diagonalizável, torna-se fácil o cálculo de potências de qualquer ordem da matriz: Para uma matriz D diagonal, D diag fd ; : : : ; d n g tem-se, D k diag d k ; : : : ; d k n ; 8k N: Sendo A diagonalizável, existem D; diagonal, e P, invertível, tais que D P AP e, portanto, A P DP : Para k N; A k P DP k P DP P DP : : : P DP {z } k vezes P D P P D P P : : : P P {z } {z } {z } I n I n I n DP P D k P Teorema Seja A uma matriz quadrada de ordem n: A matriz A é diagonalizável se e só se existe uma matriz invertível P cujas colunas são vectores próprios de A: Demonstração: Mostrar uma a rmação envolvendo se e só se é provar uma equivalência ) entre duas condições, ou seja, provar duas implicações, uma em cada sentido Suponhamos que A é diagonalizável Então existem matrizes p p p n D 5 e P p p p n n p n p n p nn 5 ; invertível tais que P AP D Daqui sai que AP P D:Temos então: p p p n p p n p n p p p n AP 5 5 p p n p n p n p n p nn n p n p n n p nn 5 () Por outro lado, designando as colunas de P por P ; : : : ; P n ; veri ca-se que Igualando () e () obtém-se: AP [AP AP : : : AP n ] () AP P ; AP P ; : : : ; AP n n P n Como P é invertível, todas as suas colunas são não nulas e, portanto, cada P i ; para i ; : : : ; n; é um vector próprio de A associado ao valor próprio i : ( Suponhamos agora que existe uma matriz invertível P cujas colunas P ; : : : ; P n são vectores próprios de A associados, respectivamente, a valores próprios ; : : : ; n : Tem-se: AP P ; AP P ; : : : ; AP n n P n

5 Valores e Vectores Próprios - ALGA - /5 8 Utilizando () obtém-se AP [AP AP : : : AP n ] [ P P : : : n P n ] p p n p n p p n p n 5 p n p n n p nn p p p n p p p n 5 5 P D; p n p n p nn n em que D é uma matriz diagonal em que as entradas diagonais são os valores próprios de A: Como AP P D implica que P AP D; A é diagonalizável Coloca se agora a questão de saber quando existe uma matriz invertível P cujas colunas são vectores próprios de A: A resposta é dada no seguinte teorema: Teorema: Sendo A uma matriz quadrada de ordem n; existe uma matriz invertível P cujas colunas são valores próprios de A se e só se a soma das multiplicidades algébricas dos valores próprios de A é n e as multiplicidades algébrica e geométrica de cada valor próprio de A coincidem: Dos dois últimos teoremas conclui-se: Corolário : Uma matriz quadrada A; de ordem n; é diagonalizável se e só se a soma das multiplicidades algébricas dos valores próprios de A é n e as multiplicidades algébrica e geométrica de cada valor próprio de A coincidem: Corolário : Se uma matriz quadrada A; de ordem n; tem n valores próprios distintos, então é diagonalizável Nota: Este último corolário não é se e só se Há matrizes diagonalizáveis que não têm n valores próprios distintos Exemplos: A matriz 5 tem um único valor próprio real, : As multiplicidades algébrica e geométrica de coincidem (são ambas ), mas a soma das multiplicidades algébricas dos valores próprios não é e A não é diagonalizável

6 Valores e Vectores Próprios - ALGA - /5 9 A matriz 5, tem dois valores próprios: com multiplicidade algébrica e com multiplicidade algébrica A soma 8 das multiplicidades 9algébricas é ; mas, < como o subespaço próprio de é U : 5 ; com R ;, a multiplicidade geométrica de é Como as multiplicidades algébrica e geométrica de não coincidem, A não é diagonalizável A matriz 5 tem dois valores próprios: com multiplicidade algébrica e com multiplicidade algébrica A soma das multiplicidades algébricas é : Os subespaços próprios são 8 < U : e 8 < U : ; com R ( tem multiplicidade geométrica ) ; 9 5 ; com ; R ( tem multiplicidade geométrica ) ; pelo que as multiplicidades algébrica e geométrica dos dois valores próprios coincidem Conclui-se que esta matriz é diagonalizável Neste caso, para se construir a matriz diagonalizante P; escolhem-se três vectores próprios de A; um associado a associados a e dois Para garantir a invertibilidade de P; escolhe-se, na expressão geral dos vectores próprios, um ligado a cada um dos diferentes parâmetros que aí guram A matriz diagonal D tem na diagonal os valores próprios de A, pela ordem em que guram, nas colunas de P; os vectores próprios a eles associados: Se P 5 ; P AP 5 A matriz 5 tem três valores próprios distintos, por isso é diagonalizável

Valores e vectores próprios

Valores e vectores próprios ALGA - Eng Civil e EngTopográ ca - ISE - / - Valores e vectores próprios 5 Valores e vectores próprios Neste capítulo, sempre que não haja especi cação em contrário, todas as matrizes envolvidas são quadradas

Leia mais

Valores e vectores próprios

Valores e vectores próprios Valores e Vectores Prórios - Matemática II- /5 Valores e vectores rórios De nem-se valores e vectores rórios aenas ara matrizes quadradas, elo que, ao longo deste caítulo e quando mais nada seja eseci

Leia mais

Álgebra Linear e Geometria Analítica. Valores Próprios e Vectores Próprios

Álgebra Linear e Geometria Analítica. Valores Próprios e Vectores Próprios Álgebra Linear e Geometria nalítica Valores Próprios e Vectores Próprios Será assim para todos os vectores? R α α, Será assim para todos os vectores? Definição: Seja um número real e uma matriz quadrada

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos

Leia mais

6 Valores e Vectores Próprios de Transformações Lineares

6 Valores e Vectores Próprios de Transformações Lineares Nova School of Business and Economics Prática Álgebra Linear 6 Valores e Vectores Próprios de Transformações Lineares 1 Definição Valor próprio de uma transformação linear ( ) Número real (ou complexo)

Leia mais

7 temos que e u =

7 temos que e u = Capítulo 1 Complementos de Álgebra Linear 11 Introdução Seja A = [a ij ] uma matriz quadrada de ordem n e pensemos na transformação linear R n! R n que a cada cada vector u R n faz corresponder um vector

Leia mais

TÓPICOS. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -1

TÓPICOS. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -1 Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

Valores próprios (de uma matriz): tais que det(a I) = 0. Vectores próprios (de uma matriz) associados a um valor próprio : v 2 N (A I)n f0g

Valores próprios (de uma matriz): tais que det(a I) = 0. Vectores próprios (de uma matriz) associados a um valor próprio : v 2 N (A I)n f0g Polinómio característico: det(a I) Valores próprios (de uma matriz): tais que det(a I) Vectores próprios (de uma matriz) associados a um valor próprio : v N (A I)n fg N (A I) é o subespaço próprio associado

Leia mais

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia

Álgebra Linear. Determinantes, Valores e Vectores Próprios. Jorge Orestes Cerdeira Instituto Superior de Agronomia Álgebra Linear Determinantes, Valores e Vectores Próprios Jorge Orestes Cerdeira Instituto Superior de Agronomia - 200 - ISA/UTL Álgebra Linear 200/ 2 Conteúdo Determinantes 5 2 Valores e vectores próprios

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR

EXERCÍCIOS DE ÁLGEBRA LINEAR IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!

Leia mais

Valores e vectores próprios

Valores e vectores próprios Valores e vectores próprios Álgebra Linear C (Engenharia Biológica) 0 de Dezembro de 006 Conteúdo Motivação e definições Propriedades 4 3 Matrizes diagonalizáveis 5 Motivação e definições Considere a matriz

Leia mais

ficha 4 valores próprios e vectores próprios

ficha 4 valores próprios e vectores próprios Exercícios de Álgebra Linear ficha 4 valores próprios e vectores próprios Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Última actualização: 3/Dez/2003 ÁLGEBRA LINEAR A REVIÃO DA PARTE IV Parte IV - Diagonalização Conceitos: valor próprio, vector

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W.

Álgebra Linear. 8 a Lista: a) Use o processo de ortogonalização de Gram Schmidt para construir uma base ortonormada para W. Álgebra Linear Cursos: Química, Engenharia Química, Engenharia de Materiais, Engenharia Biológica, Engenharia do Ambiente 1 ō ano/1 ō Semestre 2006/07 8 a Lista: Nos exercícios em que n~ao se especifica

Leia mais

Diagonalização unitária e diagonalização ortogonal. (Positividade do produto interno) Raíz quadrada. Formas quadráticas.

Diagonalização unitária e diagonalização ortogonal. (Positividade do produto interno) Raíz quadrada. Formas quadráticas. Aplicações: Diagonalização unitária e diagonalização ortogonal (Positividade do produto interno) Raíz quadrada Formas quadráticas Mínimos quadrados Produto externo e produto misto (Área do paralelogramo.

Leia mais

Espaços vectoriais reais

Espaços vectoriais reais Espaços Vectoriais - Matemática II - 2004/05 40 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013

ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 2012/2013 ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA TÓPICOS DE RESOLUÇÃO do Teste Final 0/0 A) B) C) D) [,0]. Considere as seguintes a rmações: I. ~x

Leia mais

Espaços vectoriais reais

Espaços vectoriais reais ALGA - 00/0 - Espaços Vectoriais 49 Introdução Espaços vectoriais reais O que é que têm em comum o conjunto dos pares ordenados de números reais, o conjunto dos vectores livres no espaço, o conjunto das

Leia mais

Álgebra Linear 1 o Teste

Álgebra Linear 1 o Teste Instituto Superior Técnico Departamento de Matemática 1 o Semestre 2008-2009 6/Janeiro/2008 Prova de Recuperação Álgebra Linear 1 o Teste MEMec, MEAer Nome: Número: Curso: Sala: A prova que vai realizar

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais

Ficha de Trabalho 09 e 10

Ficha de Trabalho 09 e 10 Ficha de Trabalho 09 e 0 Diagonalização. (Aulas a 6). Diagonalização. Valores e vectores próprios. Equação característica. Matrizes semelhantes. Matriz diagonalizável. Factorização PDP -. Diagonalização

Leia mais

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +

Leia mais

Matemática /09 - Determinantes 37. Determinantes. det A = a 11 a 22 a 12 a 21 = = 2

Matemática /09 - Determinantes 37. Determinantes. det A = a 11 a 22 a 12 a 21 = = 2 Matemática - 008/09 - Determinantes Determinantes de ordem e. Determinantes O erminante de uma matriz quadrada é um número real obtido a partir da soma de erminados produtos de elementos da matriz. Vamos

Leia mais

Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17

Determinantes. ALGA 2007/2008 Mest. Int. Eng. Electrotécnica Determinantes 1 / 17 Capítulo 2 Determinantes ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 1 / 17 Definições ALGA 2007/2008 Mest Int Eng Electrotécnica Determinantes 2 / 17 Definições Seja A = [a kl ] uma matriz

Leia mais

ÁLGEBRA LINEAR A FICHA 6. Por definição do determinante de uma matriz 3 3, tem-se det A = 7.

ÁLGEBRA LINEAR A FICHA 6. Por definição do determinante de uma matriz 3 3, tem-se det A = 7. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 20/Nov/2003 ÁLGEBRA LINEAR A FICHA 6 SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Propriedades dos Determinantes

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

Seja f um endomorfismo de um espaço vectorial E de dimensão finita.

Seja f um endomorfismo de um espaço vectorial E de dimensão finita. 6. Valores e Vectores Próprios 6.1 Definição, exemplos e propriedades Definição Seja f um endomorfismo de um espaço vectorial E, com E de dimensão finita, e seja B uma base arbitrária de E. Chamamos polinómio

Leia mais

Avaliação e programa de Álgebra Linear

Avaliação e programa de Álgebra Linear Avaliação e programa de Álgebra Linear o Teste ( de Março): Sistemas de equações lineares e matrizes. Espaços lineares. o Teste ( de Maio): Matriz de mudança de base. Transformações lineares. o Teste (

Leia mais

Álgebra Matricial Notas de Aulas 3 ( Terceira Avaliação ) Prof Carlos Alberto S Soares

Álgebra Matricial Notas de Aulas 3 ( Terceira Avaliação ) Prof Carlos Alberto S Soares Álgebra Matricial Notas de Aulas 3 ( Terceira Avaliação Prof Carlos Alberto S Soares 1 Matrizes Diagonais Lembramos que uma matriz A n n será dita matriz diagonal de ordem n se todos os elementos fora

Leia mais

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos

Capítulo 1. Matrizes e Sistema de Equações Lineares. 1.1 Corpos Capítulo 1 Matrizes e Sistema de Equações Lineares Neste capítulo apresentaremos as principais de nições e resultados sobre matrizes e sistemas de equações lineares que serão necessárias para o desenvolvimento

Leia mais

ALGA - Eng. Civil e Eng. Topográ ca - ISE /

ALGA - Eng. Civil e Eng. Topográ ca - ISE / ALGA - Eng. Civil e Eng. Topográ ca - ISE - /. Se possível dê exemplos de (a) Uma equação não linear. (b) Uma equação linear com termo independente igual ao seu número de aluno e tenha dois coe cientes

Leia mais

Álgebra Linear - Exercícios resolvidos

Álgebra Linear - Exercícios resolvidos Exercício 1: Álgebra Linear - Exercícios resolvidos Sejam E = L({(1, 1, 1), (1, 2, 2)}) e F = L({(, 1, 1), (1, 1, 2)}). a) Determine a dimensão de E + F. b) Determine a dimensão de E F. Resolução: a) Temos

Leia mais

Espaços vectoriais com produto interno. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19

Espaços vectoriais com produto interno. ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19 Capítulo 6 Espaços vectoriais com produto interno ALGA 2008/2009 Mest. Int. Eng. Electrotécnica e de Computadores Espaços vectoriais com produto interno 1 / 19 Definição e propriedades ALGA 2008/2009 Mest.

Leia mais

(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique.

(a) (1,5) Obtenha os autovalores e autovetores de L. (b) (1,0) A matriz de L em relação à base canônica de M 2 2 é diagonalizável? Explique. Nome do(a) estudante(a): ALI0001(PRO11-0A) Prova IV 8/06/016 Prof. Helder G. G. de Lima ˆ Identifique-se em todas as folhas. ˆ Mantenha o celular e os demais equipamentos eletrônicos desligados durante

Leia mais

Resolução do efólio B

Resolução do efólio B Resolução do efólio B Álgebra Linear I Código: 21002 I. Questões de escolha múltipla. Em cada questão de escolha múltipla apenas uma das afirmações a), b), c), d) é verdadeira. Indique-a marcando no quadrado

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 2º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução do 2º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do 2º Teste 11 de Junho de 2013 Ano Lectivo: 2012-2013 Semestre: Verão ISEL è ADM Secção de Álgebra ç ALGA Álgebra Linear e Geometria Analítica - Resolução

Leia mais

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4. MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A

Leia mais

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17

Aula 1 Autovetores e Autovalores de Matrizes Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Sumário Aula 1 Autovetores e Autovalores de Matrizes.......... 8 Aula 2 Autovetores e Autovalores de Matrizes Casos Especiais 17 Aula 3 Polinômio Característico................. 25 Aula 4 Cálculo de Autovalores

Leia mais

Diagonalização. Operador diagonalizável

Diagonalização. Operador diagonalizável Operador linear Diagonalização Se T: V V for uma transformação linear definida no espaço vectorial V, então T designa-se por operador linear. A representação matricial de um operador linear depende da

Leia mais

Diagonalização unitária e diagonalização ortogonal. Observação. Neste capítulo considera-se o produto interno

Diagonalização unitária e diagonalização ortogonal. Observação. Neste capítulo considera-se o produto interno Diagonalização unitária e diagonalização ortogonal Observação. Neste capítulo considera-se o produto interno usual. De nição. Chama-se transposta conjugada de uma matriz A à matriz A T e denota-se por

Leia mais

1. Encontre os autovalores e autovetores das transformações lineares dadas: 2. Encontre os autovalores e autovetores correspondentes das matrizes 2

1. Encontre os autovalores e autovetores das transformações lineares dadas: 2. Encontre os autovalores e autovetores correspondentes das matrizes 2 UNIV ERSIDADE DO EST ADO DE SANT A CAT ARINA UDESC CENT RO DE CI ^ENCIAS T ECNOLOGICAS CCT DEP ART AMENT O DE MAT EMAT ICA DMAT Exercícios sobre AUTOVALORES e AUTOVETORES Professora: Graciela Moro. Encontre

Leia mais

Expansão linear e geradores

Expansão linear e geradores Espaços Vectoriais - ALGA - 004/05 Expansão linear e geradores Se u 1 ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u 1 ; u ;

Leia mais

Matemática II /06 - Determinantes 25. Determinantes

Matemática II /06 - Determinantes 25. Determinantes Matemática II - 00/0 - Determinantes Permutações Determinantes Seja n N. Uma permutação p (p ; p ; : : : ; p n ) do conjunto f; ; ; ng é um arranjo dos n números em alguma ordem, sem repetições ou omissões.

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMERIA ANALÍICA Resolução do Exame (Época Normal) 04 de Fevereiro de 2015; 19:00 Ano Lectivo: 2014-2015 Semestre: Inverno Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç

Leia mais

exercícios de álgebra linear 2016

exercícios de álgebra linear 2016 exercícios de álgebra linear 206 maria irene falcão :: maria joana soares Conteúdo Matrizes 2 Sistemas de equações lineares 7 3 Determinantes 3 4 Espaços vetoriais 9 5 Transformações lineares 27 6 Valores

Leia mais

Capítulo 4 - Valores e Vectores Próprios

Capítulo 4 - Valores e Vectores Próprios Capítulo 4 - Valores e Vectores Próprios Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 17

Leia mais

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LEEC EXERCÍCIOS DE ÁLGEBRA Exercícios vários. Considere o conjunto C =, e a operação binária definida por a b = min(a, b). O conjunto C é, relativamente

Leia mais

Ficha de Exercícios nº 3

Ficha de Exercícios nº 3 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 3 Transformações Lineares, Valores e Vectores Próprios e Formas Quadráticas 1 Qual das seguintes aplicações não é uma transformação

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de

Leia mais

ÁLGEBRA LINEAR A FICHA 7

ÁLGEBRA LINEAR A FICHA 7 Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 3/Dez/3 ÁLGEBRA LINEAR A FICHA SOLUÇÕES SUMÁRIAS DOS EXERCÍCIOS ÍMPARES Cálculo de Valores Próprios

Leia mais

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC Exercícios de Álgebra Linear o Semestre 008/009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC João Ferreira Alves/Ricardo Coutinho Sistemas de Equações Lineares e Matrizes Exercício Resolva por eliminação de Gauss

Leia mais

ÁLGEBRA LINEAR - MAT0024

ÁLGEBRA LINEAR - MAT0024 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR - MAT0024 11 a Lista de exercícios

Leia mais

ALGA - Eng.Civil e Eng. Topográ ca - ISE /

ALGA - Eng.Civil e Eng. Topográ ca - ISE / ALGA - Eng.Civil e Eng. Topográ ca - ISE - 0/0 0. (a) Calcule o sinal das seguintes permutações (i) (; ; ; ; ) (ii) (; ; ; ; ; ) (b) Use os resultados da alínea (a) para calcular, usando a de nição, os

Leia mais

ALGA - Eng.Civil e Eng.Topográ ca-ise-2011/2012- Determinantes 32. Determinantes

ALGA - Eng.Civil e Eng.Topográ ca-ise-2011/2012- Determinantes 32. Determinantes ALGA - Eng.Civil e Eng.Topográ ca-ise-0/0- Determinantes Permutações Determinantes Seja n N. Uma permutação p (p ; p ; : : : ; p n ) dos elementos do conjunto f; ; ; ng é um arranjo dos n números em alguma

Leia mais

Matrizes - Matemática II /05 1. Matrizes

Matrizes - Matemática II /05 1. Matrizes Matrizes - Matemática II - 00/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) i f1; ; ; mg e j f1; ; ; ngg e com valores

Leia mais

Apontamentos I. Álgebra Linear aulas teóricas. Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Apontamentos I. Álgebra Linear aulas teóricas. Mestrado Integrado em Engenharia Eletrotécnica e de Computadores Apontamentos I Álgebra Linear aulas teóricas Mestrado Integrado em Engenharia Eletrotécnica e de Computadores 1 o semestre 2016/17 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice

Leia mais

Aulas práticas de Álgebra Linear

Aulas práticas de Álgebra Linear Ficha 3 Aulas práticas de Álgebra Linear Licenciatura em Engenharia Naval e Oceânica Mestrado Integrado em Engenharia Mecânica 1 o semestre 2018/19 Jorge Almeida e Lina Oliveira Departamento de Matemática,

Leia mais

Diagonalização unitária e diagonalização ortogonal. (Positividade do produto interno) Raíz quadrada. Formas quadráticas.

Diagonalização unitária e diagonalização ortogonal. (Positividade do produto interno) Raíz quadrada. Formas quadráticas. Aplicações: Diagonalização unitária e diagonalização ortogonal (Positividade do produto interno) Raíz quadrada Formas quadráticas Mínimos quadrados Produto externo e produto misto (Área do paralelogramo.

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 2º Teste

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Resolução da Repetição do 2º Teste ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução da Repetição do 2º Teste 30 de Junho de 2014 Ano Lectivo: 2013-2014 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç ALGA Álgebra

Leia mais

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 1. Verdadeiro ou falso? Justifique suas respostas. (i) Existe uma transformação linear T : P 3 (R) M 2 (R) cuja matriz em relação

Leia mais

Departamento de Matemática

Departamento de Matemática Departamento de Matemática ALGA e Álgebra Linear Folhas Práticas - /6 EAmb/EC/EGI/EM Determinantes (*) Calcule o valor do determinante das seguintes matrizes A = + i, B = i, C = 6 i, D = 6 i i E = 6, F

Leia mais

ÁLGEBRA LINEAR. Exame Final

ÁLGEBRA LINEAR. Exame Final UNIVERSIDADE DE AVEIRO DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR Exame Final 9/0/00 DURAÇÃO: 3 horas Nome: N o Aluno: Observação: Declaro que desisto: (Justifique sempre as suas respostas) Folha. (4,0

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do Exame (Época Especial) 17 de Setembro de 2015; 19:00 Ano Lectivo: 2014-2015 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra

Leia mais

ALGA - Eng. Civil e Eng. Topográ ca - ISE / Matrizes 1. Matrizes

ALGA - Eng. Civil e Eng. Topográ ca - ISE / Matrizes 1. Matrizes ALGA - Eng. Civil e Eng. Topográ ca - ISE - 011/01 - Matrizes 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n (m vezes n ou m por n) a uma aplicação A : f1; ; :::;

Leia mais

Sistemas de Equações Lineares

Sistemas de Equações Lineares Capítulo 2 Sistemas de Equações Lineares 21 Generalidades Chamamos equação linear nas variáveis (incógnitas) x 1, x 2, x 3,, x n uma igualdade da forma a a 1 x 1 + a 2 x 2 + a 3 x 3 + + a n x n = b Os

Leia mais

Matrizes - ALGA /05 1. Matrizes

Matrizes - ALGA /05 1. Matrizes Matrizes - ALGA - 004/0 1 Matrizes Introdução Se m e n são números naturais, chama-se matriz real de tipo m n a uma função A de nida no conjunto f(i; j) : i f1; ; :::; mg e j f1; ; :::; ngg e com valores

Leia mais

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0

1.3 Matrizes inversas ] [ 0 1] = [ ( 1) ( 1) ] = [1 0 1.3 Matrizes inversas Definição: Seja A uma matriz de ordem k n, a matriz B de ordem n k é uma inversa à direita de A, se AB = I. A Matriz C de ordem n k é uma inversa à esquerda de A, se CA = I. Exemplo

Leia mais

Matrizes e sistemas de equações algébricas lineares

Matrizes e sistemas de equações algébricas lineares Capítulo 1 Matrizes e sistemas de equações algébricas lineares ALGA 2007/2008 Mest Int Eng Biomédica Matrizes e sistemas de equações algébricas lineares 1 / 37 Definições Equação linear Uma equação (algébrica)

Leia mais

(2008/2009) Espaços vectoriais. Matemática 1º Ano - 1º Semestre 2008/2009. Mafalda Johannsen

(2008/2009) Espaços vectoriais. Matemática 1º Ano - 1º Semestre 2008/2009. Mafalda Johannsen Espaços vectoriais Matemática 1º Ano 1º Semestre 2008/2009 Capítulos Características de um Espaço Vectorial Dimensão do Espaço Subespaço Vectorial Combinação Linear de Vectores Representação de Vectores

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

folha prática 5 valores próprios e vetores próprios página 1/3

folha prática 5 valores próprios e vetores próprios página 1/3 folha prática 5 valores próprios e vetores próprios página 1/ Universidade de Aveiro Departamento de Matemática 1. Determine os valores próprios e vetores próprios de cada uma das seguintes matrizes. Averigue

Leia mais

Apontamentos das Aulas Teóricas de Álgebra Linear. LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec. Nuno Martins. Departamento de Matemática

Apontamentos das Aulas Teóricas de Álgebra Linear. LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec. Nuno Martins. Departamento de Matemática Apontamentos das Aulas Teóricas de Álgebra Linear para LEAN - LEMat - MEAer - MEAmbi - MEEC - MEMec Nuno Martins Departamento de Matemática Instituto Superior Técnico Fevereiro de 0 Índice Sistemas de

Leia mais

CEM Centro De Estudos Matemáticos

CEM Centro De Estudos Matemáticos 1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de

Leia mais

7 Formas Quadráticas

7 Formas Quadráticas Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Forma quadrática em variáveis Função polinomial, de grau, cuja expressão tem apenas termos de grau. Ex. 1: é uma forma quadrática

Leia mais

5. Seja A uma matriz qualquer. Assinale a afirmativa

5. Seja A uma matriz qualquer. Assinale a afirmativa UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço

Leia mais

2.1 Fundamentos Básicos

2.1 Fundamentos Básicos .1 Fundamentos Básicos Recordemos que uma aplicação (ou transformação) entre espaços vetoriais T : V! W é linear quando: (a) T (u + v) = T (u) + T (v) ; u; v V: (b) T ( u) = T (u) ; u V e F: Podemos condensar

Leia mais

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo

Capítulo 5. Operadores Auto-adjuntos. Curso: Licenciatura em Matemática. Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Capítulo 5 Operadores Auto-adjuntos Curso: Licenciatura em Matemática Professor-autor: Danilo Felizardo Barboza Wilberclay Gonçalves Melo Disciplina: Álgebra Linear II Unidade II Aula 5: Operadores Auto-adjuntos

Leia mais

Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0

Q1. Considere as bases: der 2 e der 3, respectivamente. Seja T :R 2 R 3 a transformação linear Temos que T(1,2) é igual a: [T] BC = 1 0 Q. Considere as bases: B = { (,),(, ) }, C = { (,,),(,,),(,,) }, der e der, respectivamente. Seja T :R R a transformação linear cuja matriz em relação às bases B e C é: [T] BC =. Temos que T(,) é igual

Leia mais

Aulas Teóricas de Álgebra Linear

Aulas Teóricas de Álgebra Linear Aulas Teóricas de Álgebra Linear Instituto Superior Técnico - o Semestre 009/00 MEAmbi - MEBiol Matrizes De nição Uma matriz A, do tipo m n (m por n), é uma tabela de mn números dispostos em m linhas e

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR

EXERCÍCIOS DE ÁLGEBRA LINEAR IST - o Semestre de / MEEC EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Método de Eliminação de Gauss Sistemas de equações lineares Uma equação linear nas variáveis (ou incógnitas) x ; ; x n ; é uma equação do

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Resolução do Exame (Época de Recurso) 15 de Julho de 2015; 10:00 Ano Lectivo: 2014-2015 Semestre: Verão Aceda aqui à página de ALGA ISEL è ADMat Secção de Álgebra ç

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais

Álgebra Linear e Geometria Anaĺıtica. Espaços Vetoriais Reais universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 4 Espaços Vetoriais Reais Definição de espaço vetorial real [4 01] O conjunto

Leia mais

A forma canônica de Jordan

A forma canônica de Jordan A forma canônica de Jordan 1 Matrizes e espaços vetoriais Definição: Sejam A e B matrizes quadradas de orden n sobre um corpo arbitrário X. Dizemos que A é semelhante a B em X (A B) se existe uma matriz

Leia mais

Códigos perfeitos e sistemas de Steiner

Códigos perfeitos e sistemas de Steiner CAPÍTULO 7 Códigos perfeitos e sistemas de Steiner Sistemas de Steiner são um caso particular de configurações (ou designs. Neste capítulo pretende-se apenas fazer uma breve introdução aos sistemas de

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

apontamentos Álgebra Linear aulas teóricas Mestrado Integrado em Engenharia Mecânica, 1 o semestre 2012/13

apontamentos Álgebra Linear aulas teóricas Mestrado Integrado em Engenharia Mecânica, 1 o semestre 2012/13 apontamentos Álgebra Linear aulas teóricas Mestrado Integrado em Engenharia Mecânica, 1 o semestre 2012/13 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice 1 1 Matrizes,

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

em valores singulares ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Decomposição por valores singulares 1 / 14

em valores singulares ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Decomposição por valores singulares 1 / 14 Capítulo 7 Decomposição em valores singulares ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Decomposição por valores singulares 1 / 14 Motivação A determinação da característica de uma

Leia mais

Álgebra Linear e Geometria Anaĺıtica

Álgebra Linear e Geometria Anaĺıtica Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares

Leia mais

FORMA CANÔNICA DE JORDAN

FORMA CANÔNICA DE JORDAN FORMA CANÔNICA DE JORDAN Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 4 de novembro de 2011 Roteiro Motivação 1 Motivação 2 3 4 5 6 Roteiro Motivação 1 Motivação 2 3 4 5 6 Matrizes Quase Diagonalizáveis

Leia mais

= f(0) D2 f 0 (x, x) + o( x 2 )

= f(0) D2 f 0 (x, x) + o( x 2 ) 6 a aula, 26-04-2007 Formas Quadráticas Suponhamos que 0 é um ponto crítico duma função suave f : U R definida sobre um aberto U R n. O desenvolvimento de Taylor de segunda ordem da função f em 0 permite-nos

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral: Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,

Leia mais

Aula 19 Operadores ortogonais

Aula 19 Operadores ortogonais Operadores ortogonais MÓDULO 3 AULA 19 Aula 19 Operadores ortogonais Objetivos Compreender o conceito e as propriedades apresentadas sobre operadores ortogonais. Aplicar os conceitos apresentados em exemplos

Leia mais

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011 APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy

Leia mais