Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1"

Transcrição

1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1

2 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2

3 Transformada de Laplace A transf. de Laplace representa entrada, saída e sistema como entidades separadas A relação entre elas é algébrica Transformada de Laplace: onde s = σ + jω é uma variável complexa F(s) é dita a transformada de Laplace de f(t) 3

4 Transformada de Laplace O limite inferior da integral anterior significa que mesmo que f(t) seja descontínua em t = 0, podemos começar a integração apesar da descontinuidade, contanto que a integral convirja Podemos assim encontrar a transf. de Laplace da função impulso Transformada Inversa de Laplace onde: 4

5 Transformada de Laplace Em geral, o cálculo da transformada inversa é bastante custoso, pois envolve o cálculo de integrais complexas Mas o conjunto de funções importantes para a área de controle é pequeno, permitindo o uso de tabelas que fazem o mapeamento dessas funções e de suas transformadas Vamos ver, a seguir, o cálculo de algumas transformadas mais comuns: 5

6 Transformada de Laplace Algumas transformadas conhecidas 6

7 Transformada de Laplace Propriedades 7

8 Transformada de Laplace Exemplo 1: 8

9 Transformada de Laplace Exemplo 2: Transformada Inversa Pelo teorema do deslocamento em frequência e pela transformada de Laplace de f(t) = t.u(t): Se: F(s) = 1/s 2 f(t) = t.u(t) e: F(s + a) = 1/(s + a) 2 f(t) = e -at t.u(t) Então: F 1 (s) = 1/(s + 3) 2 f(t) = e -3t t.u(t) 9

10 Transformada de Laplace Transformada Inversa: Expansão em Frações Parciais Por exemplo, calcule a transformada inversa de: Nesse caso, podemos re-escrever a expressão como: que, por linearidade, leva à transf. inversa: 10

11 Transformada de Laplace Assim, a Expansão em Frações Parciais é uma ferramenta matemática bastante útil no cálculo da transf. de Laplace Objetivo matemático: Simplificar uma função, expandindo-a em funções de menor grau Objetivo para controle: Facilitar o cálculo da transf. de Laplace Métodos: Clearing Fractions Heaviside Cover-Up (ou Resíduos) 11

12 Transformada de Laplace Expansão em Frações Parciais (Clearing Fractions) Exemplo: Fonte: aula de Sinais e Sistemas do prof. Aluízio Ribeiro. 12

13 Transformada de Laplace Expansão em Frações Parciais (Heaviside Cover- Up ou Resíduos) Exemplo: Fonte: aula de Sinais e Sistemas do prof. Aluízio Ribeiro. 13

14 Transformada de Laplace Expansão em Frações Parciais (Uso dos dois métodos) Exemplo: Fonte: aula de Sinais e Sistemas do prof. Aluízio Ribeiro. 14

15 Transformada de Laplace Expansão em Frações Parciais Caso 1: Raízes do denominador são reais e distintas Caso 2: Raízes do denominador são reais e repetidas Caso 3: Raízes do denominador são complexas 15

16 Transformada de Laplace Uso de Transf. de Laplace: Resolução de Equações Diferenciais: Resolva a seguinte equação diferencial para y(t) com todas as condições iniciais nulas A transformada de Laplace para y(t) é: que leva a: 16

17 Transformada de Laplace Uso de Transf. de Laplace: Resolução de Equações Diferenciais (cont): Por expansão em frações parciais: ou 17

18 Transformada de Laplace Expansão em Frações Parciais MatLab Exemplo: -4s + 8 s 2 + 6s + 8 = r1 + r rn + ks s - p1 s - p2 s - pn 18

19 Transformada de Laplace Expansão em Frações Parciais MatLab Exemplo (cont): Volta ao polinômio original -4s + 8 s 2 + 6s

20 Transformada de Laplace Exercícios de Revisão: a) Ache a transf. de Laplace de f(t) = te -5t b) Ache a transformada inversa de F(s) = 10/[s(s+2)(s+3) 2 ] 20

21 Função de Transferência A função de transferência retrata a relação entre a saída e a entrada de um sistema Tal relação pode ser expressa em função da transf. de Laplace Geralmente, as funções de entrada e saída se relacionam através de uma equação diferencial linear e invariante no tempo de n-ésima ordem: onde y(t) é a saída e x(t) é a entrada do sistema 21

22 Função de Transferência Dada a equação diferencial linear e invariante no tempo de n-ésima ordem: Calculando a transf. de Laplace: Se as condições iniciais forem nulas: Ou seja: G(s) é a Função de Transferência 22

23 Função de Transferência Função de Transferência como diagrama de bloco: X(s) Y(s) E podemos encontrar a saída de um sistema dada a entrada e sua função de transferência: Y(s) = G(s).X(s) 23

24 Função de Transferência A função de transferência de um sistema é um modelo matemático no sentido que constitui um método operacional de expressar a equação diferencial que relaciona a entrada à saída do sistema A função de transferência é uma propriedade intrínseca do sistema, independentemente da magnitude e da natureza do sinal de entrada A função de transferência relaciona a entrada à saída, mas não fornece qualquer informação quanto à estrutura física do sistema diferentes sistemas podem ter a mesma função de transferência 24

25 Função de Transferência Se a função de transferência de um sistema for conhecida, a saída pode ser estudada para várias formas de entrada a fim de entender a natureza do sistema Se a função de transferência for desconhecida, ela pode ser inferida experimentalmente introduzindose sinais de entrada conhecidos e analisando o sinal de saída Uma vez estabelecida, a função de transferência fornece uma descrição completa das características dinâmicas do sistema 25

26 Função de Transferência Quando a entrada é a função impulso, temos: Y(s) = G(s).X(s) X(s) = 1 Y(s) = G(s) cuja transformada inversa daria g(t) Essa é a chamada resposta impulsional do sistema e também sua função de transferência Portanto, é possível obter informação completa sobre as características de um sistema excitando-o com um impulso unitário e medindo a sua resposta Na prática, seria um pulso de duração bastante curta 26

27 Função de Transferência Diagrama de blocos Representação gráfica das funções desempenhadas por cada um dos componentes de um sistema e do fluxo de sinais entre eles Todas as variáveis são ligadas umas às outras através de blocos funcionais O bloco traz a representação matemática da operação aplicada sobre a entrada que leva à saída O diagrama de bloco de um sistema não é único 27

28 Função de Transferência Diagrama de blocos Elementos: Ponto de Soma Ponto de Ramificação X(s) E(s) Y(s) X+ - G(s) Sistema de malha fechada 28

29 Função de Transferência Diagrama de blocos Outros tipos: X(s) E(s) Y(s) B(s) X+ - G(s) H(s) Y(s) = E(s)G(s) = [X(s) B(s)]G(s) = [X(s) Y(s)H(s)]G(s) Y(s) + Y(s)H(s)G(s) = X(s)G(s) Y(s)/X(s) = G(s)/[1 + H(s)G(s)] (Função de Transferência do sistema) 29

30 Função de Transferência Diagrama de blocos Outros tipos: Perturbação D(s) X(s) X+ - G 1 (s) X+ + G 2 (s) Y(s) B(s) H(s) Se D(s) = 0: Y(s)/X(s) = G 1 (s)g 2 (s)/[1 + G 1 (s)g 2 (s)h(s)] (Função de Transferência do sistema) 30

31 Função de Transferência Exemplo 1: Ache a função de transferência do sistema representado por: dy(t)/dt +2y(t) = x(t) Solução: Tomando a transf. de Laplace: sy(s) + 2Y(s) = X(s) (s + 2)Y(s) = X(s) G(s) = Y(s)/X(s) = 1/(s + 2) 31

32 Função de Transferência Exemplo 2: Dada a função de transferência anterior, ache a resposta do sistema para um degrau unitário; considere nulas as condições iniciais: x(t) = u(t) G(s) = Y(s)/X(s) = 1/(s + 2) X(t) = u(t) X(s) = 1/s Logo: Y(s) = G(s).X(s) Y(s) = 1/[s.(s + 2)] Y(s) = 0,5/s 0,5/(s + 2) Expansão em Frações Parciais y(t) = 0,5 0,5e -2t 32

33 Função de Transferência Exemplo 2 (cont.): Solução total pelo MatLab 33

34 Função de Transferência Exercício 1: Ache a função de transferência da equação diferencial: Solução: Tomando a transf. de Laplace: Y(s)(s 3 + 3s 2 + 7s + 5) = X(s)(s 2 + 4s + 3) Logo: G(s) = Y(s)/X(s) = (s 2 + 4s + 3)/(s 3 + 3s 2 + 7s + 5) 34

35 Função de Transferência Exercício 2: Ache a equação diferencial correspondente à seguinte função de transferência: G(s) = (2s + 1)/(s 2 + 6s + 2) Solução: G(s) = Y(s)/X(s) = (2s + 1)/(s 2 + 6s + 2) Logo: Y(s)(s 2 + 6s + 2) = X(s)(2s + 1) s 2 Y(s) + 6sY(s) + 2Y(s) = 2sX(s) + X(s) d 2 y/dt 2 + 6dy/dt + 2y = 2dx/dt + x 35

36 Função de Transferência Exercício 3: Ache a resposta a uma rampa para um sistema cuja função de transferência é: G(s) = s/[(s + 4)(s + 8)] Solução: Logo: 36

37 Função de Transferência de Circuitos Elétricos Modelagem matemática de circuitos elétricos Resistores, capacitores e indutores Componentes são combinados em circuitos e encontramos a função de transferência 37

38 Função de Transferência de Circuitos Elétricos Rede RLC Problema: Encontrar a função de transferência que relaciona a voltagem do capacitor (Vc(s)) com a voltagem de entrada (V(s)) 38

39 Função de Transferência de Circuitos Elétricos Rede RLC Somando as voltagens no laço e considerando nulas as condições iniciais, temos a seguinte equação diferencial para essa rede: Considerando: Temos: 39

40 Função de Transferência de Circuitos Elétricos Rede RLC A voltagem de um capacitor é dada por: Temos assim: Ou seja: Calculando a Transformada de Laplace: 40

41 Função de Transferência de Circuitos Elétricos Rede RLC Ou: 41

42 Função de Transferência de Circuitos Elétricos Para simplificar, vamos considerar a transf. de Laplace das equações de voltagem da tabela anterior (assumindo nulas as condições iniciais): Capacitor: Resistor: Indutor: Definimos, assim, a seguinte função de transferência: Impedância 42

43 Função de Transferência de Circuitos Elétricos Rede RLC: Podemos entender Z(s) como a soma das impedâncias e V(s) como a soma das voltagens. Assim: [Soma das Impedâncias].I(s) = [Soma das Voltagens] Circuito transformado 43

44 Função de Transferência de Circuitos Elétricos Rede RLC: Resolvendo o problema anterior usando impedâncias: Temos: Logo: Como: Assim: 44

45 Função de Transferência de Circuitos Elétricos Rede RLC: Ou: Como encontrado anteriormente... 45

46 Função de Transferência de Circuitos Elétricos Análise de Malha Substitua elementos passivos por funções de impedância Substitua fontes e variáveis de tempo por suas transf. de Laplace Assuma uma corrente transformada e uma direção de corrente em cada malha Aplique a lei de Kirchhoff para cada malha Resolva as equações simultâneas para a saída Forme a função de transferência 46

47 Função de Transferência de Circuitos Elétricos Análise de Malha Exemplo: Malha 1 Malha 2 G(s) = I 2 (s)/v(s) =? 47

48 Função de Transferência de Circuitos Elétricos Análise de Malha Exemplo (cont.): Passo 1: Impedâncias Malha 1 Malha 2 Malha 1: Malha 2: 48

49 Função de Transferência de Circuitos Elétricos Análise de Malha Exemplo (cont.): Temos: De (2): Substituindo em (1): 49

50 Função de Transferência de Circuitos Elétricos Análise de Malha Exemplo (cont.): Ou: 50

51 Função de Transferência de Circuitos Elétricos Análise de Malha Exemplo (cont.): Observe que as equações paras as malhas 1 e 2 seguiram um mesmo padrão usado anteriormente. Ou seja: Soma das Soma das Malha 1: Impedâncias I 1 (s) - Impedâncias I 2 (s) = da Malha 1 comuns Soma das Voltagens da Malha 1 Soma das Soma das Malha 2: Impedâncias I 1 (s) + Impedâncias I 2 (s) = comuns da Malha 2 Soma das Voltagens da Malha 2 51

52 Função de Transferência de Circuitos Elétricos Análise de Nós: Exemplo: Encontrar a função de transferência V c (s)/v(s) para o circuito abaixo, usando análise de nós: Nesse caso, usamos a soma das correntes nos nós ao invés da soma das voltagens nas malhas 52

53 Função de Transferência de Circuitos Elétricos Análise de Nós: Exemplo (cont.): Da figura anterior, as somas das correntes nos nós V L (s) e V C (s) são, respectivamente: Expressando as resistências em termos de condutância G 1 = 1/R 1 e G 2 = 1/R 2 53

54 Função de Transferência de Circuitos Elétricos Análise de Nós: Exemplo (cont.): Assim: 54

55 Função de Transferência de Circuitos Elétricos Análise de Nós: Substitua elementos passivos por funções de admitância Y(s) = 1/Z(s) = I(s)/V(s) (admitância = inverso da impedância) Substitua fontes e variáveis de tempo por suas transf. de Laplace Substitua as fontes de voltagem transformadas por fontes de corrente transformadas Aplique a lei de Kirchhoff para cada nó Resolva as equações simultâneas para a saída Forme a função de transferência Teorema de Norton Uma fonte de tensão V(s) em série com uma impedância Z S (s) pode ser substituída por uma fonte de corrente I(s) = V(s)/Z S (s), em paralelo com Z S (s) 55

56 Função de Transferência de Circuitos Elétricos Análise de Nós: Exemplo: Ache a função de transferência V C (s)/v(s) usando análise de nós e circuito transformado com fontes de corrente Circuito Original: Circuito Transformado: 56

57 Função de Transferência de Circuitos Elétricos Análise de Nós: Exemplo (cont.): Todas as impedâncias são convertidas para admitâncias Todas as fontes de tensão são convertidas para fontes de corrente colocadas em paralelo com admitância de acordo com o teorema de Norton 57

58 Função de Transferência de Circuitos Elétricos Análise de Nós: Exemplo (cont.): Como Y(s) = I(s)/V(s) I(s) = Y(s)V(s) Somando as correntes no nó V L (s) temos: Somando as correntes no nó V C (s) temos: Combinando essas equações, encontramos, como antes: 58

59 Função de Transferência de Circuitos Elétricos Análise de Nós: Exemplo (cont.): Como antes, também temos um padrão: Soma das Soma das Nó 1: Admitâncias V L (s) - Admitâncias V C (s) = conectadas comuns aos no Nó 1 Nós Soma das Correntes aplicadas no Nó 1 Soma das Soma das Nó 2: Admitâncias V L (s) + Admitâncias V C (s) = comuns aos conectadas Nós ao Nó 2 Soma das Correntes aplicadas no Nó 2 59

60 Função de Transferência de Circuitos Elétricos Exemplo: Malha 3 Malha 1 Malha 2 60

61 Função de Transferência de Circuitos Elétricos Exemplo (cont.): Malha 1: Soma das Impedâncias na Malha 1 Soma das Impedâncias comuns às Malhas 1 e 2 Soma das Impedâncias comuns às Malhas 1 e 3 I 1 (s) - I 2 (s) - I 3 (s) = Soma das voltagens aplicadas à Malha 1 Malha 2: Soma das Impedâncias comuns às Malhas 1 e 2 Soma das - I 1 (s) + Impedâncias I 2 (s) - I 3 (s) = na Malha 2 Soma das Impedâncias comuns às Malhas 2 e 3 Soma das voltagens aplicadas à Malha 2 Malha 3: Soma das Impedâncias comuns às Malhas 1 e 3 Soma das Impedâncias comuns às Malhas 2 e 3 Soma das - I 1 (s) - I 2 (s) + Impedâncias I 3 (s) = na Malha 3 Soma das voltagens aplicadas à Malha 3 61

62 Função de Transferência de Circuitos Elétricos Exemplo (cont.): Malha 1: (2s + 2)I 1 (s) (2s + 1)I 2 (s) I 3 (s) = V(s) Malha 2: -(2s + 1)I 1 (s) + (9s + 1)I 2 (s) 4sI 3 (s) = 0 Malha 3: -I 1 (s) 4sI 2 (s) + (4s /s)I 3 (s) = 0 As 3 equações devem ser resolvidas simultaneamente para encontrarmos as funções de transferência desejadas (como I 3 (s)/v(s), por exemplo) 62

63 Função de Transferência de Circuitos Elétricos Exemplo (cont.): (2s + 2)I 1 (2s + 1)I 2 I 3 = V (1) -(2s + 1)I 1 + (9s + 1)I 2 4sI 3 = 0 (2) -I 1 4sI 2 + (4s /s)I 3 = 0 (3) De (3): I 1 = -4sI 2 + (4s /s)I 3 (4) Substituindo (4) em (2): (2s + 1)[4sI 2 - (4s /s)I 3 ] + (9s + 1)I 2 4sI 3 = 0 I 2 = -I 3 (8s s /s)/(8s s + 1) (5) Substituindo (5) em (4), achamos I 1 em função apenas de I 3. Assim, temos em (1), I 1 e I 2 em função de I 3 e podemos isolar I 3 e calcular a função de transferência I 3 /V. 63

64 Função de Transferência de Circuitos Elétricos Exemplo (cont.): No MatLab (2s + 2)I 1 (2s + 1)I 2 I 3 = V -(2s + 1)I 1 + (9s + 1)I 2 4sI 3 = 0 -I 1 4sI 2 + (4s /s)I 3 = 0 MatLab Symbolic Toolbox 64

65 Função de Transferência de Circuitos Elétricos Amplificador Operacional Os amplificadores operacionais são amplificadores de acoplamento direto, de alto ganho, que usam realimentação para controle de suas características 65

66 Função de Transferência de Circuitos Elétricos Amplificador Operacional Amplificador operacional Amplificador operacional inversor Amplificador operacional como função de transferência 66

67 Função de Transferência de Circuitos Elétricos Amplificador Operacional Características: Entrada diferencial: v 2 (t) v 1 (t) Alta impedância de entrada: Z i (ideal) Baixa impedância de saída: Z o 0 (ideal) Alta constante de ganho de amplificação: A (ideal) A saída é dada por: v o (t) = A(v 2 (t) v 1 (t)) 67

68 Função de Transferência de Circuitos Elétricos Amplificador Operacional Inversor Se v2(t) está aterrado, o amplificador é chamado de inversor porque passamos a ter: v o (t) = -Av 1 (t) Na configuração da figura c anterior, a função de transferência do amplificador operacional inversor é: 68

69 Função de Transferência de Circuitos Elétricos Exemplo: Ache a função de transferência V o (s)/v i (s) para o circuito abaixo: 69

70 Função de Transferência de Circuitos Elétricos Exemplo (cont.): Como a admitância de componentes paralelos se somam, Z 1 (s) é o inverso da soma das admitâncias ou: Para Z 2 (s) as impedâncias se somam: Assim: Compensador PID 70

71 Função de Transferência de Circuitos Elétricos Amplificador Operacional Não Inversor 71

72 Função de Transferência de Circuitos Elétricos Amplificador Operacional Não Inversor: Exemplo: Ache V o (s)/v i (s) 72

73 Função de Transferência de Circuitos Elétricos Amplificador Operacional 73

74 Função de Transferência de Circuitos Elétricos Amplificador Operacional 74

75 Exercícios Sugeridos (Nise) Cap. 2, Problemas: 1, 2, 7, 8, 9, 10, 16, 17, 18, 20a No MatLab: 5, 6, 14, 20b 75

76 A Seguir... Modelagem no Domínio do Tempo 76

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.

Leia mais

Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, , b i

Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, , b i 3 6 ADL aula 2 Função de Transferência Comecemos escrevendo a forma geral de uma equação diferencial de ordem n, 1 inear e invariante no tempo, onde c(t) é a saída, r(t) é a entrada e os a i, b i e a forma

Leia mais

Aula 3. Circuitos Complexos via Método das Malhas. Função de transferência múltiplas malhas

Aula 3. Circuitos Complexos via Método das Malhas. Função de transferência múltiplas malhas 2 Aula 3 Circuitos Complexos via Método das Malhas 1. Substituir todos os valores dos elementos passivos por suas impedâncias. 2. Substituir todas as fontes e todas as variáveis no domínio do tempo pelas

Leia mais

Modelagem Matemática de Sistemas Eletromecânicos

Modelagem Matemática de Sistemas Eletromecânicos Modelagem Matemática de Sistemas Eletromecânicos Estudos e Analogias de modelos de funções de transferências. Prof. Edgar Brito Introdução Os sistemas elétricos são componentes essenciais de muitos sistemas

Leia mais

Introdução aos Circuitos Elétricos

Introdução aos Circuitos Elétricos Introdução aos Circuitos Elétricos A Transformada de Laplace Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia A Transformada de Laplace História Pierri

Leia mais

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre

Leia mais

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona

Leia mais

Aula 04 Representação de Sistemas

Aula 04 Representação de Sistemas Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,

Leia mais

Aula 6 Redução de diagrama de blocos Prof. Marcio Kimpara

Aula 6 Redução de diagrama de blocos Prof. Marcio Kimpara FUNDAMENTOS DE CONTROLE E AUTOMAÇÃO Aula 6 Redução de diagrama de blocos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Prof. Marcio Kimpara 2 Sistemas de primeira ordem Existem casos

Leia mais

Conteúdo. Definições básicas;

Conteúdo. Definições básicas; Conteúdo Definições básicas; Caracterização de Sistemas Dinâmicos; Caracterização dinâmica de conversores cc-cc; Controle Clássico x Controle Moderno; Campus Sobral 2 Engenharia de Controle Definições

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

Transformada de Laplace. Parte 3

Transformada de Laplace. Parte 3 Transformada de Laplace Parte 3 Elementos de circuito no domínio da frequência O resistor no domínio da frequência Pela lei de OHM : v= Ri A transformada da equação acima é V(s) = R I(s) O indutor no domínio

Leia mais

Transformada de Laplace

Transformada de Laplace Transformada de aplace Nas aulas anteriores foi visto que as ferramentas matemáticas de Fourier (série e transformadas) são de extrema importância na análise de sinais e de sistemas IT. Isto deve-se ao

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16 CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/16 - Introdução - Método de avaliação - Data das provas: P1: 04/10/16 P2: 08/11/16 P3: 22/11/16 (somente para faltosos) - Suspensão de aulas: 09/08/16, 16/08/16, 15/11/16

Leia mais

1. Diagrama de Blocos. 2. Gráfico de fluxo de sinais. Representação e Análise de Sistemas Dinâmicos Lineares

1. Diagrama de Blocos. 2. Gráfico de fluxo de sinais. Representação e Análise de Sistemas Dinâmicos Lineares Representação e Análise de Sistemas Dinâmicos Lineares 1. Diagrama de Blocos 2. Gráfico de fluxo de sinais Fernando de Oliveira Souza pag.1 Engenharia de Controle Aula 3 Diagrama de Blocos U(s) G(s) Y

Leia mais

Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II)

Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre (Parte II) Instituto Superior Técnico Sinais e Sistemas o teste 4 de Novembro de 0 Nome: Número: Duração da prova: horas Parte I O teste tem uma parte de resposta múltipla (Parte I) e uma parte de resolução livre

Leia mais

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/15

CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/15 CIRCUITOS ELÉTRICOS I PROGRAMAÇÃO 02/15 Aula 1 04/08/15 - Introdução - Método de avaliação - Data das provas: P1: 29/09/15 P2: 03/11/15 P3: 10/11/15 (somente para faltosos) - Suspensão de aulas: Não há

Leia mais

Pontifícia Universidade Católica de Goiás. Engenharia de Controle e Automação. Prof: Marcos Lajovic Carneiro Aluno (a):

Pontifícia Universidade Católica de Goiás. Engenharia de Controle e Automação. Prof: Marcos Lajovic Carneiro Aluno (a): Pontifícia Universidade Católica de Goiás Departamento de Engenharia Laboratório ENG 3502 Controle de Processos 01 Prof: Marcos Lajovic Carneiro Aluno (a): Aula Prática 01 Polinômios, frações parciais,

Leia mais

O Papel dos Pólos e Zeros

O Papel dos Pólos e Zeros Departamento de Engenharia Mecatrônica - EPUSP 27 de setembro de 2007 1 Expansão em frações parciais 2 3 4 Suponha a seguinte função de transferência: m l=1 G(s) = (s + z l) q i=1(s + z i )(s + p m ),

Leia mais

Resposta dos Exercícios da Apostila

Resposta dos Exercícios da Apostila Resposta dos Exercícios da Apostila Carlos Eduardo de Brito Novaes carlos.novaes@aedu.com 5 de setembro de 0 Circuitos Elétricos. Passivos a) b) V o (s) V i (s) 64s + 400 s + 96s + 400, v o ( ) v i ( )

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

ADL A Representação Geral no Espaço de Estados

ADL A Representação Geral no Espaço de Estados ADL14 3.3 A Representação Geral no Espaço de Estados definições Combinação linear: Uma combinação linear de n variáveis, x i, para r = 1 a n, é dada pela seguinte soma: (3.17) onde cada K i é uma constante.

Leia mais

Professor Msc. Leonardo Henrique Gonsioroski

Professor Msc. Leonardo Henrique Gonsioroski Professor Msc. Leonardo Henrique Gonsioroski Professor Leonardo Henrique Gonsioroski UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA CONTROLE E AUTOMAÇÃO Definições Um sistema que estabeleça

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Controle de Processos: Solução analítica de sistemas lineares dinâmicos

Controle de Processos: Solução analítica de sistemas lineares dinâmicos Controle de Processos: Solução analítica de sistemas lineares dinâmicos Prof. Eduardo Stockler Tognetti & David Fiorillo Laboratório de Automação e Robótica (LARA) Dept. Engenharia Elétrica - UnB Conteúdo

Leia mais

5 Transformadas de Laplace

5 Transformadas de Laplace 5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal

Leia mais

Conteúdo programático: Quadripolos. Notas de aula e exercícios: 1. Apresentação do Tópico

Conteúdo programático: Quadripolos. Notas de aula e exercícios: 1. Apresentação do Tópico Conteúdo programático: Quadripolos Notas de aula e exercícios: 1. Apresentação do Tópico Um dos principais métodos de análise de circuitos consiste na substituição de blocos complexos em circuitos equivalentes

Leia mais

Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto

Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Universidade Federal da Paraíba Programa de Pós-Graduação em Engenharia Elétrica Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto Prof. Juan Moises Mauricio Villanueva jmauricio@cear.ufpb.br

Leia mais

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14 Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação

Leia mais

Método das Malhas. Abordagem Geral

Método das Malhas. Abordagem Geral Método das Malhas Abordagem Geral Método das Malhas 1. Associe uma corrente no sentido horário a cada malha fechada e independente do circuito. Não é necessário escolher o sentido horário para todas as

Leia mais

Disciplina: Circuitos Elétricos I. Conceitos Preliminares

Disciplina: Circuitos Elétricos I. Conceitos Preliminares Disciplina: Circuitos Elétricos I Conceitos Preliminares Introdução O termo circuito elétrico se refere tanto a um sistema elétrico real quanto a um modelo matemático; É o instrumento básico para a compreensão

Leia mais

Modelos Variáveis de Estado

Modelos Variáveis de Estado Modelos Variáveis de Estado Introdução; Variáveis de Estados de Sistemas Dinâmicos; Equação Diferencial de Estado; Função de Transferência a partir das Equações de Estados; Resposta no Domínio do Tempo

Leia mais

1ā lista de exercícios de Sistemas de Controle II

1ā lista de exercícios de Sistemas de Controle II ā lista de exercícios de Sistemas de Controle II Obtenha uma representação em espaço de estados para o sistema da figura R(s) + E(s) s + z U(s) K Y (s) s + p s(s + a) Figura : Diagrama de blocos do exercício

Leia mais

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica O método das frações parciais usa o conhecimento de diversos pares de transformada Z básicos e as propriedades da transformada Z para obtenção da transformada Z inversa das funções de interesse Admite-se

Leia mais

Engenharia mecatrônica 2017/1. Filipe Andrade La-Gatta IF Sudeste MG/JF

Engenharia mecatrônica 2017/1. Filipe Andrade La-Gatta IF Sudeste MG/JF Engenharia mecatrônica 2017/1 Configuração inversora Filipe Andrade La-Gatta filipe.lagatta@ifsudestemg.edu.br IF Sudeste MG/JF Filipe Andrade La-Gatta (IF Sudeste MG/JF) Instrumentação I Abril/2017 1

Leia mais

CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA

CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA 1 CIRCUITOS ELÉTRICOS RESOLUÇÃO DE CIRCUITOS TRANSITÓRIOS NO DOMÍNIO DA FREQÜÊNCIA Simulação de chaves utilizando a função degrau a) Fonte de tensão que entra em operação em t = 0 Substituindo a chave

Leia mais

4.1 Pólos, Zeros e Resposta do Sistema

4.1 Pólos, Zeros e Resposta do Sistema ADL17 4.1 Pólos, Zeros e Resposta do Sistema A resposta de saída de um sistema é a soma de duas respostas: a resposta forçada e a resposta natural. Embora diversas técnicas, como a solução de equações

Leia mais

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação

Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ1- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge Informação Papel Bode 1 3 Papel

Leia mais

Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller.

Sinais e Sistemas. Tempo para Sistemas Lineares Invariantes no Tempo. Representações em Domínio do. Profª Sandra Mara Torres Müller. Sinais e Sistemas Representações em Domínio do Tempo para Sistemas Lineares Invariantes no Tempo Profª Sandra Mara Torres Müller Aula 7 Representações em Domínio do Tempo para Sistemas Lineares e Invariantes

Leia mais

Sinais Elementares e Operações Básicas

Sinais Elementares e Operações Básicas Exper. 2 Sinais Elementares e Operações Básicas Objetivo Esta prática descreve como utilizar o Matlab para representar e manipular alguns sinais elementares: Estudar os sinais elementares de tempo contínuo

Leia mais

I-6 Sistemas e Resposta em Frequência. Comunicações (6 de Dezembro de 2012)

I-6 Sistemas e Resposta em Frequência. Comunicações (6 de Dezembro de 2012) I-6 Sistemas e Resposta em Frequência (6 de Dezembro de 2012) Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de

Leia mais

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica

Sistemas e Sinais. Universidade Federal do Rio Grande do Sul Departamento de Engenharia Elétrica Propriedades das Representações de Fourier Sinais periódicos de tempo contínuo ou discreto têm uma representação por série de Fourier, dada pela soma ponderada de senoides complexas com frequências múltiplas

Leia mais

Aula 18 Propriedades da Transformada Z Transformada Z inversa

Aula 18 Propriedades da Transformada Z Transformada Z inversa Processamento Digital de Sinais Aula 8 Professor Marcio Eisencraft abril 0 Aula 8 Propriedades da Transformada Z Transformada Z inversa Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, a

Leia mais

EELi04 Eletricidade Aplicada I Aula 4

EELi04 Eletricidade Aplicada I Aula 4 UNIFEI - campus ITABIRA EELi04 Eletricidade Aplicada I Aula 4 Professor: Valmor Ricardi Junior Transparências: Prof. Clodualdo Sousa Prof. Tiago Ferreira Prof. Valmor Junior Sumário Circuito CC série (revisão):

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Conteúdo 2 - Elementos básicos de circuito e suas associações...1 2.1 - Resistores lineares e invariantes...1 2.1.1 - Curto circuito...2

Leia mais

I-6 Sistemas e Resposta em Frequência

I-6 Sistemas e Resposta em Frequência I-6 Sistemas e Resposta em Frequência Comunicações 1 Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de sistemas

Leia mais

Descrição de Sistemas LTI por Variáveis de Estados 1

Descrição de Sistemas LTI por Variáveis de Estados 1 Descrição de Sistemas LTI por Variáveis de Estado Os estados de um sistema podem ser definidos como o conjunto mínimo de sinais que descrevem o comportamento dinâmico do sistema. Sendo assim, dado o valor

Leia mais

Capítulo 3. Função de transferência e dinâmicas dos sistemas

Capítulo 3. Função de transferência e dinâmicas dos sistemas DINÂMICA DE SISTEMAS BIOLÓGICOS E FISIOLÓGICOS Capítulo 3 Função de transferência e dinâmicas dos sistemas 3.1. Aplicação da transformada de Laplace às equações diferenciais A transformada de Laplace é

Leia mais

Análise de Sistemas em Tempo Discreto usando a Transformada Z

Análise de Sistemas em Tempo Discreto usando a Transformada Z Análise de Sistemas em Tempo Discreto usando a Transformada Z Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS. Espaço dos estados Representação da dinâmica de um sistema de ordem n usando n equações diferenciais de primeira ordem. Sistema é escrito

Leia mais

Programa de engenharia biomédica

Programa de engenharia biomédica Programa de engenharia biomédica princípios de instrumentação biomédica COB 781 Conteúdo 2 - Elementos básicos de circuito e suas associações...1 2.1 - Resistores lineares e invariantes...1 2.1.1 - Curto

Leia mais

Aplicações de Conversores Estáticos de Potência

Aplicações de Conversores Estáticos de Potência Universidade Federal do ABC Pós-graduação em Engenharia Elétrica Aplicações de Conversores Estáticos de Potência Prof. Dr. José Luis Azcue Puma Conversores CC/CC Circuito equivalente em CA (modelo para

Leia mais

5 Descrição entrada-saída

5 Descrição entrada-saída Teoria de Controle (sinopse) 5 Descrição entrada-saída J. A. M. Felippe de Souza Descrição de Sistemas Conforme a notação introduzida no capítulo 1, a função u( ) representa a entrada (ou as entradas)

Leia mais

Questões para Revisão Controle

Questões para Revisão Controle Questões para Revisão Controle 1. (PROVÃO-1999)A Figura 1 apresenta o diagrama de blocos de um sistema de controle, e a Figura 2, o seu lugar das raízes para K > 0. Com base nas duas figuras, resolva os

Leia mais

Modelagem Matemática de Sistemas Dinâmicos

Modelagem Matemática de Sistemas Dinâmicos Modelagem Matemática de Sistemas Dinâmicos 3.1 INTRODUÇÃO No estudo de sistemas de controle, o leitor deve ser capaz de modelar sistemas dinâmicos e analisar características dinâmicas. O modelo matemático

Leia mais

Lab. Eletrônica: Oscilador senoidal usando amplificador operacional

Lab. Eletrônica: Oscilador senoidal usando amplificador operacional Lab. Eletrônica: Oscilador senoidal usando amplificador operacional Prof. Marcos Augusto Stemmer 27 de abril de 206 Introdução teórica: Fasores Circuitos contendo capacitores ou indutores são resolvidos

Leia mais

Processamento Digital de Sinais

Processamento Digital de Sinais Processamento Digital de Sinais Carlos Alexandre Mello Carlos Alexandre Mello cabm@cin.ufpe.br 1 Sinais Digitais Um sinal pode ser entendido como uma função que carrega uma informação Sinal de voz O sinal

Leia mais

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série.

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série. Circuitos em Série Um circuito consiste em um número qualquer de elementos unidos por seus terminais, com pelo menos um caminho fechado através do qual a carga possa fluir. Dois elementos de circuitos

Leia mais

Controle de Processos Aula: Sistema em malha fechada

Controle de Processos Aula: Sistema em malha fechada 107484 Controle de Processos Aula: Sistema em malha fechada Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB) Controle

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

Prof. Dr.-Ing. João Paulo C. Lustosa da Costa. Universidade de Brasília (UnB) Departamento de Engenharia Elétrica (ENE)

Prof. Dr.-Ing. João Paulo C. Lustosa da Costa. Universidade de Brasília (UnB) Departamento de Engenharia Elétrica (ENE) Circuitos Elétricos 2 Circuitos Elétricos Aplicados Prof. Dr.-Ing. João Paulo C. Lustosa da Costa (UnB) Departamento de Engenharia Elétrica (ENE) Caixa Postal 4386 CEP 70.919-970, Brasília - DF Homepage:

Leia mais

Lista de Exercícios 3 - Circuitos Elétricos II

Lista de Exercícios 3 - Circuitos Elétricos II Lista de Exercícios 3 - Circuitos Elétricos II Tópicos: Potência instantânea, Potência Média, Valor Médio e Eficaz, Potência Aparente, Potência Ativa, Potência Reativa, Fator de Potência, Potência Complexa.

Leia mais

Aula 03: Simulação computacional de sistemas dinâmicos por meio do Matlab/Simulink - Parte 1. DELT-UFPR

Aula 03: Simulação computacional de sistemas dinâmicos por meio do Matlab/Simulink - Parte 1. DELT-UFPR II II Aula 03: por meio do Matlab/Simulink - Parte 1 kuiava@eletrica.ufpr.br DELT-UFPR 1 / 13 II Como podemos obter a resposta de um sistema dinâmico através do Matlab/Simulink? 1) Construir um diagrama

Leia mais

Análise de Sinais e Sistemas

Análise de Sinais e Sistemas Universidade Federal da Paraíba Departamento de Engenharia Elétrica Análise de Sinais e Sistemas Luciana Ribeiro Veloso luciana.veloso@dee.ufcg.edu.br ANÁLISE DE SINAIS E SISTEMAS Ementa: Sinais contínuos

Leia mais

Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki

Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Amplificadores de Estágio Simples (1) Aula 5 Prof. Nobuo Oki Estágio Amplificadores Simples (1) Estágio Amplificadores Simples (2) Conceitos Básicos (1) Conceitos de grande e pequenos sinais : Quando x

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

Exemplos de equações diferenciais

Exemplos de equações diferenciais Transformadas de Laplace - EDO's Prof. E.T.Galante Denição. Uma equação diferencial é uma equação na qual: a incógnita é uma função; há ao menos uma derivada da função incógnita. Antes de mais nada, vamos

Leia mais

Capítulo 3 Circuitos com Capacitância e Indutância

Capítulo 3 Circuitos com Capacitância e Indutância Capítulo 3 Circuitos com Capacitância e Indutância Sumário Respostas: Livre e ao Degrau Funções Singulares Resposta às Funções Singulares Representação de Sinais como Soma de Funções Singulares O Teorema

Leia mais

Capítulo 5: Casamento de impedância e transistor em Rf

Capítulo 5: Casamento de impedância e transistor em Rf Casamento de e transistor em Rf Introdução Cir. Eletrônica Aplica. Aplicação: Prover a máxima transferência possível de potência entre fonte e carga Teorema em DC: máxima potência será transferida da fonte

Leia mais

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE)

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS (INPE) Concurso Público - NÍVEL SUPERIOR CARGO: Tecnologista da Carreira de Desenvolvimento Tecnológico Classe: Tecnologista Junior Padrão I TEMA: CADERNO DE PROVAS

Leia mais

DESENVOLVIMENTO DE UMA INTERFACE GRÁFICA VOLTADA PARA O CONTROLE LINEAR UTILIZANDO O MATLAB

DESENVOLVIMENTO DE UMA INTERFACE GRÁFICA VOLTADA PARA O CONTROLE LINEAR UTILIZANDO O MATLAB DESENVOLVIMENTO DE UMA INTERFACE GRÁFICA VOLTADA PARA O CONTROLE LINEAR UTILIZANDO O MATLAB Alexandre Lucas Chichosz Discente do curso Engenharia da Computação Calwann de Souza Freire Discente do curso

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 7

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I - EEL420. Módulo 7 Universidade Federal do Rio de Janeiro Circuitos Elétricos I - EEL420 Módulo 7 Musschenbroek Green Gauss Edison Tesla Lorentz Conteúdo 7 - Circuitos de Segunda Ordem...1 7.1 - Circuito RLC linear e invariante

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 6

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 6 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 6 Heaviside Dirac Newton Conteúdo 6 Circuitos de primeira ordem...1 6.1 Equação diferencial ordinária de primeira ordem...1 6.1.1

Leia mais

Simulação de Sistemas Dinâmicos Lineares Visão Geral do Matlab

Simulação de Sistemas Dinâmicos Lineares Visão Geral do Matlab Universidade de Brasília Laboratório de Análise Dinâmica Linear Experimento 01 - primeira parte Simulação de Sistemas Dinâmicos Lineares Visão Geral do Matlab Lab ADL (Experimento 01-1a parte) Simulação

Leia mais

Eletrotécnica. Circuitos Elétricos

Eletrotécnica. Circuitos Elétricos Eletrotécnica Circuitos Elétricos Introdução Caracterizamos um circuito elétrico como sendo um conjunto de componentes elétricos / eletrônicos ligados entre si formando pelo menos um caminho para a passagem

Leia mais

Estados Prof: Marcos Lajovic Carneiro Aluno (a): Laboratório Resumo Experimentos da Modelagem no Espaço dos Estados

Estados Prof: Marcos Lajovic Carneiro Aluno (a): Laboratório Resumo Experimentos da Modelagem no Espaço dos Estados Pontifícia Universidade Católica de Goiás Espaço dos Escola de Engenharia ENG 3503 Sistemas de Controle Estados Prof: Marcos Lajovic Carneiro Aluno (a): Laboratório Resumo Experimentos da Modelagem no

Leia mais

PSI.3212 LABORATÓRIO DE CIRCUITOS ELETRICOS

PSI.3212 LABORATÓRIO DE CIRCUITOS ELETRICOS ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI.3212 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA Edição 2016 MEDIDA DA CONSTANTE

Leia mais

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva 1. K. Ogata: Engenharia de Controle Moderno, 5 Ed., Pearson, 2011 2.

Leia mais

UNIVERSIDADE CANDIDO MENDES PÓS-GRADUAÇÃO LATO SENSU AVM FACULDADE INTEGRADA

UNIVERSIDADE CANDIDO MENDES PÓS-GRADUAÇÃO LATO SENSU AVM FACULDADE INTEGRADA UNIVERSIDADE CANDIDO MENDES PÓS-GRADUAÇÃO LATO SENSU AVM FACULDADE INTEGRADA PROCESSOS APLICADOS A CIRCUITOS DA GRADUAÇÃO EM ENGENHARIA ELÉTRICA: APLICABILIDADE DAS DISCIPLINAS DE CIRCUITOS DO 5 o AO 6

Leia mais

Cap. 2 Hart, Eletrônica de Potência. Cálculos de potência

Cap. 2 Hart, Eletrônica de Potência. Cálculos de potência Cap. 2 Hart, Eletrônica de Potência Cálculos de potência Material auxiliar Revisão de circuitos RL Me Salva! RLC10 - Indutores: Introdução https://www.youtube.com/watch?v=yaicexbwtgg Me Salva! RLC11 -

Leia mais

Amplificadores de Múltiplos Estágios

Amplificadores de Múltiplos Estágios Universidade do Estado de Santa Catarina CCT Centro de Ciências Tecnológicas Amplificadores de Múltiplos Estágios Acadêmicos: Chrystian Lenon Remes Fernando Raul Esteche Pedrozo Gilmar Nieckarz Hallan

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 2

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica COB781. Módulo 2 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica COB781 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani Conteúdo 2 - Elementos básicos de circuito e suas associações...1

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA LISTA DE EXERCICIOS #8 (1) FONTE DE CORRENTE a) Determine Io. b) Calcule

Leia mais

Simulação de Sistemas Dinâmicos Lineares Visão Geral do Simulink

Simulação de Sistemas Dinâmicos Lineares Visão Geral do Simulink Universidade de Brasília Laboratório de Análise Dinâmica Linear Experimento 01 - segunda parte Simulação de Sistemas Dinâmicos Lineares Visão Geral do Simulink Lab ADL (Experimento 01-2a parte) Simulação

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 10

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 10 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 40 Módulo 10 Drawing of Michael Faraday's 1831 experiment showing electromagnetic induction between coils of wire, using 19th century apparatus,

Leia mais

Aula 2 Amplificadores de Pequenos Sinais Capacitores de Acoplamento e de Desvio

Aula 2 Amplificadores de Pequenos Sinais Capacitores de Acoplamento e de Desvio Aula 2 Amplificadores de Pequenos Sinais Capacitores de Acoplamento e de Desvio Prof. Dr. Hugo Valadares Siqueira Princípio da Superposição O Princípio da Superposição para circuitos elétricos contendo

Leia mais

EXERCÍCIOS DE PREPARAÇÃO B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS.

EXERCÍCIOS DE PREPARAÇÃO B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS. EXERCÍCIOS DE PREPARAÇÃO B1i Exercícios Preparação B1i EXERCÍCIO REFERENTE À AULA DE AMPLIFICADORES DIFERENCIAIS. Exercício Resolvido : Projetar a polarização de um amplificador diferencial, segundo os

Leia mais

Ánalise de Circuitos. 1. Método Intuitivo

Ánalise de Circuitos. 1. Método Intuitivo Ánalise de Circuitos 1. Método Intuitivo Ramo de um circuito: é um componente isolado tal como um resistor ou uma fonte. Este termo também é usado para um grupo de componentes sujeito a mesma corrente.

Leia mais

Experimento 7 Circuitos RC em corrente alternada

Experimento 7 Circuitos RC em corrente alternada 1. OBJETIVO Experimento 7 Circuitos RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação de corrente alternada.. 2. MATERIAL

Leia mais

Amplificadores Operacionais

Amplificadores Operacionais Amplificadores Operacionais 1. Introdução 2. Conceitos Básicos 3. Símbolo 4. Encapsulamento 5. Diagrama interno 6. Circuitos básicos 7. Amplificador Inversor 8. Amp. não inversor 9. Somador 10. Subtrator

Leia mais

ERRO EM REGIME PERMANENTE

ERRO EM REGIME PERMANENTE MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA ERRO EM REGIME PERMANENTE Inicialmente veja o sistema realimentado mostrado na figura

Leia mais

Critério de Estabilidade: Routh-Hurwitz

Critério de Estabilidade: Routh-Hurwitz Critério de Estabilidade: Routh-Hurwitz O Critério de Nyquist foi apresentado anteriormente para determinar a estabilidade de um sistema em malha fechada analisando-se sua função de transferência em malha

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA LUGAR DAS RAÍZES A função de transferência do circuito abaixo em malha fechada é: F(s) = C(s) = G(s)

Leia mais

Transistor. Este dispositivo de controle de corrente recebeu o nome de transistor.

Transistor. Este dispositivo de controle de corrente recebeu o nome de transistor. Transistor Em 1947, John Bardeen e Walter Brattain, sob a supervisão de William Shockley no AT&T Bell Labs, demonstraram que uma corrente fluindo no sentido de polaridade direta sobre uma junção semicondutora

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas

Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO Vimos que a dissipação de energia num circuito nos fornece uma condição de amortecimento. Porém, se tivermos uma tensão externa que sempre forneça energia ao sistema, de modo que compense

Leia mais

Circuitos Elétricos I EEL420 16/04/2015

Circuitos Elétricos I EEL420 16/04/2015 Circuitos Elétricos I EE420 16/04/2015 Nome: 1) COOQUE SEU NOME E NUMERE AS FOHAS DOS CADERNOS DE RESPOSTA 2) RESPONDA AS QUESTÕES EM ORDEM UTIIZANDO ATÉ 2 PÁGINAS POR QUESTÃO (NO MÁXIMO 3) 3) REDESENHE

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

Ruído. Aula 11 Prof. Nobuo Oki

Ruído. Aula 11 Prof. Nobuo Oki Ruído Aula 11 Prof. Nobuo Oki Considerações Gerais Ruído O ruído limita o nível mínimo do sinal que um circuito pode processar com uma qualidade aceitável. O problema do ruído relaciona-se com a potência

Leia mais