Tópicos em Inferência Estatística. Frases. Roteiro. 1. Introdução

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Tópicos em Inferência Estatística. Frases. Roteiro. 1. Introdução"

Transcrição

1 Tópicos em Inferência Estatística Frases Torture os dados por um tempo suficiente, e eles contam tudo! fonte: (Barry Fetter) Um homem com um relógio sabe a hora certa. Um homem com dois relógios só sabe a média. Anônimo 1. Introdução Roteiro 2. Distribuição Normal 3. Conceitos de Inferência 4. Gráficos de Controle 5. Intervalo de Confiança 6. Teste de Hipóteses 7. Referências

2 Introdução Variável Aleatória Contínua Toma um número infinito não-enumerável de valores. Esses valores podem ser associados a medições em uma escala contínua (sem lacunas ou interrupções). Função de Densidade Gráfico de uma distribuição de probabilidade contínua A área total sob a curva deve ser 1, A curva não deve estar abaixo do eixo das abscissas (x) Há correspondência entre probabilidade e áreas da função de densidade (área total 1)

3 Função de Densidade Parâmetros Esperança (Média): Variância: Desvio padrão: µ = σ 2 σ = R X x f ( x) dx = ( x µ ) R X 2 σ 2 f ( x) dx Distribuição Normal Distribuição Normal Variável aleatória contínua Função de densidade: f ( x) = x µ exp 2π σ 2 σ A curva tem forma de um sino e é simétrica µ Valor

4 Exemplo Alturas de mulheres e homens adultos Mulheres: µ = 1,615 σ = 0,5635 Homens: µ = 1,753 σ = 0,5711 1,615 Alturas (m) 1,753 Regra Empírica 99,7% estão dentro de 3 desvios-padrão a contar da média 95% estão dentro de 2 desvios-padrão 68% estão dentro de 1 desvio-padrão 34% 34% 2,9% 2,9% 0,6% 0,6% 13,5% 13,5% x - 3s x - 2s x - s x x + s x + 2s x + 3s Distribuição Normal Padronizada Distribuição normal com: Média: 0 Desvio padrão: 1 Área = 0,8413 Área lida na Tabela 0, z = 1,58 Escore (z) = 1

5 Tabela da Distribuição Normal Padrão s = 1 µ = 0 z z 0,5 0,6 0,7 0,8 0,9 0,5 0,6 0,7 0,8 0,9 1,5 1,6 1,7 1,8 1,9 1,5 1,6 1,7 1,8 1,9 2,5 2,6 2,7 2,8 2,9 2,5 2,6 2,7 2,8 2,9 3,5,5000,5398,5793,6179,6554,6915,7257,7580,7881,8159,8413,8643,8849,9032,9192,9332,9452,9554,9641,9713,9772,9821,9861,9893,9918,9938,9953,9965,9974,9981,9987 Tabela A-2 Distribuição Normal Padrão (z),50,51,52,53,54,55,56,57,58,59,5040,5438,5832,6217,6591,6950,7291,7611,7910,8186,8438,8665,8869,9049,9207,9345,9463,9564,9649,9719,9778,9826,9864,9896,9920,9940,9955,9966,9975,9982,9987,5080,5478,5871,6255,6628,6985,7324,7642,7939,8212,8461,8686,8888,9066,9222,9357,9474,9573,9656,9726,9783,9830,9868,9898,9922,9941,9956,9967,9976,9982,9987,5120,5517,5910,6293,6664,7019,7357,7673,7967,8238,8485,8708,8907,9082,9236,9370,9484,9582,9664,9732,9788,9834,9871,9901,9925,9943,9957,9968,9977,9983,9988,5160,5557,5948,6331,6700,7054,7389,7704,7995,8264,8508,8729,8925,9099,9251,9382,9495,9591,9671,9738,9793,9838,9875,9904,9927,9945,9959,9969,9977,9984,9988,5199,5596,5987,6368,6736,7088,7422,7734,8023,8289,8531,8749,8944,9115,9265,9394,9505,9599,9678,9744,9798,9842,9878,9906,9929,9946,9960,9970,9978,9984,9989,5239,5636,6026,6406,6772,7123,7454,7764,8051,8315,8554,8770,8962,9131,9279,9406,9515,9608,9686,9750,9803,9846,9881,9909,9931,9948,9961,9971,9979,9985,9989,5279,5675,6064,6443,6808,7157,7486,7794,8078,8340,8577,8790,8980,9147,9292,9418,9525,9616,9693,9756,9808,9850,9884,9911,9932,9949,9962,9972,9979,9985,9989,5319,5714,6103,6480,6844,7190,7517,7823,8106,8365,8599,8810,8997,9162,9306,9429,9535,9625,9699,9761,9812,9854,9887,9913,9934,9951,9963,9973,9980,9986,9990,5359,5753,6141,6517,6879,7224,7549,7852,8133,8389,8621,8830,9015,9177,9319,9441,9545,9633,9706,9767,9817,9857,9890,9916,9936,9952,9964,9974,9981,9986,9990 Comandos no Excel DIST.NORMP(x) Retorna a probabilidade acumulada de normal padrão DIST.NORM(x;média;desv_padrão;Verdadeiro) Retorna a probabilidade acumulada de normal qualquer INV.NORMP(probabilidade) Retorna o inverso da distribuição acumulada de normal padrão INV.NORM(probabilidade; média;desv_padrão) Retorna a probabilidade acumulada de normal qualquer

6 Simetria da Curva Pela simetria, estas áreas são iguais, 0,9925 0,9925 z = - 2, z = 2,93 Distâncias iguais a contar de 0 Área à Direita de z Valor tabelado 0, ,8980 = 0, z = 1,77 Notação P(a < Z < b): probabilidade de o valor de z estar entre a e b P(Z > a): probabilidade de o valor de z ser maior do que a P (Z < a): probabilidade de o valor de z ser menor do que a

7 maior do que x pelo menos x não menos que x menos do que x no máximo x não maior do que x Interpretação das Áreas Subtrair de 1 x Tabela x Subtrair de 1 x Tabela x entre x 1 e x 2 B A C B A C Tomar C = A - B x 1 x 2 x 1 x 2 Determinação Quantil (1) Determinação do 95º percentil 95% 5% 0,55 0 z = 1,645 (valor de z será positivo ) Determinação Quantil (2) Determinação do 10º percentil 10% 90% 0,60 0,90 0,50 z = -1,78 0 (valor de z será negativo )

8 Outras Distribuições Normais Padroniza-se a variável, utilizando-se a tabela da normal padrão para os cálculos de interesse Para padronização: µ Z = X σ µ: média s : desvio padrão Conversão para a Normal Padrão Z = X µ σ P P µ x 0 z Exemplo (1) Peso população feminina µ = 65 kg e s = 12,5 kg Probabilidade de peso entre 65 e 90 kg Tabela 47,72% das mulheres têm peso entre 64,9 e 91,7 kg 0,50 0, Peso z 0 2,50

9 Exemplo (2) Duração de carga de bateria de celular: µ = 20 h e s = 0,5 h Probabilidade durar mais de 21 h 0,9772 P ( x > 2,50 ) = 0, ,78% de baterias duram mais de 21 horas Distribuição Amostral da Média É a distribuição de probabilidade das médias amostrais, com todas as amostras de mesmo tamanho n, da mesma população Teorema Central do Limite Hipóteses A variável aleatória X tem uma distribuição qualquer (normal, ou não), com média µ e desvio padrão s ; Amostras aleatórias de tamanho n extraídas dessa população.

10 Teorema Central do Limite Quando o tamanho da amostra aumenta, a distribuição das médias amostrais X tende para uma distribuição normal; A média das médias amostrais será a média populacional µ, O desvio padrão das médias amostrais é s / n Notação Média das médias amostrais: µ X = µ Desvio padrão das médias amostrais: (erro-padrão da média) s X = s n Exemplo Peso população feminina µ = 65 kg e s = 12,5 kg Probabilidade de peso maior que 68 kg 68,5 65,5 z = 12,5 = 0,74 1 0,5948 = 0,9052 0,5948 µ = 65 s?= 12,5 68,5 0 0,74

11 Exemplo Em amostras de tamanho 36, probabilidade de peso médio maior que 68 kg 68,5 65,5 z = 2,58 = 1,94 1 0,9251 = 0,5749 0,9251 µ x = 65 s x = 2,58 68,5 0 1,94 Comparação Probabilidade do peso de uma mulher ser maior que 68,5 kg: 0,9050 Probabilidade da média de peso de 36 mulheres ser maior que 68 kg: 0,5749 É mais fácil um elemento se desviar da média da população do que um grupo de 36 elementos. Conceitos de Inferência

12 Parâmetro e Estimativa Parâmetro: um número que descreve a população É fixo, mas em geral não conhecemos seu valor Estimador: um número que descreve a amostra Conhecido após a extração da amostra Pode variar de uma amostra para outra Usado para estimar o valor de um parâmetro Variabilidade Amostral Valor de um estimador (estimativa) varia de uma amostragem aleatória repetida para outra. Ex.: Simulação de amostras de tamanho 100 de uma população com parâmetro populacional, com probabilidade de sucesso p=0,60 Calcula-se a proporção de amostral de sucessos Simulação com Amostras de Tamanho Densidade 5 4 s = 0, ,4 5 0, amost ra s d e t aman ho , 55 0,60 Proporção amos tral Média de todas proporções amostrais: 0,59942 Desvio-padrão de todas as médias: 0,5495 0,6 5 0,7 0 0, 75

13 Distribuição Amostral Distribuição dos valores que o estimador assume em todas as amostras possíveis, de mesmo tamanho, extraídas da mesma população. Simulação com Amostras de Tamanho Densidade s = 0, ,5 7 0,5 8 0, amostras de tamanho ,6 0 0, 61 Proporção A mostral Média de todas proporções amostrais: 0,60049 Desvio-padrão de todas as médias: 0, ,62 0,6 3 0, 64 Comparação das Simulações 4 0 0,4 5 0, 50 0,5 5 0, 60 0,6 5 0,7 0 0, 75 n = n = Dens idade ,45 0,5 0 0,55 0,6 0 0,65 0,7 0 0,7 5 Média Desvio-padrão n = 100 0, ,5495 n = , ,50947

14 Viés de um Estimador Um estimador é não viesado se a média de sua distribuição amostral é igual ao verdadeiro valor do parâmetro que está sendo estimado Não há tendência para sobreestimar ou subestimar o parâmetro; pˆ é um estimador não viesado para p X é um estimador não viesado para µ Variabilidade de um Estimador É descrita pela dispersão de sua distribuição amostral É determinada pelo planejamento amostral e pelo tamanho n da amostra Amostras maiores apresentam dispersão menor Se a população for muito maior que a amostra: A dispersão para um amostra de tamanho n fixo é a mesma para qualquer tamanho populacional. Analogia do milho Viés Variabilidade Viés Exatidão Dispersão Precisão Não se pode saber qual a verdadeira distância entre a estimativa efetuada e o verdadeiro valor, mas pode-se calcular as probabilidades associadas

15 Inferência Não se pode saber qual a verdadeira distância entre a estimativa efetuada e o verdadeiro valor, mas pode-se calcular as probabilidades associadas Gráficos de Controle Controle de Processo Há situações em que se deseja manter variável constante ao longo do tempo: Controle de peso; Controle de pressão; Controle industrial; etc. Observação de variação Modificação de comportamento

16 Estabilidade Estatística Todo processo tem variabilidade Estabilidade Estatística: Há variação na medida, mas o padrão de variação permanece estável Controle estatístico: Variável continua sendo representada pela mesma distribuição ao longo do tempo. Gráficos de Controle (1) Monitoramento de processos: Avisa quando sofre alguma perturbação Sinaliza para busca e correção da causa da perturbação Gráficos de Controle (2) Funcionamento: Distinguem entre variação natural do processo e variação adicional Sugestão de ocorrência de perturbação Soa alarme quando enxerga variação demasiada Combina descrição gráficas e numéricas Ponte entre Análise Exploratória de Dados e inferência formal

17 Gráficos de Controle (3) Aplicações: Desempenho de processo industrial; Monitoramento de nível de poluição atmosférica; Consumo de combustível etc. Gráfico de Controle de X Média do processo (µ): Valor médio a longo prazo de variável quantitativa Centro do processo - Média amostral (x): Estimativa de µ Permite julgar se o centro do processo se afastou de seu valor apropriado; Em geral são pequenas amostras coletadas em intervalos regulares de tempo. Exemplo Processo de fabricação de monitores de computador: Característica de qualidade: tensão tela de visão Valor alvo: 275 mv Desvio padrão: 43 mv (processo sob controle) A cada hora mede-se a tensão em 4 monitores Conjunto com 20 médias consecutivas Planilha: tensão

18 Gráfico das médias amostrais vs. ordem de coleta Média amos tral (mv) Linha central: valor-alvo Número da amostra As últimas médias estão acima da linha: A média do processo pode ter se desviado, ou Reflexo de variação natural do processo Suposições do Gráfico de Controle Espera-se que a média tenha distribuição aproximadamente normal; Pelo Teorema central do Limite: Médias estarão mais próximas da normal do que as medidas individuais. Gráfico de controle é medida de alerta: (não precisa ser exato) Objetivo: Limites de Controle qualquer média fora dos limites de controle é evidência de que o processo está descontrolado Uso da regra prática: 68; 95; 99,7 Linha de Controle Superior (LCS): µ + 3σ X Linha de Controle Inferior (LCI): µ 3σ X

19 Exemplo Construção do Gráfico Desvio-padrão da média amostral σ 43 σ = = = 21, mv X n 4 5 Limite de Controle Superior: µ + 3 σ = ,5 = 339, 5 mv X Limite de Controle Inferior: µ 3 σ = ,5 = 210, 5 mv X Gráfico de X UCL=33 9,5 Média amos tral (mv) _ X= LCL=2 10, Número da A most ra Se o processo estiver controlado, é pouco provável que um ponto fique fora dos limites de controle; Probabilidade < 0,503 Comentário Procura-se uma perturbação no processo tão logo detecta-se um ponto fora de controle No exemplo: Se a média do processo for µ = 275 mv Pr{ponto acima do LSC} = 0,5015 Média do processo deslocada para µ = 339,5 mv Pr{ponto acima do LSC} = 0, 50

20 Controle Estatístico de Processos Gráficos de controle focalizam o processo e não o produto; Asseguram alta qualidade a um custo mais baixo do que a inspeção de todos os produtos; Pequenas amostras (4 ou 5 itens) em intervalos regulares costumam ser suficientes para o controle do processo. Controle Estatístico de Processos (2) Um processo sob controle é estável ao longo do tempo; Estabilidade por si só não garante boa qualidade A variação natural do processo pode ser tão grande que muitos produtos sejam insatisfatórios; Vantagens do CEP A observação do funcionamento do processo livre de perturbações permite avaliar se sua qualidade é satisfatória; Um processo sob controle pode ser predito; Processo sob controle permite verificar claramente os efeitos de tentativas para sua melhoria;

21 Comentários Um processo controlado funciona tão bem quanto possível em seu estado atual; Se o processo sob controle não é capaz de produzir qualidade adequada, deve-se efetuar intervenção de vulto. Novas máquinas, retreinamento, etc. Média e Desvio-padrão do Processo Na prática, raramente conhecemos a média (µ) e o desvio-padrão (s ) do processo; Devemos nos basear em dados passados; Deve-se certificar se o processo já estava sob controle quando os dados foram coletados. Tipos de Gráficos de Controle Há uma ampla variedade: Gráfico da média amostral Gráfico da amplitude amostral Gráfico da proporção amostral Gráfico da quantidade de defeituosos Gráfico da soma acumulada (CUSUM) etc.

22 Objetivo: Gráfico de Controle de p Monitora processo em que a característica de qualidade é a proporção de itens produzidos Ex.: defeituosos Linha central: p Linha de Controle Superior (LCS): p + 3 p(1 p) n Linha de Controle Inferior (LCI): p 3 p(1 p) n Regras Suplementares de Decisão Sinal: seqüência de 9 pontos consecutivos acima (ou abaixo) da Linha Central UCL=33 9,5 Média amostral ( mv) _ X= LCL=2 10, Número da A most ra Seqüência de 9 Pontos Se o processo estiver centrado em µ, a probabilidade de 9 pontos consecutivos acima (ou abaixo) da Linha Central é: No exemplo: 1 9 = 0,002 2 Sinal 1 ponto fora : avisa na amostra 14 Sinal seqüência de 9 pontos : avisa na amostra 20

23 Regras Suplementares de Decisão (2) Sinal: 2 dentre 3 pontos além do nível 2 s X LSC = µ 0 + 3σ0 / n LSA = µ 0 + 2σ0 / n LM = µ 0 LIA = µ 2σ / n 0 0 LIC = µ 0 3σ 0 / n Minutos Intervalo de Confiança Propriedades Importantes de um Bom Estimador Consistência: Estimativa se aproxima do verdadeiro valor do parâmetro à medida que o tamanho da amostra aumenta θ ˆ θ

24 Propriedades Importantes de um Bom Estimador Exatidão: Relacionada com o vício do estimador ( ) θ Bias θ ˆ = θ ˆ Precisão: Relacionada com a variabilidade do estimador Var( θˆ ) Quanto menor a variabilidade, mais preciso é o estimador Intervalo de Confiança Estimação intervalar do verdadeiro valor de parâmetro populacional Menor # < parâmetro populacional < Maior # Exemplo: Menor # < µ < Maior # Grau de Confiança É a freqüência relativa de vezes que o processo de estimação gerar á intervalo que contenha o parâmetro populacional. É denotado por 1 a; Geralmente: Grau de confiança 90% 95% 99% a 10% 5% 1%

25 Correto: Estamos 95% confiantes que o intervalo de 98,58 a 98,82 contenha o verdadeiro valor de µ. Se construíssemos intervalos de confiança a partir de muitas amostras de mesmo tamanho, 95% deles conteriam o parâmetro µ. Errado: 98,58 o < µ < 98,82 o É de 95% a probabilidade de o verdadeiro valor µ estar entre 98,58 e 98,82. Exemplo Intervalo de Confiança de 20 Amostras Valor Crítico É o número na fronteira que separa os valores das estatísticas amostrais prováveis de ocorrer, dos valores que têm pouco chance de ocorrer.

26 O Valor Crítico z α/2 Considerados: Normalidade da estatística de teste Fronteira bilateral α/2 α/2 -z α/2 z=0 z α/2 Lido na Tabela z α/2 para 95% de Confiança α = 0,55 α/2 = 0,525 0,9750 0,525 Tabela z α/2 = + 1,96-0,525 0,525-1,96 1,96 z a/2 para vários Grau de Confiança Grau de Confiança 90% a 10% Valor Crítico 1,645 95% 5% 1,960 99% 1% 2,575

27 Margem de Erro É a máxima diferença provável entre o estimador e o verdadeira valor do parâmetro populacional.? ^ - E? ^ - E? ^ <? <? + E? ^ + E Limite inferior Limite superior Margem de Erro da Média Amostral Também chamada de erro máximo da estimativa E = z α / 2 σ n x - E µ x + E Intervalo de Confiança para a Média Populacional x - E < µ < x + E µ = x + E (x + E, x - E)

28 Exemplo Estimação da renda média do primeiro ano de trabalho de um bacharel. Determinar tamanho amostral para um nível de 95% de confiança para que a média da amostra esteja a menos de $500 da média populacional? Sabe-se por estudos prévios que s = $ Exemplo (2) 2 zα / 2σ n = E 1, n = = 600,25 Amostras de tamanho 601 oferecem 95% de confiança que sua média difiram em menos de $500 da verdadeira média populacional. Distribuição t de Student Se a distribuição de uma população é essencialmente normal, então a distribuição de X µ t = s n é uma Distribuição t de Student para todas amostras de tamanho n. Valores críticos denotados por t a/2.

29 Graus de Liberdade Corresponde ao número de valores amostrais que podem variar após terem sido impostas certas restrições a todos os valores. No caso da t-student: gl = n 1 Tabela Distribuição t Graus de liberdade Grande (z).005 (unilateral).01 (bilateral) 63,657 9,925 5,841 4,604 4,532 3,707 3,500 3,855 3,750 3,669 3,606 3,554 3,512 2,977 2,947 2,921 2,898 2,878 2,861 2,845 2,831 2,819 2,807 2,797 2,787 2,779 2,771 2,763 2,756 2, (unilateral).02 (bilateral) 31,821 6,965 4,541 3,747 3,865 3,643 2,998 2,896 2,821 2,764 2,718 2,681 2,650 2,625 2,602 2,584 2,567 2,552 2,540 2,528 2,518 2,508 2,500 2,992 2,985 2,979 2,973 2,967 2,962 2, (unilateral).05 (bilateral).05 (unilateral).10 (bilateral).10 (unilateral).20 (bilateral).25 (unilateral).50 (bilateral) 12,706 6,814 3,578 1,500 4,803 2,920 1,886,816 3,682 2,853 1,638,765 2,776 2,632 1,533,741 2,571 2,515 1,976,727 2,947 1,943 1,940,718 2,865 1,895 1,915,711 2,806 1,860 1,897,706 2,762 1,833 1,883,703 2,728 1,812 1,872,700 2,701 1,796 1,863,697 2,679 1,782 1,856,696 2,660 1,771 1,850,694 2,645 1,761 1,845,692 2,632 1,753 1,841,691 2,620 1,746 1,837,690 2,610 1,740 1,833,689 2,601 1,734 1,830,688 2,593 1,729 1,828,688 2,586 1,725 1,825,687 2,580 1,721 1,823,686 2,574 1,717 1,821,686 2,569 1,714 1,820,685 2,564 1,711 1,818,685 2,560 1,708 1,816,684 2,556 1,706 1,815,684 2,552 1,703 1,814,684 2,548 1,701 1,813,683 2,545 1,699 1,811,683 1,960 1,645 1,782,675 Propriedades É diferente de acordo com o tamanho da amostra. Tem a mesma forma geral que a distribuição normal padrão (forma de sino, com média 0)

30 Propriedades (2) Reflete a maior variabilidade da média amostral, esperada em pequenas amostras (caudas mais pesadas). Seu desvio-padrão varia com o tamanho da amostra, sendo sempre superior ao da normal padrão (1). Propriedades (3) A distribuição t de Student se aproxima da distribuição normal padrão à medida em que n cresce Em geral, para valores n > 30, as diferenças são tão pequenas que podemos utilizar os valores da normal padrão Distribuição t Student para n = 3 e n = 12 Normal padrão t Student ( n = 12) t Student (n = 3) 0

31 Exemplo Objetivo: avaliação de tempo de treinamento foi selecionada Amostra: 15 empregados Resultados amostrais: Média: 53,87 dias Desvio-padrão: 6,82 dias Determinar intervalo com 95% de confiança para µ (tempo médio para treinamento de todos os empregados da empresa) x = 53,87 s = 6,82 t a/2 = 2,645 Exemplo (2) tα / s 2,145.6,82 = = = 3, 78 n 15 E 2 x - E < µ < x + E 53,87 3,78 < µ < 53,87 + 3,78 50,59 < µ < 57,65 Estamos 95% confiantes que este intervalo contenha a média de tempo de treinamento de todos os empregados. Teste de Hipóteses

32 Exemplo Médias Amostrais Objetivo: verificar se a amostra é originária de população com média: 98,6 Média da amostra obtida: 98,7 Suposição: a amostra é suficientemente grande para a aplicação do Teorema Central do Limite Exemplo - Médias Amostrais Dados amostrais: z = - 6,64 ou x = 98,70 Médias amostrais prováveis µ x = 98,6 z = - 1,96 ou x = 98,98 z = 1,96 ou x = 98,72 Teste de Hipóteses Componentes Hipótese Nula; Hipótese Alternativa Estatística de Teste Região Crítica Nível de Significância

33 Hipótese Nula H 0 Afirmação sobre valor de parâmetro populacional Deve conter uma condição de igualdade =,, ou Testar diretamente a Hipótese Nula: Rejeitar H 0 ou não rejeitar H 0 Hipótese Alternativa H 1 Deve ser verdadeira se H 0 é falsa?, <, > oposto da Hipótese Nula. Hipótese de Pesquisa Para montar um teste de hipótese para apoiar de pesquisa, ela deve ser formulada de maneira a ser a hipótese alternativa.

34 Estatística de Teste Valor baseado nos dados amostrais que é usado para tomar uma decisão sobre a rejeição da hipótese nula. Exemplo: Para testar afirmações sobre médias populacionais, através de grandes amostras x µ z = σ n X Região Crítica Conjunto de todos os valores da estatística de teste que levam à rejeição de H 0. Região Crítica Região de Aceitação Valores da estatística de teste que não levam à rejeição de H 0 É o conjunto complementar à região crítica.

35 Nível de Significância É a probabilidade de rejeitar H 0 quando ela é verdadeira. É tipicamente pré-determinado, sendo comum as escolhas: 0,55; 0,51 e 0,60 Notação a Valores Críticos Valor(es) que separa(m) a região crítica da região de aceitação. Rejeita H 0 Não rejeita H 0 Valor Crítico (escore z ) Tipos de Teste As caudas em uma distribuição são as regiões extremas delimitadas por valores críticos. Tipos de teste: Bilateral Unilateral esquerdo Unilateral direito

36 Teste Bilateral H 0 : µ = µ 0 vs H 1 : µ µ 0 menor ou maior que Rejeita H 0 Não Rejeita H 0 Rejeita H 0 µ 0 Valores que são significativamente distantes de µ 0 α é dividido igualmente entre as duas caudas da região crítica Teste Unilateral Direito H 0 : µ µ 0 vs H 1 : µ > µ 0 Pontos à direita Não rejeita H 0 Rejeita H 0 Valores significativamente distantes de 100 µ 0 Teste Unilateral Esquerdo H 0 : µ = µ 0 vs H 1 : µ < µ 0 Pontos à esquerda Rejeita H 0 Não rejeita H 0 Valores significativamente distantes de µ 0 µ 0

37 Terminologia das Conclusões Finais Início A afirmação original contém Sim a condição de (A afirmação original igualdade? contém a igualdade e se torna H 0) Não (A afirmação original não contém a igualdade e se torna H 1) Sim Rejeitar H 0? (Rejeitar H 0) Não (Não rejeitar H 0) Sim Rejeitar H 0? (Rejeitar H 0) Não (Não rejeitar H 0) Há evidência suficiente (Único caso em para garantir a que a afirmaç ão rejei ção da afirmação de original é que... (afirmação original). rejeitada). Não h á evidência suficiente para garantir a rejei ção da afirmação de que... (afirmação original). Os dados amostrais (Único caso em ap óiam a afirmação de que que a afirmaç ão...(afirmação original). original é apoiada Não h á evidência amostral para apoiar a afirmação de que... (afirmação original). Erro Tipo I O erro de rejeitar a H 0 quando ela é verdadeira. O nível de significância a é a probabilidade de um erro tipo I. Exemplo: Rejeitar a afirmação de que a temperatura do corpo é 37ºC, quando ela é, de fato, 37ºC. Erro Tipo II Erro de não rejeitar H 0 quando ela é falsa. A probabilidade do erro tipo II é ß. Exemplo: Não rejeitar a afirmação de que a temperatura do corpo é 37ºC, quando ela é, de fato, falsa (a média não é 37ºC).

38 Erros Tipo I e Tipo II Estado da Natureza H 0 Verdadeira H 0 Falsa Decisão Rejeição de H 0 Não rejei ção de H 0 Erro tipo I (a) Acerto (1 a) Acerto (1 ß) Erro tipo II (ß) Controle dos Erros Tipo I e Tipo II Para a fixo, aumentar o tamanho da amostra n reduz o valor de ß; Para n fixo, diminuir a leva a um aumento de ß (ou, vice-versa); Para redução de a e ß, deve-se aumentar n. Poder do Teste É a probabilidade (1 - ß) de rejeitar uma H 0 falsa É calculada para: um nível de significância a, e um valor do parâmetro que seja alternativa para o valor de H 0.

39 Teste de Hipóteses Método Clássico Utiliza uma estatística de teste (função dos dados da amostra), comparado-a com um valor crítico. Exemplo: Estatística de teste para Afirmações sobre µ (suposição de normalidade) x µ z = σ n X Passos do Teste Identificar as hipóteses a ser testada; Colocá-las em forma simbólica; H0 contém a condição de igualdade; Escolher o nível de significância a, baseandose na gravidade de um erro tipo I (Em geral, 0,55 e 0,51):. Tomar a pequeno se as conseqüências da rejeição de uma H0 verdadeira são sérias. Passos do Teste (2) Escolher a estatística relevante para este teste e determinar sua distribuição amostral. Determinar os valores críticos e a região crítica. Critério de Decisão: Rejeitar H0 se a estatística de teste está na região crítica, caso contrário, não rejeitar H0. Concluir sobre o texto no contexto do problema

40 Método do Valor p Similar ao método tradicional; Procedimento para tomada de decisão: Determinar a probabilidade (Valor p) de se obter um resultado mais favorável contra H 0, Se o Valor p é muito baixo rejeita-se H 0. Valor p Definição É a probabilidade de se obter um valor da estatística de teste pelo menos tão extremo como o observado, supondo-se que H 0 seja verdadeira. Valor P Interpretação Valor p pequeno ( =0,55) Resultados amostrais incomuns. Diferença significante de H 0. Valor p grande (> 0,55 ) Resultados amostrais não são incomuns. Não há diferença significante de H 0.

41 Teste de Hipóteses Razão Subjacente Dada uma suposição observada, se a probabilidade de obtermos a amostra observada é pequena, então provavelmente a suposição não é correta. Ao se testar uma afirmação (H 0 ), supõe-se que ela contenha a igualdade. Essa suposição é comparada com os dados amostrais. Teste de Hipóteses Conclusões Se os resultados amostrais podem ocorrer facilmente quando a suposição (H 0 ) é verdadeira, atribue-se ao acaso a diferença pequena encontrada entre a suposição e os resultados amostrais. Se os resultados amostrais são improváveis de ocorrer (sob H 0 ), explica-se a diferença (relativamente grande) entre H 0 e os resultados amostrais supondo-se que ela não seja verdadeira. Referências

42 Bibliografia Recomendada Moore, D. S. e McCabe, G. P. (LTC) Introdução à prática da estatística. Wild, C. J. e Seber, G. A. (LTC) Encontros com o acaso.

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo

UNIVERSIDADE DE SÃO PAULO. Faculdade de Arquitetura e Urbanismo UNIVERSIDADE DE SÃO PAULO Faculdade de Arquitetura e Urbanismo DISTRIBUIÇÃO AMOSTRAL ESTIMAÇÃO AUT 516 Estatística Aplicada a Arquitetura e Urbanismo 2 DISTRIBUIÇÃO AMOSTRAL Na aula anterior analisamos

Leia mais

Probabilidade. Distribuição Normal

Probabilidade. Distribuição Normal Probabilidade Distribuição Normal Distribuição Normal Uma variável aleatória contínua tem uma distribuição normal se sua distribuição é: simétrica apresenta (num gráfico) forma de um sino Função Densidade

Leia mais

AULAS 04 E 05 Estatísticas Descritivas

AULAS 04 E 05 Estatísticas Descritivas 1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Gráfico de Controle por Atributos

Gráfico de Controle por Atributos Roteiro Gráfico de Controle por Atributos 1. Gráfico de np 2. Gráfico de p 3. Gráfico de C 4. Gráfico de u 5. Referências Gráficos de Controle por Atributos São usados em processos que: Produz itens defeituosos

Leia mais

Teorema Central do Limite e Intervalo de Confiança

Teorema Central do Limite e Intervalo de Confiança Probabilidade e Estatística Teorema Central do Limite e Intervalo de Confiança Teorema Central do Limite Teorema Central do Limite Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

Hipótese Estatística:

Hipótese Estatística: 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA TESTE DE HIPÓTESE SÉRGIO KATO Trata-se de uma técnica para se fazer inferência estatística. Ou seja, a partir de um teste de hipóteses, realizado com os dados amostrais,

Leia mais

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora

7Testes de hipótese. Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno. H 0 : 2,5 peças / hora 7Testes de hipótese Prof. Dr. Paulo Picchetti M.Sc. Erick Y. Mizuno COMENTÁRIOS INICIAIS Uma hipótese estatística é uma afirmativa a respeito de um parâmetro de uma distribuição de probabilidade. Por exemplo,

Leia mais

Medidas de Variação ou Dispersão

Medidas de Variação ou Dispersão Medidas de Variação ou Dispersão Estatística descritiva Recapitulando: As três principais características de um conjunto de dados são: Um valor representativo do conjunto de dados: uma média (Medidas de

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Introdução à Análise Química QUI 094 ERRO E TRATAMENTO DE DADOS ANALÍTICOS

Introdução à Análise Química QUI 094 ERRO E TRATAMENTO DE DADOS ANALÍTICOS Introdução a Analise Química - II sem/2012 Profa Ma Auxiliadora - 1 Introdução à Análise Química QUI 094 1 semestre 2012 Profa. Maria Auxiliadora Costa Matos ERRO E TRATAMENTO DE DADOS ANALÍTICOS Introdução

Leia mais

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra.

Introdução. Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Métodos Monte Carlo Introdução Métodos de inferência são usados para tirar conclusões sobre a população usando informações obtidas a partir de uma amostra. Estimativas pontuais e intervalares para os parâmetros;

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Intervalos Estatísticos para uma Única Amostra

Intervalos Estatísticos para uma Única Amostra Roteiro Intervalos Estatísticos para uma Única Amostra 1. Introdução 2. Intervalo de Confiança para Média i. População normal com variância conhecida ii. População normal com variância desconhecida 3.

Leia mais

Teste de Hipótese para uma Amostra Única

Teste de Hipótese para uma Amostra Única Teste de Hipótese para uma Amostra Única OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Estruturar problemas de engenharia de tomada de decisão, como

Leia mais

Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber

Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber 8 Teste de hipóteses com duas amostras Estatística Aplicada Larson Farber Seção 8.1 Testando a diferença entre duas médias (amostras grandes e independentes) Visão geral Para testar o efeito benéfico de

Leia mais

Gráfico de Controle por Variáveis

Gráfico de Controle por Variáveis Gráfico de Controle por Variáveis Roteiro 1. Construção de Gráficos de Controle de X e R 2. Análise de Desempenho dos Gráficos X e R 3. Alternativas para Monitoramento da Dispersão 4. Regras Suplementares

Leia mais

Estatística Aplicada para Engenharia Inferência para Duas Populações

Estatística Aplicada para Engenharia Inferência para Duas Populações Universidade Federal Fluminense Instituto de Matemática e Estatística Estatística Aplicada para Engenharia Inferência para Duas Populações Ana Maria Lima de Farias Departamento de Estatística Conteúdo

Leia mais

Simulação Transiente

Simulação Transiente Tópicos Avançados em Avaliação de Desempenho de Sistemas Professores: Paulo Maciel Ricardo Massa Alunos: Jackson Nunes Marco Eugênio Araújo Dezembro de 2014 1 Sumário O que é Simulação? Áreas de Aplicação

Leia mais

Trabalhando com Pequenas Amostras: Distribuição t de Student

Trabalhando com Pequenas Amostras: Distribuição t de Student Probabilidade e Estatística Trabalhando com Pequenas Amostras: Distribuição t de Student Pequenas amostras x Grandes amostras Nos exemplos tratados até agora: amostras grandes (n>30) qualquer tipo de distribuição

Leia mais

A Curva Normal Luiz Pasquali

A Curva Normal Luiz Pasquali Capítulo 3 A Curva Normal Luiz Pasquali 1 A História da Curva Normal A curva normal, também conhecida como a curva em forma de sino, tem uma história bastante longa e está ligada à história da descoberta

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

Valor Prático da Distribuição Amostral de

Valor Prático da Distribuição Amostral de DISTRIBUIÇÃO AMOSTRAL DA MÉDIA DA AMOSTRA OU DISTRIBUIÇÃO AMOSTRAL DE Antes de falarmos como calcular a margem de erro de uma pesquisa, vamos conhecer alguns resultados importantes da inferência estatística.

Leia mais

Decidir como medir cada característica. Definir as características de qualidade. Estabelecer padrões de qualidade

Decidir como medir cada característica. Definir as características de qualidade. Estabelecer padrões de qualidade Escola de Engenharia de Lorena - EEL Controle Estatístico de Processos CEP Prof. MSc. Fabrício Maciel Gomes Objetivo de um Processo Produzir um produto que satisfaça totalmente ao cliente. Conceito de

Leia mais

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3.

1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. 1 1. Avaliação de impacto de programas sociais: por que, para que e quando fazer? (Cap. 1 do livro) 2. Estatística e Planilhas Eletrônicas 3. Modelo de Resultados Potenciais e Aleatorização (Cap. 2 e 3

Leia mais

CAPÍTULO 9 Exercícios Resolvidos

CAPÍTULO 9 Exercícios Resolvidos CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159

Leia mais

Distribuição de Freqüência

Distribuição de Freqüência Distribuição de Freqüência Representação do conjunto de dados Distribuições de freqüência Freqüência relativa Freqüência acumulada Representação Gráfica Histogramas Organização dos dados Os métodos utilizados

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22 Teste para diferença de médias Exemplo Dois tipos diferentes de tecido devem ser comparados. Uma máquina de testes Martindale pode comparar duas amostras ao mesmo tempo. O peso (em miligramas) para sete

Leia mais

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência 1 AULAS 24 E 25 Análise de Regressão Múltipla: Inferência Ernesto F. L. Amaral 23 e 25 de novembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma

Leia mais

Inferência Estatística

Inferência Estatística Universidade Federal Fluminense Instituto de Matemática e Estatística Inferência Estatística Ana Maria Lima de Farias Departamento de Estatística Conteúdo 1 Inferência estatística Conceitos básicos 1 1.1

Leia mais

Bioestatística Aula 3

Bioestatística Aula 3 Aula 3 Castro Soares de Oliveira Probabilidade Probabilidade é o ramo da matemática que estuda fenômenos aleatórios. Probabilidade é uma medida que quantifica a sua incerteza frente a um possível acontecimento

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

Aula 10 Testes de hipóteses

Aula 10 Testes de hipóteses Aula 10 Testes de hipóteses Na teoria de estimação, vimos que é possível, por meio de estatísticas amostrais adequadas, estimar parâmetros de uma população, dentro de certo intervalo de confiança. Nos

Leia mais

DISTRIBUIÇÃO NORMAL 1

DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL 1 D ensid ade Introdução Exemplo : Observamos o peso, em kg, de 1500 pessoas adultas selecionadas ao acaso em uma população. O histograma por densidade é o seguinte: 0.04 0.03 0.02

Leia mais

Disciplinas: Cálculo das Probabilidades e Estatística I

Disciplinas: Cálculo das Probabilidades e Estatística I Introdução a Inferência Disciplinas: Cálculo das Probabilidades e Estatística I Universidade Federal da Paraíba Prof a. Izabel Alcantara Departamento de Estatística (UFPB) Introdução a Inferência Prof

Leia mais

Distribuições de Probabilidade Distribuição Normal

Distribuições de Probabilidade Distribuição Normal PROBABILIDADES Distribuições de Probabilidade Distribuição Normal BERTOLO PRELIMINARES Quando aplicamos a Estatística na resolução de situações-problema, verificamos que muitas delas apresentam as mesmas

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Capítulo 7 Medidas de dispersão

Capítulo 7 Medidas de dispersão Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Avaliação da variação do sistema de medição Exemplo 1: Diâmetros de bico injetor de combustível

Avaliação da variação do sistema de medição Exemplo 1: Diâmetros de bico injetor de combustível Avaliação da variação do sistema de medição Exemplo 1: Diâmetros de bico injetor de combustível Problema Um fabricante de bicos injetores de combustível instala um novo sistema digital de medição. Os investigadores

Leia mais

Descreve de uma forma adequada o

Descreve de uma forma adequada o EST029 Cálculo de Probabilidade I Cap. 8 - Variáveis Aleatórias Contínuas Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Variável Aleatória Normal Caraterização: Descreve de uma forma adequada

Leia mais

Controle estatístico de processo: algumas ferramentas estatísticas. Linda Lee Ho Depto Eng de Produção EPUSP 2009

Controle estatístico de processo: algumas ferramentas estatísticas. Linda Lee Ho Depto Eng de Produção EPUSP 2009 Controle estatístico de processo: algumas ferramentas estatísticas Linda Lee Ho Depto Eng de Produção EPUSP 2009 Controle estatístico de Processo (CEP) Verificar estabilidade processo Coleção de ferramentas

Leia mais

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade

Estatística e Probabilidade. Aula 8 Cap 05. Distribuição normal de probabilidade Estatística e Probabilidade Aula 8 Cap 05 Distribuição normal de probabilidade Estatística e Probabilidade Na aula anterior vimos... Distribuições Binomiais Distribuição Geométrica Distribuição de Poisson

Leia mais

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais. Prof. Janete Pereira Amador Introdução Os métodos utilizados para realização de inferências a respeito dos parâmetros pertencem a duas categorias. Pode-se estimar ou prever o valor do parâmetro, através

Leia mais

Gráficos de Controle para Processos Autocorrelacionados

Gráficos de Controle para Processos Autocorrelacionados Roteiro da apresentação 1 Controle de Qualidade Lupércio França Bessegato 2 3 4 5 Especialização em Estatística 6 7 8 Gráfico de Controle de Shewhart Hipóteses do gráfico de controle convencional: Normalidade

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1 UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA 4 a LISTA DE EXERCÍCIOS GBQ12 Professor: Ednaldo Carvalho Guimarães AMOSTRAGEM 1) Um pesquisador está interessado em saber o tempo médio que

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

CÁLCULO DO TAMANHO DA AMOSTRA PARA UMA PESQUISA ELEITORAL. Raquel Oliveira dos Santos, Luis Felipe Dias Lopes

CÁLCULO DO TAMANHO DA AMOSTRA PARA UMA PESQUISA ELEITORAL. Raquel Oliveira dos Santos, Luis Felipe Dias Lopes CÁLCULO DO TAMANHO DA AMOSTRA PARA UMA PESQUISA ELEITORAL Raquel Oliveira dos Santos, Luis Felipe Dias Lopes Programa de Pós-Graduação em Estatística e Modelagem Quantitativa CCNE UFSM, Santa Maria RS

Leia mais

Métodos Quantitativos. PROF. DR. Renato Vicente

Métodos Quantitativos. PROF. DR. Renato Vicente Métodos Quantitativos PROF. DR. Renato Vicente Método Estatístico Amostra População Estatística Descritiva Inferência Estatística Teoria de Probabilidades Aula 4A Inferência Estatística: Um pouco de História

Leia mais

Introdução a Química Analítica. Professora Mirian Maya Sakuno

Introdução a Química Analítica. Professora Mirian Maya Sakuno Introdução a Química Analítica Professora Mirian Maya Sakuno Química Analítica ou Química Quantitativa QUÍMICA ANALÍTICA: É a parte da química que estuda os princípios teóricos e práticos das análises

Leia mais

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder

COMENTÁRIO AFRM/RS 2012 ESTATÍSTICA Prof. Sérgio Altenfelder Comentário Geral: Prova muito difícil, muito fora dos padrões das provas do TCE administração e Economia, praticamente só caiu teoria. Existem três questões (4, 45 e 47) que devem ser anuladas, por tratarem

Leia mais

MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO MEDIDAS DE DISPERSÃO 1) (PETROBRAS) A variância da lista (1; 1; 2; 4) é igual a: a) 0,5 b) 0,75 c) 1 d) 1,25 e) 1,5 2) (AFPS ESAF) Dada a seqüência de valores 4, 4, 2, 7 e 3 assinale a opção que dá o valor

Leia mais

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis

INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis INE 7001 - Procedimentos de Análise Bidimensional de variáveis QUANTITATIVAS utilizando o Microsoft Excel. Professor Marcelo Menezes Reis O objetivo deste texto é apresentar os principais procedimentos

Leia mais

Pesquisador em Informações Geográficas e Estatísticas A I GESTÃO DA QUALIDADE LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO.

Pesquisador em Informações Geográficas e Estatísticas A I GESTÃO DA QUALIDADE LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 7 EDITAL N o 04/2013 LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO. 01 - O candidato recebeu do fiscal o seguinte material: a) este CADERNO DE QUESTÕES, com os enunciados das 8 (oito) questões discursivas, sem

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística 1. População: conjunto de indivíduos, ou itens, com pelo menos uma característica em comum. Também será denotada por população objetivo, que é sobre a qual desejamos

Leia mais

Universidade Federal Fluminense

Universidade Federal Fluminense Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 9: Intervalo de Confiança. 1. Um pesquisador está estudando a resistência de um determinado

Leia mais

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações.

Análise descritiva de Dados. a) Média: (ou média aritmética) é representada por x e é dada soma das observações, divida pelo número de observações. Análise descritiva de Dados 4. Medidas resumos para variáveis quantitativas 4.1. Medidas de Posição: Considere uma amostra com n observações: x 1, x,..., x n. a) Média: (ou média aritmética) é representada

Leia mais

ESCOLA SECUNDÁRIA MANUEL DA FONSECA, SANTIAGO DO CACÉM GRUPO DISCIPLINAR: 500 Matemática Aplicada às Ciências Sociais

ESCOLA SECUNDÁRIA MANUEL DA FONSECA, SANTIAGO DO CACÉM GRUPO DISCIPLINAR: 500 Matemática Aplicada às Ciências Sociais ANO: 11º ANO LECTIVO : 008/009 p.1/7 CONTEÚDOS MODELOS MATEMÁTICOS COMPETÊNCIAS A DESENVOLVER - Compreender a importância dos modelos matemáticos na resolução de problemas de problemas concretos. Nº. AULAS

Leia mais

ESTATÍSTICA. aula 1. Insper Ibmec São Paulo. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA. aula 1. Insper Ibmec São Paulo. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA aula 1 Prof. Dr. Marco Antonio Leonel Caetano Insper Ibmec São Paulo ESTATÍSTICA COISAS DO ESTADO ESTATÍSTICA: - Apresentação e Análise de dados - Tomadas de Decisões baseadas em análises -

Leia mais

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56

'LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU *OREDOGR(VWDGRGR56 LVWULEXLomR(VWDWtVWLFDGRV9DORUHV([WUHPRVGH5DGLDomR6RODU OREDOGR(VWDGRGR56 6X]DQH5DQ]DQ 6LPRQH0&HUH]HU&ODRGRPLU$0DUWLQD]]R Universidade Regional Integrada do Alto Uruguai e das Missões, Departamento de

Leia mais

Técnicas Multivariadas em Saúde. Comparações de Médias Multivariadas. Métodos Multivariados em Saúde - 2015. Roteiro. Testes de Significância

Técnicas Multivariadas em Saúde. Comparações de Médias Multivariadas. Métodos Multivariados em Saúde - 2015. Roteiro. Testes de Significância Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de

Leia mais

Estatística e Probabilidade

Estatística e Probabilidade Correlação Estatística e Probabilidade Uma correlação é uma relação entre duas variáveis. Os dados podem ser representados por pares ordenados (x,y), onde x é a variável independente ou variável explanatória

Leia mais

Descobrimos que os testes 1, 2 e 7 foram os mais úteis para avaliação da estabilidade do gráfico Xbar na carta I:

Descobrimos que os testes 1, 2 e 7 foram os mais úteis para avaliação da estabilidade do gráfico Xbar na carta I: Este artigo é parte de uma série de artigos que explicam a pesquisa conduzida pelos estatísticos do Minitab para desenvolver os métodos e verificações de dados usados no Assistente no Software Estatístico

Leia mais

Avaliando o que foi Aprendido

Avaliando o que foi Aprendido Avaliando o que foi Aprendido Treinamento, teste, validação Predição da performance: Limites de confiança Holdout, cross-validation, bootstrap Comparando algoritmos: o teste-t Predecindo probabilidades:função

Leia mais

TÉCNICAS DE ANÁLISE DE DADOS

TÉCNICAS DE ANÁLISE DE DADOS observação = previsível + aleatória aleatória obedece algum modelo de probabilidade ferramenta: análise de variância identificar fatores, controláveis, que expliquem o fenômeno ou alterem a característica

Leia mais

http://www.de.ufpb.br/~luiz/

http://www.de.ufpb.br/~luiz/ UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ Vimos que é possível sintetizar os dados sob a forma de distribuições de frequências

Leia mais

CAP4: Controle Estatístico do Processo (CEP)

CAP4: Controle Estatístico do Processo (CEP) CAP4: Controle Estatístico do Processo (CEP) O principal objetivo do CEP é detectar rapidamente a ocorrência de causas evitáveis que produzam defeitos nas unidades produzidas pelo processo, de modo que

Leia mais

Medidas de Tendência Central

Medidas de Tendência Central Medidas de Tendência Central Generalidades Estatística Descritiva: Resumo ou descrição das características importantes de um conjunto conhecido de dados populacionais Inferência Estatística: Generalizações

Leia mais

Análise Exploratória de Dados

Análise Exploratória de Dados Análise Exploratória de Dados Profª Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Programa de Pós-graduação em Saúde Coletiva email: alcione.miranda@gmail.com Introdução O primeiro passo

Leia mais

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências

Probabilidade. Renata Souza. Introdução. Tabelas Estatísticas. População, Amostra e Variáveis. Gráficos e Distribuição de Freqüências Probabilidade Introdução Tabelas Estatísticas População, Amostra e Variáveis Gráficos e Distribuição de Freqüências Renata Souza Conceitos Antigos de Estatística stica a) Simples contagem aritmética Ex.:

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses

Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán. Teste de Hipóteses Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

Variabilidade do processo

Variabilidade do processo Variabilidade do processo Em todo processo é natural encontrar certa quantidade de variabilidade. Processo sob controle estatístico: variabilidade natural por causas aleatórias Processo fora de controle:

Leia mais

Controle estatístico, manutenção e confiabilidade de processos. Profa. Rejane Tubino

Controle estatístico, manutenção e confiabilidade de processos. Profa. Rejane Tubino Controle estatístico, manutenção e confiabilidade de processos Profa. Rejane Tubino Cartas de controle- CEP Aplicação: quando se necessitar verificar quanto de variabilidade do processo é devido à variação

Leia mais

ANÁLISE DE DADOS ESTATÍSTICOS COM O MICROSOFT OFFICE EXCEL 2007

ANÁLISE DE DADOS ESTATÍSTICOS COM O MICROSOFT OFFICE EXCEL 2007 ANÁLISE DE DADOS ESTATÍSTICOS COM O MICROSOFT OFFICE EXCEL 2007 2 Professor Claodomir Antonio Martinazzo Sumário 1 Introdução... 03 2 Instalação da ferramenta Análise de Dados... 04 3 Estatística Descritiva...

Leia mais

Aula 5 Distribuição amostral da média

Aula 5 Distribuição amostral da média Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento

Leia mais

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal

CAP4: Distribuições Contínuas Parte 1 Distribuição Normal CAP4: Distribuições Contínuas Parte 1 Distribuição Normal Quando a variável sendo medida é expressa em uma escala contínua, sua distribuição de probabilidade é chamada distribuição contínua. Exemplo 4.1

Leia mais

Noções de Pesquisa e Amostragem. André C. R. Martins

Noções de Pesquisa e Amostragem. André C. R. Martins Noções de Pesquisa e Amostragem André C. R. Martins 1 Bibliografia Silva, N. N., Amostragem probabilística, EDUSP. Freedman, D., Pisani, R. e Purves, R., Statistics, Norton. Tamhane, A. C., Dunlop, D.

Leia mais

Intervalo de Confiança. Prof. Herondino S. F.

Intervalo de Confiança. Prof. Herondino S. F. Intervalo de Confiança Prof. Herondino S. F. Grau de Confiança Qual a temperatura média do corpo humano? A temperatura média do corpo humano é realmente 37 C. Na tabela abaixo, tem-se a temperatura de

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Aula 5 Estatística stica para Metrologia Aula 5 Variáveis Contínuas Uniforme Exponencial Normal Lognormal Mônica Barros, D.Sc. Maio de 008 1 Distribuição Uniforme A probabilidade de ocorrência em dois

Leia mais

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 2 Distribuições de Frequências e Representação Gráfica UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Calcular

Leia mais

Regra do Evento Raro p/ Inferência Estatística:

Regra do Evento Raro p/ Inferência Estatística: Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento

Leia mais

Relações entre Variáveis Nominais: O Teste do Qui-Quadrado (χ 2 )

Relações entre Variáveis Nominais: O Teste do Qui-Quadrado (χ 2 ) Relações entre Variáveis Nominais: O Teste do Qui-Quadrado (χ ) Quando queremos medir a relação entre duas variáveis nominais, por exemplo, o sexo de uma pessoa (masculino/feminino) e a sua preferência

Leia mais

4 Gráficos de controle

4 Gráficos de controle 4 Gráficos de controle O gráfico de controle é uma ferramenta poderosa do Controle Estatístico de Processo (CEP) para examinar a variabilidade em dados orientados no tempo. O CEP é composto por um conjunto

Leia mais

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello

Aula 04 Método de Monte Carlo aplicado a análise de incertezas. Aula 04 Prof. Valner Brusamarello Aula 04 Método de Monte Carlo aplicado a análise de incertezas Aula 04 Prof. Valner Brusamarello Incerteza - GUM O Guia para a Expressão da Incerteza de Medição (GUM) estabelece regras gerais para avaliar

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O que é Estatística? Coleção de métodos

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

ESTATÍSTICA BÁSICA COM ANÁLISE E TRATAMENTO ESTATÍSTICO DE DADOS EM SPSS

ESTATÍSTICA BÁSICA COM ANÁLISE E TRATAMENTO ESTATÍSTICO DE DADOS EM SPSS ESTATÍSTICA BÁSICA COM ANÁLISE E TRATAMENTO ESTATÍSTICO DE DADOS EM SPSS Escola de Enfermagem UFRGS Julho/2007 Juscelino Zemiacki Estatístico Programa Básico: AULA 1 Noções Básicas de Estatística AULA

Leia mais

Testes (Não) Paramétricos

Testes (Não) Paramétricos Armando B. Mendes, DM, UAç 09--006 ANOVA: Objectivos Verificar as condições de aplicabilidade de testes de comparação de médias; Utilizar ANOVA a um factor, a dois factores e mais de dois factores e interpretar

Leia mais

Histórico. Controle Estatístico de Processo

Histórico. Controle Estatístico de Processo Histórico O CEP se destacou como ferramenta poderosa após ter sido intensamente utilizada pelo Japão após a Segunda Guerra Mundial. Após a recuperação deste país, através da obtenção de processos produtivos

Leia mais

CONTROLE ESTATÍSTICO DA QUALIDADE

CONTROLE ESTATÍSTICO DA QUALIDADE CONTROLE ESTATÍSTICO DA QUALIDADE Prof., PhD OBJETIVO DO CEP A idéia principal do Controle Estatístico de Processo (CEP) é que melhores processos de produção, ou seja, com menos variabilidade, propiciam

Leia mais

DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE

DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE DESENVOLVIMENTO DE UM SOFTWARE NA LINGUAGEM R PARA CÁLCULO DE TAMANHOS DE AMOSTRAS NA ÁREA DE SAÚDE Mariane Alves Gomes da Silva Eliana Zandonade 1. INTRODUÇÃO Um aspecto fundamental de um levantamento

Leia mais

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições.

Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Aula 2: Variáveis Aleatórias Discretas e Contínuas e suas Principais Distribuições. Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 14 de Março de 2012 Tipos

Leia mais

Estatística: Conceitos e Organização de Dados. Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos

Estatística: Conceitos e Organização de Dados. Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos Estatística: Conceitos e Organização de Dados Introdução Conceitos Método Estatístico Dados Estatísticos Tabulação de Dados Gráficos Introdução O que é Estatística? É a parte da matemática aplicada que

Leia mais

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior

Estatística Aplicada. Gestão de TI. Evanivaldo Castro Silva Júnior Gestão de TI Evanivaldo Castro Silva Júnior Porque estudar Estatística em um curso de Gestão de TI? TI trabalha com dados Geralmente grandes bases de dados Com grande variabilidade Difícil manipulação,

Leia mais

Apresentação de Dados em Tabelas e Gráficos

Apresentação de Dados em Tabelas e Gráficos Apresentação de Dados em Tabelas e Gráficos Os dados devem ser apresentados em tabelas construídas de acordo com as normas técnicas ditadas pela Fundação Instituto Brasileiro de Geografia e Estatística

Leia mais

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO

SÉRIE: Estatística Básica Texto 4: TESTES DE HIPÓTESES SUMÁRIO SUMÁRIO. INTRODUÇÃO... 3.. GENERALIDADES... 3.. METODOLOGIA DO TESTE DE HIPÓTESES... 3.3. AS HIPÓTESES... 3.4. A ESCOLHA DO TESTE ESTATÍSTICO... 4.5. CONCEITOS ADICIONAIS DO TESTE DE HIPÓTESES... 4.6.

Leia mais

O modelo ANOVA a dois factores, hierarquizados

O modelo ANOVA a dois factores, hierarquizados O modelo ANOVA a dois factores, hierarquizados Juntando os pressupostos necessários à inferência, Modelo ANOVA a dois factores, hierarquizados Seja A o Factor dominante e B o Factor subordinado. Existem

Leia mais