Modelagem Matemática de Sistemas Dinâmicos

Tamanho: px
Começar a partir da página:

Download "Modelagem Matemática de Sistemas Dinâmicos"

Transcrição

1 Modelagem Matemática de Sistemas Dinâmicos

2 3.1 INTRODUÇÃO No estudo de sistemas de controle, o leitor deve ser capaz de modelar sistemas dinâmicos e analisar características dinâmicas. O modelo matemático de um sistema dinâmico é definido como um conjunto de equações que representa com precisão ou, pelo menos, razoavelmente bem a dinâmica do sistema. Note que um modelo matemático não é único para determinado sistema. Um sistema é representado de muitas maneiras diferentes e, portanto, pode ter vários modelos matemáticos, dependendo da perspectiva a ser considerada. A dinâmica de muitos sistemas mecânicos, elétricos, térmicos, econômicos, biológicos ou outros, é descrita em termos de equações diferenciais. Essas equações diferenciais são obtidas pelas leis físicas que regem determinado sistema, por exemplo, as leis de Newton para sistemas mecânicos e as leis de Kirchhoff para sistemas elétricos. Devemos ter em mente que construir modelos matemáticos adequados é a parte mais importante da análise de sistemas de controle como um todo. Neste livro, assumiremos que o princípio de causalidade se aplica aos sistemas considerados. Isso significa que a atual saída do sistema (no instante t = 0) depende da entrada anterior (a entrada em um instante t < 0), mas não depende da entrada futura (as entradas nos instantes t > 0). Modelos matemáticos. Os modelos matemáticos podem assumir diferentes formas. Dependendo do sistema considerado e das circunstâncias particulares, um modelo matemático pode ser mais adequado do que outros. Por exemplo, nos sistemas de controle ótimo, é vantajoso utilizar representações do modelo de estado. Por outro lado, para a análise da resposta transitória ou da resposta em freqüência de um sistema linear, invariante no tempo, de entrada e saída únicas, a representação pela função de transferência pode ser mais conveniente do que qualquer outra. Uma vez obtido o modelo matemático de um sistema, podem ser utilizadas várias ferramentas analíticas e de computação para efeito de análise e síntese. Simplicidade versus precisão. Na obtenção de um modelo matemático devemos estabelecer uma conciliação entre a simplicidade do modelo e a precisão dos resultados da análise. Na obtenção de um modelo matemático relativamente simplificado, com freqüência, torna-se necessário ignorar certas propriedades físicas inerentes ao sistema. Em particular, se for desejável um modelo matemático linear de parâmetros concentrados (isto é, se quisermos empregar equações diferenciais ordinárias), é sempre necessário ignorar certas não-linearidades e os parâmetros distribuídos que podem estar presentes no sistema físico. Se os efeitos que essas propriedades ignoradas têm na resposta forem pequenos, pode-se obter

3 boa aproximação entre os resultados da análise de um modelo matemático e os resultados do estudo experimental do sistema físico. Em geral, na solução de um novo problema, é conveniente construir um modelo simplificado para que possamos ter uma percepção geral em relação à solução. Um modelo matemático mais completo pode, então, ser construído e utilizado para que sejam obtidas análises mais precisas. Devemos estar bastante atentos para o fato de que um modelo linear de parâmetros concentrados, válido em operações de baixa freqüência, pode não ser válido para freqüências suficientemente altas, uma vez que a propriedade de parâmetros distribuídos não considerada pode se tornar um fator importante no comportamento dinâmico do sistema. Por exemplo, a massa de uma mola pode ser desprezada em operações de baixa freqüência, mas se torna uma propriedade importante do sistema em freqüências elevadas. (Para o caso em que um modelo matemático envolve erros consideráveis, a teoria de controle robusto pode ser aplicada.) Sistemas lineares. Um sistema é dito linear se o princípio da superposição se aplicar a ele. O princípio da superposição afirma que a resposta produzida pela aplicação simultânea de duas funções diversas é a soma das duas respostas individuais. Então, para um sistema linear, a resposta a diversas entradas pode ser calculada tratando uma entrada de cada vez e somando os resultados. Esse é o princípio que permite construir soluções complicadas para equações diferenciais lineares a partir de soluções simples. Na pesquisa experimental de um sistema dinâmico, se causa e efeito forem proporcionais, significando assim que é válida a aplicação do princípio da superposição, então o sistema pode ser considerado linear. Sistemas lineares invariantes no tempo e sistemas lineares variantes no tempo. Uma equação diferencial é linear se os coeficientes forem constantes ou somente funções da variável independente. Os sistemas dinâmicos compostos por componentes lineares de parâmetros concentrados invariantes no tempo podem ser descritos por equações diferenciais lineares invariantes no tempo (de coeficientes constantes). Esses sistemas são denominados sistemas lineares invariantes no tempo (ou lineares de coeficientes constantes). Os sistemas representados por equações diferenciais, cujos coeficientes são funções de tempo são chamados de sistemas lineares variantes no tempo. Um exemplo de sistema de controle variante no tempo é um sistema de controle de veículo espacial. (A massa de um veículo espacial muda devido ao consumo do combustível.)

4 3.2 FUNÇÃO DE TRANSFERÊNCIA E DE RESPOSTA IMPULSIVA Na teoria de controle, as funções de transferência são comumente utilizadas para caracterizar as relações de entrada e saída de componentes ou de sistemas, que podem ser descritos por equações diferenciais lineares invariantes no tempo. Começamos pela definição de função de transferência e seguimos com a dedução da função de transferência de um sistema mecânico. Em seguida, discutimos a função de resposta impulsiva. Função de transferência. A função de transferência de um sistema representado por uma equação diferencial linear invariante no tempo é definida como a relação entre a transformada de Laplace da saída (função de resposta response function) e a transformada de Laplace da entrada (função de excitação driving function), admitindo-se todas as condições iniciais nulas. Considere o sistema linear invariante no tempo, definido pela seguinte equação diferencial: onde y é a saída do sistema e x é a entrada. A função de transferência desse sistema é a relação entre a transformada de Laplace da saída e a transformada de Laplace da entrada, quando todas as condições iniciais são zero ou Utilizando o conceito de função de transferência, é possível representar a dinâmica de um sistema por meio de uma equação algébrica em s. Se a maior potência de s no denominador da função de transferência for igual a n, o sistema será denominado sistema de ordem n. Comentários sobre a função de transferência. A aplicabilidade do conceito de função de transferência é limitada a sistemas de equações diferenciais lineares invariantes no tempo. O método da função de transferência, entretanto, é

5 amplamente utilizado na análise e no projeto desses sistemas. A seguir, mostraremos importantes comentários a respeito da função de transferência. (Note que o sistema ao qual a lista se refere é descrito por uma equação diferencial linear invariante no tempo.) 1. A função de transferência de um sistema é um modelo matemático que constitui um método operacional para expressar a equação diferencial que relaciona a variável de saída à variável de entrada. 2. A função de transferência é uma propriedade inerente ao sistema, independentemente da magnitude e da natureza da função de entrada ou de excitação. 3. A função de transferência inclui as unidades necessárias para relacionar a entrada à saída: entretanto, não fornece nenhuma informação relativa à estrutura física do sistema. (As funções de transferência de diversos sistemas fisicamente diferentes podem ser idênticas.) 4. Se a função de transferência de um sistema for conhecida, a saída ou resposta poderá ser estudada para várias maneiras de entrada, visando ao entendimento da natureza do sistema. 5. Se a função de transferência de um sistema não for conhecida, ela pode ser determinada experimentalmente com o auxílio de entradas conhecidas e do estudo das respectivas respostas do sistema. Uma vez determinada, a função de transferência fornece uma descrição completa das características dinâmica do sistema, independentemente de sua descrição física. EXEMPLO 3.1 Considere o sistema de controle de posição, de um satélite, indicado na Figura 3.1. O diagrama mostra o controle apenas do ângulo de desvio θ. (No sistema real existem controles relativos aos três eixos.) Pequenos jatos aplicam forças de reação para girar o corpo do satélite conforme a posição desejada. Os dois jatos posicionados de forma anti-simétrica, denotados por A e B, operam em pares. Suponha que o empuxo de cada jato seja F/2 e o torque T = Fl seja aplicado ao sistema. Os jatos são aplicados por certo tempo e, assim, o torque pode ser escrito como T(t). O momento de inércia em relação ao eixo de rotação no centro da massa é J. Vamos obter a função de transferência desse sistema admitindo que o torque T(t) é a entrada e que o deslocamento angular θ(t) do satélite é a saída. (Vamos considerar o movimento somente no plano da página.) Para deduzir a função de transferência, procedemos de acordo com as seguintes etapas:

6 1. Escreva a equação diferencial do sistema. 2. Aplique a transformada de Laplace da equação diferencial, supondo que todas as condições iniciais são nulas. 3. Estabeleça a relação entre a saída Θ(s) e a entrada T(s). Essa relação é a função de transferência. Figura 3.1 Diagrama esquemático do sistema de controle de posição de um satélite. Aplicando a segunda lei de Newton ao presente sistema e observando que não existe atrito no ambiente em que o satélite se encontra, temos: Aplicando a transformada de Laplace a ambos os lados dessa última equação e supondo que todas as condições iniciais sejam nulas, resulta que: onde sistema é obtida como:. Assim, a função de transferência do

7 Integral de convolução. Para um sistema linear, invariante no tempo, a função de transferência G(s) é: onde X(s) é a transformada de Laplace da entrada e Y(s) é a transformada de Laplace da saída, considerando que todas as condições iniciais envolvidas são nulas. Segue-se que a saída Y(s) pode ser escrita como o produto de G(s) e X(s) Y(s) = G(s) X(s) (3.1) Note que a multiplicação no domínio complexo é equivalente à convolução no domínio de tempo, de modo que a transformada inversa de Laplace da Equação (3.1) é dada pela seguinte integral de convolução: onde g(t) e x(t) são ambos 0 para t < 0. Função de resposta impulsiva. Considere a saída (resposta) de um sistema a um impulso unitário de entrada quando as condições iniciais são nulas. Como a transformada de Laplace da função impulso unitário é igual à unidade, a transformada de Laplace da saída do sistema é: Y(s) = G(s) (3.2) A transformada inversa de Laplace da saída, dada pela Equação (3.2), é a resposta impulsiva do sistema. A transformada inversa de Laplace de G(s) ou

8 é chamada de função de resposta impulsiva. Essa função g(t) é também chamada de função característica do sistema. A função de resposta impulsiva g(t) é, portanto, a resposta de um sistema linear a um impulso unitário de entrada, quando as condições iniciais do sistema são nulas. A transformada de Laplace dessa função fornece a função de transferência. Assim, a função de transferência e a função de resposta impulsiva de um sistema linear invariante no tempo contêm as mesmas informações sobre a dinâmica do sistema. Dessa maneira, é possível obter informações completas sobre as características dinâmicas de um sistema, por meio da excitação por um impulso de entrada e medindo a resposta. (Na prática, um pulso de entrada de duração muito pequena, comparado com constantes de tempo dominantes do sistema, pode ser considerado um impulso.) Figura 3.2 Elemento de um diagrama de blocos.

9 3.4 MODELAGEM NO ESPAÇO DE ESTADOS Sistemas complexos podem ter entradas e saídas múltiplas e ser variantes no tempo. Em razão da necessidade de atender às crescentes e rigorosas exigências de desempenho dos sistemas de controle, ao aumento da complexidade dos sistemas e ao acesso fácil e em larga escala aos computadores, a teoria de controle moderno, que é uma nova abordagem para a análise e o projeto de sistemas de controle complexos, tem sido desenvolvida desde aproximadamente Essa nova teoria tem como base o conceito de estado. O conceito de estado propriamente dito não é novo, pois existe há bastante tempo, no campo da dinâmica clássica e em outras áreas. Estado. O estado de um sistema dinâmico é o menor conjunto de variáveis (chamadas de variáveis de estado), tais que o conhecimento dessas variáveis em t=t 0, juntamente com o conhecimento da entrada para t t 0, determina completamente o comportamento do sistema para qualquer instante t t 0. Note que o conceito de estado não é limitado ao caso dos sistemas físicos, ele é aplicável também a sistemas biológicos, econômicos, sociais e outros. Variáveis de estado. As variáveis de estado de um sistema dinâmico são aquelas que constituem o menor conjunto de variáveis capaz de determinar o estado desse sistema dinâmico. Se pelo menos n variáveis x 1, x 2,..., x n são necessárias para descrever todo o comportamento de um sistema dinâmico (de tal modo que, sendo dada a entrada para t t 0 e especificado o estado inicial em t = t 0, o estado futuro do sistema fique completamente determinado), então essas n variáveis formam um conjunto de variáveis de estado. Note que as variáveis de estado não necessitam ser quantidades fisicamente mensuráveis ou observáveis. As variáveis que não representam grandezas físicas e aquelas que não são nem mensuráveis nem observáveis podem ser escolhidas como variáveis de estado. Essa liberdade de escolha das variáveis de estado é uma vantagem dos métodos de espaço de estados. Na prática, entretanto, é conveniente escolher para variáveis de estado grandezas que sejam facilmente mensuráveis, se isso for possível, porque as leis do controle ótimo requerem a realimentação de todas as variáveis de estado com ponderação adequada. Vetor de estado. Se forem necessárias n variáveis de estado para descrever completamente o comportamento de um dado sistema, então essas n variáveis de estado poderão ser consideradas os n componentes de um vetor x. Esse vetor é chamado de vetor de estado. Assim, um vetor de estado é aquele que determina univocamente o estado do sistema x(t) para qualquer instante t t 0, uma vez dado o estado em t = t 0 e especificada a entrada u(t) para t t 0.

10 Espaço de estados. O espaço n-dimensional, cujos eixos coordenados são formados pelos eixos de x 1, x 2,..., x n onde x 1, x 2,..., x n são as variáveis de estado, é chamado de espaço de estados. Qualquer estado pode ser representado por um ponto no espaço de estados. Equações no espaço de estados. A análise no espaço de estados envolve três tipos de variáveis que estão presentes na modelagem de sistemas dinâmicos: variáveis de entrada, variáveis de saída e variáveis de estado. Como veremos na Seção 3.5, a representação de um dado sistema no espaço de estados não é única, mas o número de variáveis de estado é o mesmo para qualquer uma das diferentes representações do mesmo sistema, no espaço de estados. O sistema dinâmico deve conter elementos que memorizem os valores de entrada para t t 1. Uma vez que os integradores, em um sistema de controle de tempo contínuo, servem como dispositivos de memória, as saídas desses integradores podem ser consideradas variáveis que definem o estado interno do sistema dinâmico. Assim, as saídas dos integradores podem ser escolhidas como variáveis de estado. O número de variáveis de estado que definem completamente a dinâmica de um sistema é igual ao número de integradores existentes no sistema. Suponha que um sistema com múltiplas entradas e múltiplas saídas envolva n integradores. Considere também que existam r entradas u 1 (t), u 2 (t),..., u r (t) e m saídas y 1 (t), y 2 (t),..., y m (t). Defina as n saídas dos integradores como variáveis de estado: x 1 (t), x 2 (t),..., x n (t). Então o sistema pode ser descrito como: (3.8) As saídas y 1 (t), y 2 (t),..., y m (t) do sistema podem ser dadas por: (3.9)

11 Se definirmos as equações (3.8) e (3.9) tornam-se: onde a Equação (3.10) é a equação de estado e a Equação (3.11) é a equação de saída. Se as funções vetoriais f e/ou g envolverem explicitamente o tempo t, então o sistema será chamado de sistema variante no tempo. Se as equações (3.10) e (3.1 1) forem linearizadas em torno de um ponto de operação, então teremos as seguintes equações de estado e de saída linearizadas: onde A(t) é chamada de matriz de estado, B(t), de matriz de entrada, C(t), de matriz de saída, e D(t), de matriz de transmissão direta. (Os detalhes da linearização de sistemas não-lineares em torno de um estado de operação serão discutidos na Seção 3.10.) Uma representação do diagrama de blocos das equações (3.12) e (3.13) é mostrada na Figura Se as funções vetoriais f e g não envolverem o tempo t explicitamente, então o sistema será chamado de sistema invariante no tempo. Nesse caso, as equações (3.12) e (3.13) podem ser simplificadas para:

12 Figura 3.15 Diagrama de blocos de um sistema de controle linear de tempo contínuo, representado no espaço de estados. A Equação (3.14) é a equação de estado de um sistema linear invariante no tempo. A Equação (3.15) é a equação de saída para o mesmo sistema. Neste livro, vamonos referir principalmente aos sistemas descritos pelas equações (3.14) e (3.15). A seguir, apresentamos um exemplo que mostra como se obtém a equação de estado e a equação de saída de um sistema. EXEMPLO 3.3 Considere o sistema mecânico indicado na Figura Admitamos que o sistema é linear. A força externa u(t) é a entrada do sistema e o deslocamento y(t) da massa é a saída. O deslocamento y(t) é medido a partir da posição de equilíbrio, na ausência da força externa. Esse sistema é um sistema de entrada e saída únicas. Figura 3.16 Sistema mecânico.

13 De acordo com o diagrama, a equação do sistema é: (3.16) Esse sistema é de segunda ordem. Isso significa que ele contém dois integradores. Vamos definir as variáveis de estado x 1 (t) e x 2 (t) como: Então, obtemos: ou A equação de saída é: Sob a forma vetorial-matricial, as equações (3.17) e (3.18) podem ser escritas como:

14 A equação de saída, Equação (3.19), pode ser escrita como: A Equação (3.20) é uma equação de estado e a Equação (3.21) é uma equação de saída para o sistema. As equações (3.20) e (3.21) estão escritas na forma padrão: onde A Figura 3.17 é um diagrama de blocos do sistema. Note que as saídas dos integradores são variáveis de estado. Figura 3.17 Diagrama de blocos do sistema mecânico da Figura Correlação entre funções de transferência e equações no espaço de estados. A seguir mostraremos como obter uma função de transferência de um sistema de entrada e saída únicas a partir das equações no espaço de estados. Consideremos o sistema cuja função de transferência é dada por: Y(s) / U(s) = G(s) (3.22) Esse sistema pode ser representado no espaço de estados pelas seguintes equações:

15 onde x é o vetor de estado, u é a entrada e y é a saída. A transformada de Laplace das equações (3.23) e (3.24) é dada por: sx(s) - x(0) = AX(s) + BU(s) (3.25) Y(s) = CX(s) + DU(s) (3.26) Uma vez que a função de transferência foi previamente definida como a relação entre a transformada de Laplace da saída e a transformada de Laplace da entrada quando as condições iniciais são nulas, estabelecemos x(0) igual a zero na Equação (3.25). Então, ou sx(s) - AX(s) = BU(s) (si - A)X(s) = BU(s) Multiplicando à esquerda ambos os lados dessa última equação por (si - A) -1, obtemos: X(s) = (si - A) -1 BU(s) (3.27) Substituindo a Equação (3.27) na Equação (3.26), temos: Y(s) = [C(sI - A) -1 B + D]U(s) (3.28) Comparando a Equação (3.28) com a Equação (3.22), vemos que: G(s) = C(sI - A) -1 B + D (3.29) Essa é a expressão da função de transferência do sistema em termos de A, B, C e D. Note que o lado direito da Equação (3.29) contém a matriz (si-a) -1. Em conseqüência, G(s) pode ser escrito da seguinte maneira: onde Q(s) é um polinômio em s. Assim, si-a é igual ao polinômio característico de G(s). Em outras palavras, os autovalores de A são idênticos aos pólos de G(s).

16 EXEMPLO 3.4 Considere novamente o sistema mecânico mostrado na Figura As equações de espaço de estados para o sistema são dadas pelas equações (3.20) e (3.21). Vamos obter a função de transferência do sistema a partir das equações do espaço de estados. Pela substituição de A, B, C e D na Equação (3.29), obtemos: Como tem-se: que é a função de transferência do sistema. A mesma função de transferência pode ser obtida a partir da Equação (3.16). Matriz de transferência. A seguir, considere um sistema de múltiplas entradas e múltiplas saídas. Suponha que existam r entradas u 1, u 2,...,u r e m saídas y 1, y 2,..., y m. Defina

17 A matriz de transferência G(s) relaciona a saída Y(s) com a entrada U(s), ou seja. onde G(s) é dado por: Y(s) = G(s)U(s) G(s) = C(sI - A) -1 B + D [ A dedução dessa equação é a mesma que a da Equação (3.29).].Como o vetor de entrada u é de dimensão r e o vetor de saída y é de dimensão m, a matriz de transferência G(s) é uma matriz de m x r.

18 3.5 REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NO ESPAÇO DE ESTADOS Um sistema dinâmico que consiste em um número finito de elementos concentrados pode ser descrito por equações diferenciais ordinárias, nas quais o tempo é a variável independente. Utilizando-se a notação vetorial-matricial, uma equação diferencial de ordem n pode ser representada por uma equação diferencial vetorial-matricial de primeira ordem. Se n elementos do vetor formam um conjunto de variáveis de estado, então a equação diferencial vetorial-matricial é uma equação de estado. Nesta seção, apresentaremos métodos para obter as representações no espaço de estados de sistemas de tempo contínuo. Representação no espaço de estados de sistemas de equações diferenciais lineares de ordem n, cuja função de entrada não possui derivadas. Considere o seguinte sistema de ordem n: Observando-se que o conhecimento de, junto com a entrada u(t) para t 0,determina completamente o comportamento futuro do sistema, podese considerar como um conjunto de n variáveis de estado. (matematicamente, essa escolha das variáveis de estado é bastante satisfatória. Na prática, entretanto, em virtude dos ruídos inerentes a qualquer situação prática e da imprecisão causada pelos termos com derivadas de ordem elevada, a escolha dessas variáveis de estado pode não ser desejável.) Definindo a Equação (3.30) pode ser escrita do seguinte modo:

19 ou onde A saída pode ser dada por: ou y = Cx (3.32) onde C=[ ] [Note que D na Equação (3.24) é zero.] A equação diferencial de primeira ordem, Equação (3.31), é a equação de estado e a equação algébrica, Equação (3.32), é a equação de saída. Veja que a representação no espaço de estados de um sistema cuja função de transferência é é dada também pelas equações (3.31) e (3.32).

20 Representação no espaço de estados de um sistema de equações diferenciais lineares de ordem n, cuja função de entrada possui derivadas. Considere o sistema de equações diferenciais que possui derivadas na função de entrada, como: O principal problema na definição das variáveis de estado para esse caso ocorre nos termos com derivadas. As variáveis de estado devem ser tais que eliminem as derivadas de u na equação de estado. Uma maneira de obter a equação de estado e a equação de saída é definir as seguintes n variáveis como um conjunto de n variáveis de estado: onde β 0, β 1, β 2,..., β n, são determinadas a partir de Com essa escolha de variáveis de estado, a existência e a unicidade da solução da equação de estado estão garantidas. (Note que essa não é a única escolha de um conjunto de variáveis de estado.) Com essa escolha obtemos:

21 [Para deduzir a Equação (3.36), veja o Problema A.3.6.] Em termos de equações vetorial-matriciais, a Equação (3.36) e a equação de saída podem ser escritas como: ou onde

22 Com essa representação no espaço de estados, as matrizes A e C são exatamente as mesmas do sistema da Equação (3.30). As derivadas do termo à direita da Equação (3.33) afetam somente os elementos da matriz B. Note que a representação no espaço de estados para a função de transferência é dada pelas equações (3.37) e (3.38). Existem diversas maneiras de obter a representação de sistemas no espaço de estados. Algumas delas são representadas neste capítulo. Os métodos para a obtenção das representações canônicas de sistemas no espaço de estados (como a forma canônica controlável, forma canônica observável, forma canônica diagonal e forma canônica de Jordan) são apresentados no Capítulo 11 de Ogata. O MATLAB pode ser utilizado para a obtenção de representações de sistemas no espaço de estados a partir da função de transferência e vice-versa. Esse assunto será apresentado na Seção 3.6. EXEMPLO 3.5 Considere o sistema massa-mola-amortecedor montado em um carro de massa desprezível, como mostra a Figura Um amortecedor é um dispositivo que produz um atrito ou amortecimento hidráulico. Ele consiste em um pistão e um cilindro preenchido com óleo. Qualquer movimento relativo entre a barra do pistão e o cilindro sofre a resistência oferecida pelo óleo, porque o óleo deve fluir em torno do pistão (ou pelos orifícios existentes no pistão), de um lado para o outro. O amortecedor, essencialmente, absorve energia. Essa energia absorvida é dissipada sob a forma de calor e o amortecedor não armazena energia cinética nem potencial. O amortecedor hidráulico (dashpot) é também simplesmente chamado de amortecedor. Vamos obter modelos matemáticos para esse sistema, supondo que o carro está parado para t < 0 e o sistema massa-mola-amortecedor no carro também está em repouso para t < 0. Nesse sistema, u(t) é o deslocamento do carro e é a entrada do sistema. Em t = 0, o carro se move a uma velocidade constante ou u = constante. O deslocamento y(t) da massa é a saída. (O deslocamento é relativo ao solo.) Nesse sistema, m representa a massa, b o coeficiente de atrito viscoso, e k, seja a constante da mola. Vamos supor que a força de atrito do amortecedor seja proporcional a y u e que a mola seja linear, isto é, a força da mola seja proporcional a y-u.

23 Figura 3.18 Sistema massa-mola-amortecedor montado em um carro. Para sistemas de translação, a segunda lei de Newton estabelece que: ma= F onde m é a massa, a é a aceleração da massa e F é a soma das forças atuantes na massa, na mesma direção da aceleração a. Aplicando a segunda lei de Newton para o presente sistema e considerando que o carro não possui massa, obtemos: ou Essa equação representa o modelo matemático do sistema considerado. Obtendo a transformada de Laplace dessa última equação e supondo que as condições iniciais sejam nulas, resulta que: (ms 2 + bs + k)y(s) = (bs + k)u(s) Pela relação entre Y(s) e U(s), encontramos a função de transferência do sistema como: Essa representação de um modelo matemático por função de transferência é utilizada com muita freqüência na engenharia de controle.

24 A seguir, obtemos um modelo no espaço de estados desse sistema. Primeiramente, vamos comparar a equação diferencial desse sistema com a forma padronizada e identificar a 1, a 2, b 0, b 1 e b 2, como se segue: Com referência à Equação (3.35), temos: Então, com base na Equação (3.34), define-se: A partir da Equação (3.36), temos: e a equação de saída torna-se: ou y = x 1 e

25 As equações (3.39) e (3.40) constituem uma representação do sistema no espaço de estados. (Note que essa não é a única representação no espaço de estados. Existe uma infinidade de representações para o sistema.) 3.6 TRANSFORMAÇÃO DE MODELOS MATEMÁTICOS COM MATLAB O MATLAB é amplamente utilizado para transformar o modelo do sistema de função de transferência para o espaço de estados e vice-versa. Vamos começar nossa discussão com a transformação a partir da função de transferência para o modelo no espaço de estados. Seja a função de transferência escrita do seguinte modo: Uma vez obtida a expressão da função de transferência, o comando MATLAB, a seguir, [A, B, C, D] = tf2ss(num,den) vai fornecer a representação no espaço de estados. É importante notar que a representação no espaço de estados para um dado sistema não é única. Existem diversas (infinitas) representações no espaço de estados para um mesmo sistema. O comando MATLAB fornece uma dessas possíveis representações. Transformação da função de transferência para o espaço de estados. Considere a função de transferência do sistema Existem várias (infinitas) representações no espaço de estados possíveis para esse sistema. Uma delas é:

26 Outra representação (entre várias alternativas possíveis) é: O MATLAB transforma a função de transferência dada pela Equação (3.41) em uma representação no espaço de estados dada pelas equações (3.42) e (3.43). Para o exemplo de sistema considerado aqui, o Programa 3.2 em MATLAB vai produzir as matrizes A, B, C e D. Transformação do espaço de estados para função de transferência. Para obter a função de transferência a partir das equações no espaço de estados, utilize o seguinte comando: [num,den] = ss2tf(a,b,c,d,iu) onde iu deve ser especificado para sistemas com mais de uma entrada. Por exemplo, se o sistema tiver três entradas (u 1, u 2, u 3 ), então iu deverá ser 1, 2 ou 3, onde 1 representa u 1, 2 representa u 2 e 3 representa u 3. Se o sistema tiver somente uma entrada, os comandos [num,den] = ss2tf(a,b,c,d)

27 ou [num,den] = ss2tf(a,b,c,d,1) poderão ser utilizados. Para os casos em que o sistema tenha múltiplas entradas e saídas, veja o Problema A EXEMPLO 3.6 Obtenha a função de transferência de um sistema definido pelas seguintes equações no espaço de estados: O Programa 3.3 em MATLAB vai fornecer a função de transferência para o sistema em questão. A função de transferência obtida é dada por:

28 3.7 SISTEMAS MECÂNICOS Discutiremos, nesta seção, a modelagem matemática de sistemas mecânicos. A lei fundamental que governa os sistemas mecânicos é a segunda lei de Newton. Ela pode ser aplicada a qualquer sistema mecânico. Nesta seção, vamos deduzir modelos matemáticos de três sistemas mecânicos. (Os modelos matemáticos de outros sistemas serão deduzidos e analisados nos demais capítulos.) EXEMPLO 3.7 Obtenha as funções de transferência X(s)/U(s) e X(s)/U(s) do sistema mecânico mostrado na Figura Figura 3.19 Sistema mecânico. As equações de movimento para o sistema mostrado na Figura 3.19 são: Simplificando, obtemos: Transformando por Laplace essas duas equações, admitindo condições iniciais nulas, obtemos: Resolvendo a Equação (3.45) para X 2 (s), substituindo-a na Equação (3.44) e simplificando, temos: a partir da qual obtemos:

29 A partir das equações (3.45) e (3.46) temos: As equações (3.46) e (3.47) são as funções de transferência X 1 (s)/u(s) e X 2 (s)/u(s). respectivamente. EXEMPLO 3.8 Um pêndulo invertido montado em um carro motorizado é mostrado na Figura 3.20(a). Esse é um modelo de controle de posição de um foguete na fase de lançamento. (O objetivo do problema de controle de posição é manter o foguete na posição vertical.) O pêndulo invertido é instável, pois pode cair a qualquer instante, para qualquer direção, a menos que uma força adequada de controle seja aplicada a ele. Vamos considerar aqui somente o problema bidimensional, em que o movimento do pêndulo fica restrito só ao plano da página. A força de controle u é aplicada ao carro. Considere que o centro de gravidade da haste do pêndulo esteja situado no centro geométrico dele. Obtenha um modelo matemático para esse sistema. Figura 3.20 (a) Sistema de pêndulo invertido; (b) diagrama do corpo livre.

30 Defina o ângulo da haste a partir da linha vertical como θ. Defina também as coordenadas (x, y) do centro de gravidade da haste como (x G, y G ). Então, Para deduzir as equações de movimento do sistema, considere o diagrama do corpo livre, mostrado na Figura 3.20(b). O movimento rotacional da haste do pêndulo em torno de seu centro de gravidade pode ser descrito por: onde I é o momento de inércia da haste em relação ao centro de gravidade. O movimento horizontal do centro de gravidade da haste do pêndulo é dado por: O movimento vertical do centro de gravidade da haste do pêndulo é: O movimento horizontal do carro é descrito por: Como devemos manter o pêndulo invertido na posição vertical, podemos admitir que θ(t) e (t) sejam grandezas suficientemente pequenas para que se possa fazer senθ=θ, cosθ=1 e 2 0. Então, as equações de (3.48) a (3.50) podem ser linearizadas como se segue: Com o auxílio das equações (3.51) e (3.53), obtemos: e a partir das equações (3.52), (3.53) e (3.54) obtemos:

31 ou As equações (3.55) e (3.56) descrevem o movimento do sistema de pêndulo invertido sobre o carro. Elas constituem o modelo matemático do sistema. EXEMPLO 3.9 Considere o sistema de pêndulo invertido mostrado na Figura Como nesse sistema a massa está concentrada no topo da haste, o centro de gravidade é o centro da bola do pêndulo. Figura 3.21 Sistema de pêndulo invertido. Para esse caso, o momento de inércia do pêndulo sobre seu centro de gravidade é pequeno e vamos supor que t = 0 na Equação (3.56). Então, o modelo matemático para esse sistema passa a ser: As equações (3.57) e (3.58) podem ser modificadas para

32 A Equação (3.59) foi obtida pela eliminação de x das equações (3.57) e (3.58). A Equação (3.60) foi obtida pela eliminação de das equações (3.57) e (3.58). Utilizando a Equação (3.59), obtemos a função de transferência da planta como: O sistema de pêndulo invertido tem um pólo no semi-eixo negativo do eixo real e outro no semi-eixo positivo do eixo real. Então, a planta é instável em malha aberta. Defina as variáveis de estado x 1, x 2, x 3 e x 4 como: Note que o ângulo θ indica a rotação da haste do pêndulo em torno do ponto P e x é a localização do carro. Se considerarmos θ e x como saídas do sistema, então (Note que tanto θ como x são quantidades facilmente mensuráveis.) Então, a partir da definição das variáveis de estado pelas equações (3.59) e (3.60), obtemos: Em termos de equações vetorial-matriciais, temos:

33 As equações (3.61) e (3.62) são uma representação do sistema de pêndulo invertido no espaço de estados. (Note que a representação no espaço de estados do sistema não é única. Existe uma infinidade de representações possíveis para esse sistema.)

34 3.10 LINEARIZAÇÃO DE MODELOS Sistemas não-lineares. Um sistema é não-linear se o princípio da superposição não se aplicar a ele. Assim, para um sistema não-linear, não se pode obter a resposta a duas entradas simultâneas considerando as entradas individualmente e somando os resultados. Embora muitas relações de grandezas físicas sejam representadas por equações lineares, na maioria dos casos a relação entre elas não é efetivamente linear. De fato, um estudo cuidadoso dos sistemas físicos revela que mesmo os chamados sistemas lineares são realmente lineares somente para intervalos limitados de operação. Na prática, muitos sistemas eletromecânicos, hidráulicos e outros envolvem relações não-lineares entre as variáveis. Por exemplo, a saída de um componente pode ser saturada para sinais de entrada de grande amplitude. Pode haver um espaço morto que afeta pequenos sinais. (O espaço morto de um componente é uma pequena gama de variações de entrada às quais o componente é insensível.) Não-linearidades quadráticas podem ocorrer em alguns componentes. Por exemplo, amortecedores utilizados em sistemas físicos podem ser lineares para operações de baixa velocidade, mas podem tornar-se não-lineares para velocidades elevadas e a ação de amortecimento pode se tornar proporcional ao quadrado da velocidade de operação. Linearização de sistemas não-lineares. Em dinâmica, uma operação normal do sistema pode ser em torno do ponto de equilíbrio, e os sinais podem ser considerados pequenos sinais em torno do equilíbrio. (Deve-se notar que existem várias exceções para esse caso.) Entretanto, se o sistema operar em torno de um ponto de equilíbrio e se os sinais envolvidos forem pequenos, então é possível aproximar o sistema não-linear por um sistema linear. Esse sistema linear é equivalente ao sistema não-linear considerado dentro de um conjunto limitado de operações. Esse modelo linearizado (modelo linear, invariante no tempo) é muito importante na engenharia de controle. O processo de linearização apresentado a seguir tem como base o desenvolvimento da função não-linear em uma série de Taylor em torno do ponto de operação e a retenção somente do termo linear. Em virtude de desprezarmos os termos de ordem elevada da expansão da série de Taylor, esses termos desprezados devem ser suficientemente pequenos; isto é, as variáveis devem se desviar apenas ligeiramente das condições de operação. Aproximação linear de modelos matemáticos não-lineares. Para obter um modelo matemático linear de um sistema não-linear, admitimos que as variáveis desviem apenas ligeiramente de alguma condição de operação. Considere um sistema em que a entrada é x(t) e a saída é y(t). A relação entre y(t) e x(t) é dada por:

35 y = f(x) (3.83) Se a condição de operação normal corresponde a x, y, então a Equação (3.83) pode ser expandida em uma série de Taylor em torno desse ponto, como se segue: y=f(x) onde as derivadas df/dx, d 2 f/dx 2,... são avaliadas em x = x. Se a variação de x- x for pequena, podemos desprezar os termos de ordem mais elevada em x- x. Então, a Equação (3.84) pode ser escrita como: onde A Equação (3.85) pode ser reescrita como: que indica que y- y é proporcional a x- x. A Equação (3.86) fornece um modelo matemático linear para o sistema não-linear dado pela Equação (3.83), próximo do ponto de operação x- x, y- y. A seguir, considere o sistema não-linear cuja saída y é uma função de duas entradas, x 1 e x 2, tal que y = f(x 1,x 2 ) (3.87) Para obter uma aproximação linear desse sistema não-linear, podemos expandir a Equação (3.87) em uma série de Taylor em torno do ponto normal de operação x 1, x. A Equação (3.87) torna-se: 2

36 onde as derivadas parciais são calculadas em x 1 = x 1, x 2= x 2. Nas proximidades do ponto normal de operação, os termos de ordem mais elevada podem ser desprezados. O modelo matemático linear desse sistema não-linear, nas proximidades das condições normais de operação, é então dado por: onde A técnica de linearização apresentada aqui é válida nas proximidades das condições de operação. Se as condições de operação variam muito, entretanto, essas equações linearizadas não são adequadas, e as equações não-lineares devem ser utilizadas. É importante lembrar que um modelo matemático particular, utilizado para fins de análise e projeto, pode representar com precisão a dinâmica de um sistema real para certas condições de operação, mas pode não ser preciso para outras condições de operação. EXEMPLO 3.15 Linearize a equação não-linear na região 5 x 7, 10 y 12. Encontre o erro para o caso em que a equação linearizada seja utilizada para calcular o valor de z quando x=5 e y=10. Como a região considerada é dada por 5 x 7, 10 y 12, selecione x =6, y =11. Então, z xy 66. Vamos obter a equação linearizada para a equação não-linear nas proximidades do ponto x =6, y =11. Expandindo a equação não-linear em uma série de Taylor próxima do ponto x= x, y= y e desprezando os termos de ordem mais elevada, temos: onde

37 Então, a equação linearizada é: ou Quando x=5, y=10, o valor de z dado pela equação linearizada é: o valor exato de z é z=xy=50. Assim, o erro é 50-49=1. Em termos de porcentagem, o erro é de 2%.

Aluno Data Curso / Turma Professor

Aluno Data Curso / Turma Professor Apostila Modelagem e Simulação de Sistemas Dinâmicos Aluno Data Curso / Turma Professor 24/10/09 Engenharia Industrial Mecânica / 2006-1 MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS Everton Farina, Eng.º

Leia mais

Modelos Matematicos de Sistemas

Modelos Matematicos de Sistemas Modelos Matematicos de Sistemas Introdução; Equações Diferenciais de Sistemas Físicos; Aproximações Lineares de Sistemas Físicos; Transformada de Laplace; Função de Transferência de Sistemas Lineares;

Leia mais

INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA. Sistemas

INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA. Sistemas INSTITUTO FEDERAL DO ESPÍRITO SANTO - CAMPUS SERRA Sistemas Dinâmicos Para controlar é preciso conhecer Sistemas dinâmicos Modificam-se no decorrer do tempo Modelos matemáticos Método analítico (Leis físicas)

Leia mais

SISTEMAS DE CONTROLE SIC

SISTEMAS DE CONTROLE SIC SISTEMAS DE CONTROLE SIC Parte 1 Modelagem de Sistemas Dinâmicos Professor Dr. Michael Klug 1 Introdução MODELOS No estudo de sistemas de controle devemos ser capazes de obter uma representação matemática

Leia mais

Modelagem Matemática de Sistemas

Modelagem Matemática de Sistemas Modelagem Matemática de Sistemas 1. Descrição Matemática de Sistemas 2. Descrição Entrada-Saída 3. Exemplos pag.1 Teoria de Sistemas Lineares Aula 3 Descrição Matemática de Sistemas u(t) Sistema y(t) Para

Leia mais

Controle de Processos: Representação de modelos

Controle de Processos: Representação de modelos Controle de Processos: Representação de modelos Prof. Eduardo Stockler Tognetti & David Fiorillo Laboratório de Automação e Robótica (LARA) Dept. Engenharia Elétrica - UnB Conteúdo 1. Introdução 2. Linearização

Leia mais

Linearização de Modelos Matemáticos Não-Lineares. Carlos Alexandre Mello. Carlos Alexandre Mello 1

Linearização de Modelos Matemáticos Não-Lineares. Carlos Alexandre Mello. Carlos Alexandre Mello 1 de Modelos Matemáticos Não-Lineares Carlos Alexandre Mello 1 Embora muitos sistemas sejam vistos como lineares eles são, de fato, lineares em intervalos Se o sistema operar em torno de um ponto de equilíbrio

Leia mais

Sistemas de Controle 1

Sistemas de Controle 1 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos

Leia mais

Modelagem no Domínio do Tempo

Modelagem no Domínio do Tempo CAPÍTULO TRÊS Modelagem no Domínio do Tempo SOLUÇÕES DE DESAFIOS DOS ESTUDOS DE CASO Controle de Antena: Representação no Espaço de Estados Para o amplificador de potência, E s a() V () s 150. Usando a

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHRIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA. 2ª Lista de SEL0417 Fundamentos de Controle.

UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHRIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA. 2ª Lista de SEL0417 Fundamentos de Controle. UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHRIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA ª Lista de SEL0417 undamentos de Controle Professor: Rodrigo Andrade Ramos Questão 1 Suponha que um satélite

Leia mais

Modelagem e estabilização do pêndulo invertido

Modelagem e estabilização do pêndulo invertido Experiência5 Modelagem e estabilização do pêndulo invertido O objetivo desse experimento é obter um modelo linearizado no espaço de estados do pêndulo invertido com sua respectiva faixa de operação. Serão

Leia mais

1ā lista de exercícios de Sistemas de Controle II

1ā lista de exercícios de Sistemas de Controle II ā lista de exercícios de Sistemas de Controle II Obtenha uma representação em espaço de estados para o sistema da figura R(s) + E(s) s + z U(s) K Y (s) s + p s(s + a) Figura : Diagrama de blocos do exercício

Leia mais

1 Sistemas multidimensionais e Linearização

1 Sistemas multidimensionais e Linearização Teoria de Controle (sinopse) Sistemas multidimensionais e Linearização J. A. M. Felippe de Souza Sistemas multidimensionais Linearização Aideia de sistemas é quase que intuitiva. Eemplos de sistemas físicos

Leia mais

X. MÉTODOS DE ESPAÇO DE ESTADOS

X. MÉTODOS DE ESPAÇO DE ESTADOS INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE X. MÉTODOS DE ESPAÇO DE ESTADOS Prof. Davi Antônio dos Santos (davists@ita.br) Departamento de

Leia mais

Análise Dinâmica de Sistemas Mecânicos e Controle

Análise Dinâmica de Sistemas Mecânicos e Controle Análise Dinâmica de Sistemas Mecânicos e Controle Unidade 2 Representação de sistemas Através de Diagramas e Espaço de Estados Prof. Thiago da Silva Castro thiago.castro@ifsudestemg.edu.br 1. Representação

Leia mais

A Transformada de Laplace

A Transformada de Laplace MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

Modelagem de Sistemas de Controle por Espaço de Estados

Modelagem de Sistemas de Controle por Espaço de Estados Modelagem de Sistemas de Controle por Espaço de Estados A modelagem por espaço de estados possui diversas vantagens. Introduz a teoria conhecida como Controle Moderno ; Adequada para sistemas de múltiplas

Leia mais

5 Descrição entrada-saída

5 Descrição entrada-saída Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)

Leia mais

Sistemas de Controle 1

Sistemas de Controle 1 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap3 Modelagem no Domínio do Tempo Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos Lajovic

Leia mais

Sistemas de Controle

Sistemas de Controle Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle Resumo Espaço dos Estados Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle Prof. Dr. Marcos Lajovic Carneiro Resumo

Leia mais

EES-20: Sistemas de Controle II. 31 Julho 2017

EES-20: Sistemas de Controle II. 31 Julho 2017 EES-20: Sistemas de Controle II 31 Julho 2017 1 / 41 Folha de informações sobre o curso 2 / 41 O que é Controle? Controlar: Atuar sobre um sistema físico de modo a obter um comportamento desejado. 3 /

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais

Leia mais

II. REVISÃO DE FUNDAMENTOS

II. REVISÃO DE FUNDAMENTOS INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE II. REVISÃO DE FUNDAMENTOS Prof. Davi Antônio dos Santos (davists@ita.br) Departamento de Mecatrônica

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/14 2/14 Introdução Conforme mencionado anteriormente, um sistema com n graus de liberdade necessita de n coordenadas independentes para descrever sua configuração e movimento. Normalmente essas coordenadas

Leia mais

Fundamentos de Controlo

Fundamentos de Controlo Fundamentos de Controlo 1 a Série Representação Matemática, Modelo Físico, Linearização, Álgebra de Blocos. S1.1 Exercícios Resolvidos P1.1 Considere o sistema da Figura 1 em que uma força u é aplicada

Leia mais

ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS

ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS ELT062 - OFICINA DE SIMULAÇÃO ANALÓGICA E DIGITAL EM CONTROLE LINEARIZAÇÃO DE SISTEMAS 1. INTRODUÇÃO Sistemas dinâmicos lineares são aqueles que obedecem ao princípio da superposição, isto é, um sistema

Leia mais

Estabilidade de sistemas de controle lineares invariantes no tempo

Estabilidade de sistemas de controle lineares invariantes no tempo 2 Estabilidade de sistemas de controle lineares invariantes no tempo 2.1 Introdução Neste capítulo, vamos definir alguns conceitos relacionados à estabilidade de sistemas lineares invariantes no tempo.

Leia mais

Controle: é o ato de comandar, dirigir, ordenar, manipular alguma coisa ou alguém.

Controle: é o ato de comandar, dirigir, ordenar, manipular alguma coisa ou alguém. DEFINIÇÕES Sistema: é um conjunto de componentes que atuam conjuntamente e realizam um certo objetivo. Assim um sistema é um arranjo de partes ou componentes, sem limitações de quantidade ou qualidade.

Leia mais

Controle e Sistemas Não lineares

Controle e Sistemas Não lineares Controle e Sistemas Não lineares Prof. Marcus V. Americano da Costa F o Departamento de Engenharia Química Universidade Federal da Bahia Salvador-BA, 01 de dezembro de 2016. Sumário Objetivos Introduzir

Leia mais

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.

Leia mais

Cap.2. Representação de Estado e Controlabilidade

Cap.2. Representação de Estado e Controlabilidade Cap.2. Representação de Estado e Controlabilidade Visão geral do capítulo Neste capítulo trataremos o problema da controlabilidade de sistemas lineares invariantes no tempo. Faremos antes uma breve revisão

Leia mais

Determinação dos Parâmetros do Motor de Corrente Contínua

Determinação dos Parâmetros do Motor de Corrente Contínua Laboratório de Máquinas Elétricas: Alunos: Professor: Leonardo Salas Maldonado Determinação dos Parâmetros do Motor de Corrente Contínua Objetivo: Ensaiar o motor de corrente contínua em vazio; Determinar

Leia mais

Sistemas de Controle 1

Sistemas de Controle 1 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos

Leia mais

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.

Leia mais

Introdução ao Controle em Espaço de Estados - Escrevendo as Equações de Estado

Introdução ao Controle em Espaço de Estados - Escrevendo as Equações de Estado Introdução ao Controle em Espaço de Estados - Escrevendo as Equações de Estado Eduardo M. A. M. Mendes DELT - UFMG Curso de Engenharia de Controle e Automação Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Sistemas de Controle 1

Sistemas de Controle 1 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap5 Redução de Subsistemas Múltiplos Prof. Filipe Fraga Sistemas de Controle 1 5. Redução de Subsistemas Múltiplos

Leia mais

Sistemas de Controle 1

Sistemas de Controle 1 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap3 Modelagem no Domínio do Tempo Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos Lajovic

Leia mais

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.

Leia mais

O Sistema Massa-Mola

O Sistema Massa-Mola O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola

Leia mais

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 e 2 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 29/11/2015 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:

Leia mais

Processamento de sinais digitais

Processamento de sinais digitais Processamento de sinais digitais Aula 2: Descrição discreta no tempo de sinais e sistemas silviavicter@iprj.uerj.br Tópicos Sequências discretas no tempo. Princípio da superposição para sistemas lineares.

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos Modelagem Matemática de Sistemas Eletromecânicos Estudos e Analogias de modelos de funções de transferências. Prof. Edgar Brito Introdução Os sistemas elétricos são componentes essenciais de muitos sistemas

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4 O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um

Leia mais

Redução de Subsistemas Múltiplos

Redução de Subsistemas Múltiplos CAPÍTULO CINCO Redução de Subsistemas Múltiplos SOLUÇÕES DE DESAFIOS DOS ESTUDOS DE CASO Controle de Antena: Projetando uma Resposta a Malha Fechada a. Desenhando o diagrama de blocos do sistema: b. Desenhando

Leia mais

1. Estudo do pêndulo

1. Estudo do pêndulo Objectivos odelizar um pêndulo invertido rígido de comprimento e massa, supondo uma entrada de binário. Simular em computador. entar estabilizar o pêndulo em ciclo aberto por manipulação directa do binário.

Leia mais

Introdução ao Sistema de Controle

Introdução ao Sistema de Controle Introdução ao Sistema de Controle 0.1 Introdução Controle 1 Prof. Paulo Roberto Brero de Campos Controle é o ato de exercer comando sobre uma variável de um sistema para que esta variável siga um determinado

Leia mais

Fundamentos de Controle

Fundamentos de Controle Fundamentos de Controle Modelagem matemática de sistemas de controle Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui

Leia mais

Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos

Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos 107484 Controle de Processos Aula: Função de transferência, diagrama de blocos e pólos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I ROTAÇÃO Prof. Bruno Farias Introdução Neste capítulo vamos aprender: Como descrever a rotação

Leia mais

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas. Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

Controle de Processos: Solução analítica de sistemas lineares dinâmicos

Controle de Processos: Solução analítica de sistemas lineares dinâmicos Controle de Processos: Solução analítica de sistemas lineares dinâmicos Prof. Eduardo Stockler Tognetti & David Fiorillo Laboratório de Automação e Robótica (LARA) Dept. Engenharia Elétrica - UnB Conteúdo

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

Realimentação de Estado Sistemas SISO

Realimentação de Estado Sistemas SISO 1. Realimentação de Estado para Sistemas SISO pag.1 Teoria de Sistemas Lineares Aula 18 Considere o sistema n dimensional, SISO: ẋ = Ax + bu y = cx Na realimentação de estados, a entrada u é dada por u

Leia mais

QUESTÕES DISCURSIVAS

QUESTÕES DISCURSIVAS QUESTÕES DISCURSIVAS Questão 1. (3 pontos) Numa mesa horizontal sem atrito, dois corpos, de massas 2m e m, ambos com a mesma rapidez v, colidem no ponto O conforme a figura. A rapidez final do corpo de

Leia mais

Controle de Processos Aula: Atraso no tempo e obtenção de modelos empíricos

Controle de Processos Aula: Atraso no tempo e obtenção de modelos empíricos 107484 Controle de Processos Aula: Atraso no tempo e obtenção de modelos empíricos Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E.

Leia mais

B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil

B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil Função de Transferência Relação Entrada-Saída Desejamos obter a expressão M(s) = Y(s) R(s) Para obter essa expressão, devemos realizar uma analise de algebra de blocos. Perceba que a relação entre o sinal

Leia mais

Caracterização Dinâmica de Instrumentos

Caracterização Dinâmica de Instrumentos Instrumentação Industrial Caracterização Dinâmica de Instrumentos Caracterização Dinâmica Os Instrumentos são, de fato, Sistemas Dinâmicos. x t y t t t Instrumento O Comportamento transitório é determinado

Leia mais

B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil

B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil Função de Transferência Relação Entrada-Saída Desejamos obter a expressão M(s) = Y(s) R(s) Para obter essa expressão, devemos realizar uma analise de algebra de blocos. Perceba que a relação entre o sinal

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

Transformada de Laplace

Transformada de Laplace Sinais e Sistemas Transformada de Laplace lco@ist.utl.pt Instituto Superior Técnico Sinais e Sistemas p.1/60 Resumo Definição da transformada de Laplace. Região de convergência. Propriedades da transformada

Leia mais

Estabilidade de sistemas de controle lineares invariantes no tempo

Estabilidade de sistemas de controle lineares invariantes no tempo Capítulo 2 Estabilidade de sistemas de controle lineares invariantes no tempo 2. Introdução Neste capítulo, vamos definir alguns conceitos relacionados à estabilidade de sistemas lineares invariantes no

Leia mais

Aula 07: Simulação de sistemas não-lineares e linearizados utilizando o Simulink.

Aula 07: Simulação de sistemas não-lineares e linearizados utilizando o Simulink. UNIVERSIDADE DO ESTADO DE SANTA CATARINA UDESC CURSO DE ENGENHARIA ELÉTRICA DISCIPLINA: INTRODUÇÃO AOS SISTEMAS DE CONTROLE PROFESSOR: ANTONIO SILVEIRA (MATERIAL CEDIDO PELA PROFA. MARIANA SANTOS MATOS

Leia mais

COQ 790 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 10: Domínio Discreto; Transformada Z.

COQ 790 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 10: Domínio Discreto; Transformada Z. Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química COQ 790 ANÁLISE DE SISTEMAS DA ENGENHARIA QUÍMICA AULA 10: Domínio Discreto; Transformada Z. 2014/1 Introdução ao Domínio Discreto

Leia mais

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14 Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação

Leia mais

Controle e Servomecanismos I

Controle e Servomecanismos I Controle e Servomecanismos I Introdução Sistemas de controle com e sem retroalimentação São de enorme importância científica, tecnológica e econômica com aplicações em Telecom, transportes, navegação,

Leia mais

Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller.

Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller. Sinais e Sistemas Representações em Domínio do Tempo para Sistemas Lineares Invariantes no Tempo Profª Sandra Mara Torres Müller Aula 7 Representações em Domínio do Tempo para Sistemas Lineares e Invariantes

Leia mais

EES-49/2012 Prova 1. Q1 Dado o seguinte conjunto de equações:

EES-49/2012 Prova 1. Q1 Dado o seguinte conjunto de equações: Q1 Dado o seguinte conjunto de equações: EES-49/2012 Prova 1 Onde: h C é o sinal de entrada do sistema; θ é o sinal de saída do sistema; T P é uma entrada de perturbação; T T, T R e h R são variáveis intermediárias;

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

Sistemas de Controle 1

Sistemas de Controle 1 Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 1 Cap2 - Modelagem no Domínio de Frequência Prof. Dr. Marcos Lajovic Carneiro Sistemas de Controle 1 Prof. Dr. Marcos

Leia mais

Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea

Aula 3. Carlos Amaral Fonte: Cristiano Quevedo Andrea Aula 3 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Marco de 2012. Resumo 1 Introdução 2 3

Leia mais

SC1 Sistemas de Controle 1. Cap. 3 Erros no Regime Estacionário Prof. Tiago S Vítor

SC1 Sistemas de Controle 1. Cap. 3 Erros no Regime Estacionário Prof. Tiago S Vítor SC1 Sistemas de Controle 1 Cap. 3 Erros no Regime Estacionário Prof. Tiago S Vítor Sumário 1. Introdução 2. Erro em regime estacionário de sistemas com realimentação unitária 3. Constantes de Erro Estático

Leia mais

Aula 04 Representação de Sistemas

Aula 04 Representação de Sistemas Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,

Leia mais

TÍTULO: TESTE DE CONTROLADOR PARA UM ROBÔ DE EQUILÍBRIO DINÂMICO CATEGORIA: CONCLUÍDO ÁREA: CIÊNCIAS EXATAS E DA TERRA. SUBÁREA: Engenharias

TÍTULO: TESTE DE CONTROLADOR PARA UM ROBÔ DE EQUILÍBRIO DINÂMICO CATEGORIA: CONCLUÍDO ÁREA: CIÊNCIAS EXATAS E DA TERRA. SUBÁREA: Engenharias TÍTULO: TESTE DE CONTROLADOR PARA UM ROBÔ DE EQUILÍBRIO DINÂMICO CATEGORIA: CONCLUÍDO ÁREA: CIÊNCIAS EXATAS E DA TERRA SUBÁREA: Engenharias INSTITUIÇÃO(ÕES): CENTRO UNIVERSITÁRIO DO NORTE PAULISTA - UNORP

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Controle de Sistemas Dinâmicos. Informações básicas

Controle de Sistemas Dinâmicos. Informações básicas Controle de Sistemas Dinâmicos Informações básicas Endereço com material http://sites.google.com/site/disciplinasrgvm/ Ementa Modelagem de Sistemas de Controle; Sistemas em Malha Aberta e em Malha Fechada;

Leia mais

32 a Aula AMIV LEAN, LEC Apontamentos

32 a Aula AMIV LEAN, LEC Apontamentos 32 a Aula 2429 AMIV LEAN, LEC Apontamentos (RicardoCoutinho@mathistutlpt) 32 Fórmula da variação das constantes Temos então pela fórmula dos da variação das constantes (para sistemas de equações - Teorema

Leia mais

Aula 9. Carlos Amaral Cristiano Quevedo Andrea. UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica

Aula 9. Carlos Amaral Cristiano Quevedo Andrea. UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Aula 9 Carlos Amaral Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Abril de 2012. Resumo 1 Introdução - Estabilidade

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinais e Sistemas Mecatrónicos Modelação de Sistemas Físicos Variáveis e Elementos do Sistema José Sá da Costa José Sá da Costa T4 - Modelação de Sistemas Físicos 1 Modelação de Sistemas Físicos Sinais

Leia mais

5 Formulação Dinâmica Não Linear no Domínio da Frequência

5 Formulação Dinâmica Não Linear no Domínio da Frequência 129 5 Formulação Dinâmica Não Linear no Domínio da Frequência No Capítulo 2, foram apresentadas as formulações para a análise dinâmica de estruturas reticuladas no domínio do tempo, sendo uma informação

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 5 Heaviside Dirac Newton Conteúdo 5 - Circuitos de primeira ordem...1 5.1 - Circuito linear invariante de primeira ordem

Leia mais

Física 1. 3 a prova 09/12/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 3 a prova 09/12/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 3 a prova 09/12/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise a

Leia mais

Aula 4: Gráficos lineares

Aula 4: Gráficos lineares Aula 4: Gráficos lineares 1 Introdução Um gráfico é uma curva que mostra a relação entre duas variáveis medidas. Quando, em um fenômeno físico, duas grandezas estão relacionadas entre si o gráfico dá uma

Leia mais

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE

Funções de Green. Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Prof. Rodrigo M. S. de Oliveira UFPA / PPGEE Funções de Green Suponha que queremos resolver a equação não-homogênea no intervalo a x b, onde f (x) é uma função conhecida. As condições

Leia mais

Notas de Aula: Linearização de Sistemas Não-Lineares DAS5112 Sinais e Sistemas Lineares I

Notas de Aula: Linearização de Sistemas Não-Lineares DAS5112 Sinais e Sistemas Lineares I Notas de Aula: Linearização de Sistemas Não-Lineares DAS5112 Sinais e Sistemas Lineares I Hector Bessa Silveira 2014/1 1 Objetivos Veremos como podemos simular um sistema não-linear utilizando pacotes

Leia mais

Capítulo 2 Dinâmica de Sistemas Lineares

Capítulo 2 Dinâmica de Sistemas Lineares Capítulo 2 Dinâmica de Sistemas Lineares Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Dinâmica de Sistemas Lineares 1/57

Leia mais

Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros

Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros 107484 Controle de Processos Aula: Função de transferência, diagrama de blocos, polos e zeros Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 2 o Semestre

Leia mais

Aula 8. Cristiano Quevedo Andrea 1. Curitiba, Abril de DAELT - Departamento Acadêmico de Eletrotécnica

Aula 8. Cristiano Quevedo Andrea 1. Curitiba, Abril de DAELT - Departamento Acadêmico de Eletrotécnica Classificaçã dos Sistemas de Controle Especificaçõe do Estado Estacionário de Erro Aula 8 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico

Leia mais

UNIVERSIDADE ESTADUAL DO MARANHÃO CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE ENGENHARIA DA COMPUTAÇÃO. Professor Leonardo Gonsioroski

UNIVERSIDADE ESTADUAL DO MARANHÃO CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE ENGENHARIA DA COMPUTAÇÃO. Professor Leonardo Gonsioroski UNIVERSIDADE ESTADUAL DO MARANHÃO CENTRO DE CIÊNCIAS TECNOLÓGICAS CURSO DE ENGENHARIA DA COMPUTAÇÃO O que veremos na aula de hoje Transformadas Direta e Inversa de Laplace Técnicas de Frações Parciais

Leia mais

AULA 3. CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I

AULA 3. CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz. Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I Universidade Federal do ABC UFABC ESTA003-17: SISTEMAS DE CONTROLE I AULA 3 CRITÉRIO DE ESTABILIDADE DE Routh-Hurwitz PROF. DR. ALFREDO DEL SOLE LORDELO TELA CHEIA Critério de estabilidade de Routh A questão

Leia mais

1 Sistema Máquina-Barra in nita: apresentação e modelagem

1 Sistema Máquina-Barra in nita: apresentação e modelagem EEL 751 - Fundamentos de Controle 1o rabalho Computacional 1 Sistema Máquina-Barra in nita: apresentação e modelagem Modelos do tipo máquina-barra in nita como o representado pelo diagrama uni - lar da

Leia mais

Questões para Revisão Controle

Questões para Revisão Controle Questões para Revisão Controle 1. (PROVÃO-1999)A Figura 1 apresenta o diagrama de blocos de um sistema de controle, e a Figura 2, o seu lugar das raízes para K > 0. Com base nas duas figuras, resolva os

Leia mais

Professor Msc. Leonardo Henrique Gonsioroski

Professor Msc. Leonardo Henrique Gonsioroski Professor Msc. Leonardo Henrique Gonsioroski Professor Leonardo Henrique Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definições Um sistema que estabeleça

Leia mais

Resposta no Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello 1

Resposta no Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello 1 Resposta no Tempo Carlos Alexandre Mello 1 Resposta no Tempo - Introdução Como já discutimos, após a representação matemática de um subsistema, ele é analisado em suas respostas de transiente e de estadoestacionário

Leia mais