f = 1MHz ε rms = 10V C = 220pF V Lrms = 39,1V V Crms = 30,0V V Rrms = 4,15V

Tamanho: px
Começar a partir da página:

Download "f = 1MHz ε rms = 10V C = 220pF V Lrms = 39,1V V Crms = 30,0V V Rrms = 4,15V"

Transcrição

1 1 Circuito RLC série Quando adicionamos uma resistência ao circuito LC série, como mostrado no diagrama ao lado, o comportamento do circuito é similar ao comportamento do circuito LC sem a resistência, mas existem algumas variações. Com exemplo, para verificar as diferenças, usaremos os mesmo parâmetros utilizados no circuito LC discutido anteriormente, logicamente acrescido do resistor: f 1MHz ε rms 10V L 150µH C 220pF R 100Ω Com o acréscimo do resistor, medimos agora: V Lrms 39,1V V Crms 30,0V V Rrms 4,15V Isto faz sentido? Sabemos como lidar com a diferença entre V Lrms e V Crms, que é aproximadamente 9V, mas agora temos V Rrms com aproximadamente 4 volts. Como podemos converter uma voltagem de alimentação de 10V em uma voltagem de 13V? Ou estamos esquecendo alguma coisa? Como vimos anteriormente, temos que levar em consideração a diferença de fase. Entre a voltagem e a corrente em cada um do s três elementos do circuito. O diagrama de vetores à direita ilustra este conceito. Uma vez que temos um circuito série, a corrente é a mesma em todo o circuito e, portanto a estamos usando como referência (fase 0 ), mostrada em vermelho no diagrama. A voltagem no resistor é V R, em fase com a corrente e mostrada em verde. O vetor azul V L e está a +90, enquanto que o vetor dourado representa V C, que está a -90. Uma vez que V L e V C são diametralmente opostos, a voltagem reativa total é V L -V C. É este vetor diferença eu está somado com V R para encontrar V T mostrado em ciam no diagrama, e que é igual a ε Já sabemos que ε rms 10V. Agora podemos ver que também ε rms é um vetor soma de (V L -V C ) e V R. Por causa da presença de R, o ângulo de fase entre V T e I será arctan((v L -V C )/V R ), e poderá variar de -90 até +90.

2 2 Como sempre, o cálculo da voltagem e da corrente neste circuito será baseado na aplicação da Lei de Ohm. As expressões básicas são: Uma vez que temos um circuito série, o valor de I em cada expressão é o mesmo, ou seja, II L I C I R e será o valor de referencia para os cálculos. Precisarem também do valor de ω (2πf) para determina X L e X C. Pra f1mhz, ω 2πf 6, ,3 e completando nossos cálculos temos: ,3 x 0, ,4778Ω ,43156Ω ,3 x 220 x 10 ( ) + % (942, ,43156) % 240,79297 Ω &'( &'( , ,529452)* &'( &'( 0, , ,1405 &'( &'( 0, , ,04371 &'( &'( 0, , ,-( ) +. (39, ,04371) + 4, % 10 A voltagem do gerador obtida é exatamente 10V que é o valor inicialmente especificado. Portanto nossos cálculos conferem e nossos resultados são válidos. Um resultado da adição de uma resistência ao circuito aumentar sua impedância e, portanto reduzir a corrente através do circuito. Como isso afeta a na ressonância, quando X L X C?i

3 3 Efeito de R na ressonância Nas frequências muito baixas, o Capacitor C ser comportará como um circuito aberto e virtualmente nenhuma corrente atravessará o circuito. Nas frequências altas o indutor L se comportará como um circuito aberto e nenhuma corrente atravessará o circuito. Entretanto, nas frequências intermediárias, X C e X L terão valores moderados e a diferença entre eles serão pequenas. Na ressonância a diferença será zero e apenas R irá limitar a corrente fluindo no circuito. O gráfico à direitas mostra os valores os valores normalizados da corrente que atravessa um circuito RLC num intervalo de frequências angulares que vai de 1% da frequência de ressonância até 100 vezes a frequência de ressonância. Fora deste intervalo, como pode ser extrapolado do gráfico, nenhuma corrente significante atravessará o circuito. Dentro deste range, a corrente dependerá primariamente do valor de R. Para obter ω 0 igual a 1, temporariamente ajustamos os valores de L para 1 henry, C para 1 faraday e usamos a frequência em rad/s. Também assumimos um valor normalizado de ε1 volt. Desta forma podemos obter facilmente os valores da corrente apenas ajustando o valor de R. (Estes valores são usados apenas para obter um gráfico normalizado, uma vez que temos o gráfico, podemos mudar os valores dos componentes e o teremos ainda o mesmo comportamento do gráfico ao redor da frequência de ressonância, desde que a razão L/C não se altere. Adiante veremos o que acontece quando esta razão se altera.) Em um circuito completamente normalizado, teremos R1Ω. Assim teremos uma corrente de 1 ampere fluindo no circuito na ressonância, como indicado pela curva verde do gráfico. Da mesma forma, se ajustarmos o valor de R para 2Ω, a corrente na ressonância será 0,5A, como mostrado na curva azul. As outras curvas mostram o que acontece se reduzimos o valor de R para 0,5Ω (curva amarela) e para 0,1Ω (curva vermelha).

4 4 Note que para baixos valores de R a corrente na ressonância atinge valores de pico altos, mas cai rapidamente quando a frequência muda. Para Valores maiores de R, a curva é mais achatada e temos correntes de ressonância menores. Este é a relação comportamental entre a largura de banda (intervalo de frequências para o qual a corrente diminui para 0,707 do seu valor máximo) e corrente máxima e o valor de R é crítico para o controle deste fator. Mudando a relação L/C Podemos mudar o valor da relação L/C sem mudar o valor da frequência de ressonância. Para tanto devemos ter certeza de que o produto LC não se altere. Neste caso, mudamos o valor das duas reatâncias pra uma dada frequência qualquer se mudar a frequência de ressonância. Por exemplo, se temos L1H e C1F, LC1 e L/C1. Entretanto se L2H e C0.5F, ainda teremos LC1, mas agora L/C4. Ou, se L0,5H e C2F, L/C0,25. Mudando L e C dessa maneira, mudamos os valores de X L e X C na ressonância e ao redor dela, sem mudar a frequência de ressonância. Desta forma controlamos a impedância total do circuito nas proximidades da frequência de ressonância e damos ao resistor R, maior ou menor controle sobre a corrente na ressonância. O resultado é a mudança no intervalo de frequências em que o circuito irá conduzir quantidades significantes de corrente. Os três gráficos a seguir ilustram isto: L/C4 L/C1 L/C0,25 Quando fazemos os gráficos desta maneira, torna-se claro que quando L/C cresce, limitamos o circuito a permitir passagem de corrente numa banda num intervalo de frequências cada vez menor (largura de banda cada vez menor). Por outro lado, se reduzimos o valor de L/C alargamos a banda que permite passagem de corrente significativa no circuito. Isto é muito importante quando lidamos com este tipo de circuito trabalhando como filtros, e especialmente em circuitos sintonizados.

5 5 Circuito RLC paralelo O diagrama ao lado mostra três componentes conectados a um gerador, em paralelo. Mantendo consistência com nossos exemplos anteriores, usaremos neste exemplo os mesmos valores dos componentes, exceto para R.: ε rms 10V f 1MHz L 150µH C 220pF R 100Ω (ω ,3rad/s) (X L 942,4778Ω) (X C 723,43156Ω) E de acordo com a Lei de Ohm : &'( &'( 10 0, ,61033 ma 942,4778 &'( &'( 10 0, ,823008mA 723, &'( &'( 10 0,01 10mA 100 Se medirmos a corrente fornecida pela fonte encontraremos I mA, apenas 0,5mA a mais do que a corrente que atravessa o resistor, I R. Temos agora 10mA de corrente resistiva e aproximadamente 3,2mA de corrente reativa e a corrente total medida é apenas 10,5mA. Já estava na hora de esperarmos por isso, pois estamos familiarizados com as razões para tal aparente discrepância. Mesmo assim vamos completar o exercício e estudar o circuito com um pouco mais de detalhes. a a Como já vimos, o diagrama de vetores ao lado conta-nos estória. Como temos um circuito paralelo, a voltagem V (ε) é mesma sobre todos os componentes do circuito Agora é a corrente que possui fases e amplitudes diferentes em cada componente. Como a voltagem sobre os componentes é a mesma, usaremo-la como referência (ângulo de fase 0 ).A corrente sobre o resistor está em fase com a voltagem, portanto I R aparece também com fase 0. A corrente no indutor está atrasada em relação à voltagem e aparece com fase -90. A corrente no capacitor se adianta em relação à voltagem, e aparece com fase +90. Como I C é maior do que I L, a corrente reativa resultante é capacitiva, co fase +90.

6 6 Agora, a corrente total I T (I) é o vetor soma da corrente reativa com a corrente resistiva. Uma vez que R é significativamente maior do que (I C I L ), a impedância total Z do circuito é preponderantemente resistiva e o vetor representativo de I tem um pequeno ângulo de fase, como mostrado na figura. Como sempre, com os vetores acima temos uma clara ideia de como correntes atravessam cada componente do circuito, quais são as relações entre elas e com a corrente total fornecida pela fonte. De fato poderíamos desenhar os vetores em escala com precisão suficiente para realizarmos os cálculos e determinar suas magnitudes e ângulos de fase, entretanto, pela limitação em precisão destas medidas é sempre melhor calcular algebricamente e comparar os resultados finais com os valores do circuito real. Continuemos então com as relações básicas:, onde I X é a reatância total e φ é o ângulo de fase da corrente I. Substituindo os valores numéricos que temos, obtemos: (13, ,61033) ,503395)* 13, , ,3 10 Estes valores conferem com os valores medidos para a corrente fornecida pela fonte e também com o diagrama de vetores mostrado anteriormente. Quando X L X C Quando um circuito deste tipo opera na ressonância, temos que X L X C, o que implica que I L I C. Portanto, I C -I L 0, e a corrente fornecida pela fonte é I R. Este é de fato o caso. Na ressonância, uma corrente circula por L e C sem deixar estes dois componentes, e a fonte somente precisa fornecer corrente para compensar as perdas. Neste caso, R representa as perdas energéticas dentro do circuito e é o único componente que drena corrente da fonte. A impedância efetiva do circuito é nada mais do que R e a corrente fornecida pela fonte está em fase com a voltagem.

Corrente alternada. Prof. Fábio de Oliveira Borges

Corrente alternada. Prof. Fábio de Oliveira Borges Corrente alternada Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php

Leia mais

FIS1053 Projeto de Apoio Eletromagnetismo 23-Maio Lista de Problemas 12 -Circuito RL, LC Corrente Alternada.

FIS1053 Projeto de Apoio Eletromagnetismo 23-Maio Lista de Problemas 12 -Circuito RL, LC Corrente Alternada. FIS53 Projeto de Apoio Eletromagnetismo 23-Maio-2014. Lista de Problemas 12 -Circuito RL, LC Corrente Alternada. QUESTÃO 1: Considere o circuito abaixo onde C é um capacitor de pf, L um indutor de μh,

Leia mais

Aquino, Josué Alexandre.

Aquino, Josué Alexandre. Aquino, Josué Alexandre. A657e Eletrotécnica para engenharia de produção : análise de circuitos : corrente e tensão alternada / Josué Alexandre Aquino. Varginha, 2015. 53 slides; il. Sistema requerido:

Leia mais

Resistores e CA. sen =. logo

Resistores e CA. sen =. logo Resistores e CA Quando aplicamos uma voltagem CA em um resistor, como mostrado na figura, uma corrente irá fluir através do resistor. Certo, mas quanta corrente irá atravessar o resistor. Pode a Lei de

Leia mais

1299 Circuitos elétricos acoplados

1299 Circuitos elétricos acoplados 1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP Tópicos Relacionados Ressonância, fator de qualidade, fator de dissipação, largura de banda, acoplamento

Leia mais

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua Eletricidade II Aula 1 Resolução de circuitos série de corrente contínua Livro ELETRICIDADE II Avaliações Provas - 100 pontos lesp-ifmg.webnode.com 2 Conexão de um circuito série Um circuito série contém

Leia mais

2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω?

2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω? Professor: Caio Marcelo de Miranda Turma: T11 Nome: Data: 05/10/2016 COMPONENTES PASSIVOS E CIRCUITOS RL, RC E RLC EM CORRENTE ALTERNADA graus. Observação: Quando não informado, considere o ângulo inicial

Leia mais

Indutância Elétrica. Professor João Luiz Cesarino Ferreira

Indutância Elétrica. Professor João Luiz Cesarino Ferreira Indutância Elétrica Um indutor é essencialmente um condutor enrolado em forma helicoidal. Pode ser enrolado de forma auto-sustentada ou sobre um determinado núcleo. Para lembrar sua constituição, o símbolo

Leia mais

26/06/17. Ondas e Linhas

26/06/17. Ondas e Linhas 26/06/17 1 Ressonadores em Linhas de Transmissão (pags 272 a 284 do Pozar) Circuitos ressonantes com elementos de parâmetros concentrados Ressonadores com linhas de transmissão em curto Ressonadores com

Leia mais

Unidade III. 2. Circuitos mistos: RL, RC, RLC. Ressonância. Circuitos série-paralelo. Circuitos CA

Unidade III. 2. Circuitos mistos: RL, RC, RLC. Ressonância. Circuitos série-paralelo. Circuitos CA Unidade III 2. Circuitos mistos: RL, RC, RLC. Ressonância. Circuitos série-paralelo. Circuito RL Circuitos RL são formados por resistências e indutâncias, em série ou paralelo. São usados para representar

Leia mais

Experimento 9 Circuitos RL em corrente alternada

Experimento 9 Circuitos RL em corrente alternada 1. OBJETIVO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO

Leia mais

Física Teórica II Lei de Faraday-Lenz e aplicações

Física Teórica II Lei de Faraday-Lenz e aplicações Física Teórica II Lei de Faraday-Lenz e aplicações 6ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA: 1) Uma haste de 1,2 kg que tem um comprimento de 1,0 m e uma resistência de 5,0 Ω, desce por um par

Leia mais

FILTRO PASSA ALTAS (FPA) FILTRO PASSA BAIXAS (FPB)

FILTRO PASSA ALTAS (FPA) FILTRO PASSA BAIXAS (FPB) FILTRO PASSA ALTAS (FPA) FILTRO PASSA BAIXAS (FPB) A figura a seguir mostra dois circuitos RC que formam respectivamente um filtro passa altas (FPA) e um filtro passa baixas (FPB). Observa-se que a caracterização

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas

Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO Vimos que a dissipação de energia num circuito nos fornece uma condição de amortecimento. Porém, se tivermos uma tensão externa que sempre forneça energia ao sistema, de modo que compense

Leia mais

Experimento 7 Circuitos RC em corrente alternada

Experimento 7 Circuitos RC em corrente alternada 1. OBJETIVO Experimento 7 Circuitos RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação de corrente alternada.. 2. MATERIAL

Leia mais

Experimento 10 Circuitos RLC em corrente alternada: ressonância

Experimento 10 Circuitos RLC em corrente alternada: ressonância Experimento 10 Circuitos RLC em corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC em presença de uma fonte de alimentação de corrente alternada.

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 6

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 6 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 6 Steinmetz Tesla Hertz Westinghouse Conteúdo 6 - Análise de Regime Permanente Senoidal...1 6.1 - Números complexos...1

Leia mais

7. LABORATÓRIO 7 - RESSONÂNCIA

7. LABORATÓRIO 7 - RESSONÂNCIA 7-1 7. LABORATÓRIO 7 - RESSONÂNCIA 7.1 OBJETIVOS Após completar essas atividades de aprendizado, você deverá ser capaz de: (a) Determinar a freqüência ressonante em série a partir das medições. (b) Determinar

Leia mais

Circuitos Elétricos. Dispositivos Básicos e os Fasores. Prof. Dr. Eduardo Giometti Bertogna

Circuitos Elétricos. Dispositivos Básicos e os Fasores. Prof. Dr. Eduardo Giometti Bertogna Circuitos Elétricos Dispositivos Básicos e os Fasores Prof. Dr. Eduardo Giometti Bertogna Fasores Método válido porém longo é somar algebricamente as ordenadas em cada ponto ao longo da abscissa. Fasores

Leia mais

Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada

Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada Experimento 7 Circuitos RC e RL em corrente alternada 1. OBJETIO Parte A: Circuito RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação

Leia mais

Experimento 8 Circuitos RC e filtros de freqüência

Experimento 8 Circuitos RC e filtros de freqüência Experimento 8 Circuitos C e filtros de freqüência OBJETIO O objetivo desta aula é ver como filtros de freqüência utilizados em eletrônica podem ser construídos a partir de um circuito C Os filtros elétricos

Leia mais

Física Experimental III

Física Experimental III Física Experimental III http://www.if.ufrj.br/~fisexp3 Unidade 6: Circuitos simples em corrente alternada: circuitos indutivos A maneira de apresentar o modelo elétrico que vamos nos basear para estudar

Leia mais

IMPEDÂNCIA Impedância

IMPEDÂNCIA Impedância IMPEDÂNCIA Em um circuito real a resistência elétrica, que é propriedade física dos materiais que o constituem, está sempre presente. Ela pode ser minimizada, mas não eliminada. Portanto, circuitos indutivos

Leia mais

Circuitos Elétricos. Dispositivos Básicos e os Fasores. Prof. Me. Luciane Agnoletti dos Santos Pedotti

Circuitos Elétricos. Dispositivos Básicos e os Fasores. Prof. Me. Luciane Agnoletti dos Santos Pedotti Circuitos Elétricos Dispositivos Básicos e os Fasores Prof. Me. Luciane Agnoletti dos Santos Pedotti Fasores Método válido porém longo é somar algebricamente as ordenadas em cada ponto ao longo da abscissa.

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges Exercícios Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Exercício 01 01)

Leia mais

Experimento 9 Circuitos RLC em série e em paralelo em corrente alternada: ressonância e filtros passa-banda e rejeita-banda

Experimento 9 Circuitos RLC em série e em paralelo em corrente alternada: ressonância e filtros passa-banda e rejeita-banda Experimento 9 Circuitos C em série e em paralelo em corrente alternada: ressonância e filtros passa-banda e reeita-banda. OBJETIO Parte A:Circuitos C em série Circuitos contendo indutores e capacitores

Leia mais

Corrente Alternada. Circuitos Monofásicos (Parte 2)

Corrente Alternada. Circuitos Monofásicos (Parte 2) Corrente Alternada. Circuitos Monofásicos (Parte 2) SUMÁRIO Sinais Senoidais Circuitos CA Resistivos Circuitos CA Indutivos Circuitos CA Capacitivos Circuitos RLC GERADOR TRIFÁSICO Gerador Monofásico GRÁFICO

Leia mais

Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti

Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Resposta em Frequência O que será estudado? Decibel Circuitos Ressonantes Filtros Ressonância Circuito Ressonante (ou sintonizado) Combinação

Leia mais

Circuito RLC série FAP

Circuito RLC série FAP Circuito RLC série Vamos considerar um circuito com um indutor puro e um capacitor puro ligados em série, em que o capacitor está carregado no instante t. Como inicialmente o capacitor está com a carga

Leia mais

2 Ressonância e factor de qualidade

2 Ressonância e factor de qualidade Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia Departamento de Física Electromagnetismo e Física Moderna 2 Ressonância e factor de qualidade Os circuitos RLC Observar a ressonância em

Leia mais

I φ= V φ R. Fazendo a mesma análise para um circuito indutivo, se aplicarmos uma tensão v(t) = V m sen(ωt + I (φ 90)= V φ X L

I φ= V φ R. Fazendo a mesma análise para um circuito indutivo, se aplicarmos uma tensão v(t) = V m sen(ωt + I (φ 90)= V φ X L Impedância Em um circuito de corrente alternada puramente resistivo, vimos que, se uma tensão v(t) = V m sen(ωt + ), a corrente que fluirá no resistor será i(t) = I m sen(ωt + ), onde I m = V m /R. Representando

Leia mais

Experimento 4 Indutores e circuitos RL com onda quadrada

Experimento 4 Indutores e circuitos RL com onda quadrada Experimento 4 Indutores e circuitos RL com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar o comportamento de indutores associados a resistores em circuitos alimentados com onda quadrada. 2.

Leia mais

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente Experimento 0 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de alimentação

Leia mais

Parte A: Circuitos RC com corrente alternada

Parte A: Circuitos RC com corrente alternada Circuitos RC e RL com Corrente Alternada 6 Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2 µf. 6.2 Introdução

Leia mais

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE 1) CORRENTE ALTERNADA: é gerada pelo movimento rotacional de um condutor ou um conjunto de condutores no interior de um campo magnético (B)

Leia mais

Lista de exercícios ENG04042 Tópicos 3.1 a 5.3. a corrente se atrasa em relação a v.

Lista de exercícios ENG04042 Tópicos 3.1 a 5.3. a corrente se atrasa em relação a v. 1) Um indutor de 10 mh tem uma corrente, i = 5cos(2000 t ), obtenha a tensão vl. V = 100 sen(2000 t ) V L 2) Um circuito série com R=10 Ω e L=20 mh, tem uma corrente de i = 2s en(500 t ). Calcule a tensão

Leia mais

Oscilações Eletromagnéticas e Corrente Alternada. Curso de Física Geral F328 1 o semestre, 2008

Oscilações Eletromagnéticas e Corrente Alternada. Curso de Física Geral F328 1 o semestre, 2008 Oscilações Eletromagnéticas e orrente Alternada urso de Física Geral F38 o semestre, 008 Oscilações Introdução os dois tipos de circuito estudados até agora ( e ), vimos que a carga, a corrente e a diferença

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 9

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 9 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 9 Steinmetz Tesla Hertz Westinghouse Conteúdo 9 - Análise de Regime Permanente Senoidal...1 9.1 - Números complexos...1 9.2 -

Leia mais

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente Experimento 10 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de

Leia mais

Eletricidade Aula 6. Corrente Alternada

Eletricidade Aula 6. Corrente Alternada Eletricidade Aula 6 Corrente Alternada Comparação entre Tensão Contínua e Alternada Vídeo 7 Característica da tensão contínua A tensão contínua medida em qualquer ponto do circuito não muda conforme o

Leia mais

T7 - Oscilações forçadas. sen (3)

T7 - Oscilações forçadas. sen (3) Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T7 FÍSICA EXPERIMENTAL I - 2007/08 OSCILAÇÕES FORÇADAS NUM CIRCUITO RLC 1. Objectivo Estudar um circuito RLC série ao qual é aplicada

Leia mais

Fundamentos de Eletrônica

Fundamentos de Eletrônica 6872 - Fundamentos de Eletrônica Lei de Ohm Última Aula Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação Associação de Resistores Análise

Leia mais

Homepage:

Homepage: Circuitos Elétricos 2 Circuitos Elétricos Aplicados Prof. Dr.-Ing. João Paulo C. Lustosa da Costa (UnB) Departamento de Engenharia Elétrica (ENE) Caixa Postal 4386 CEP 70.919-970, Brasília - DF Homepage:

Leia mais

POTÊNCIA EM CIRCUITOS SENOIDAIS.

POTÊNCIA EM CIRCUITOS SENOIDAIS. POTÊNCIA EM CIRCUITOS SENOIDAIS. EXERCÍCIO 1: Um transformador com capacidade para fornecer a potência aparente máxima de 25kVA está alimentando uma carga, constituída pelo motor M1 que consome 4.8kW com

Leia mais

COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENSINO DA AERONÁUTICA CENTRO DE INSTRUÇÃO E ADAPTAÇÃO DA AERONÁUTICA CONCURSO DE ADMISSÃO AO EAOEAR 2002 05 No circuito mostrado na figura abaixo, determine a resistência

Leia mais

Circuitos RLC com corrente alternada: ressonância e filtros passa-banda e rejeita-banda

Circuitos RLC com corrente alternada: ressonância e filtros passa-banda e rejeita-banda Circuitos RLC com corrente alternada: ressonância e filtros passa-banda e rejeita-banda 8 8.1 Material Gerador de funções; osciloscópio; multímetros digitais (de mão e de bancada); resistor de 1 kω; capacitor

Leia mais

Circuitos resistivos alimentados com onda senoidal. Indutância mútua.

Circuitos resistivos alimentados com onda senoidal. Indutância mútua. Capítulo 6 Circuitos resistivos alimentados com onda senoidal. Indutância mútua. 6.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 6.2 Introdução

Leia mais

PUC-RIO CB-CTC. P3 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P3 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma: P3 1/6/13 PUC-IO CB-CTC P3 DE ELETOMAGNETISMO 1.6.13 quarta-feira Nome : Assinatura: Matrícula: Turma: NÃO SEÃO ACEITAS ESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas

Leia mais

ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA

ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA Eletricidade Aplicada I 12ª Aula Corrente Alternada Corrente Alternada: Introdução A expressão em função do tempo é: v(t)=v máx sen(wt+a). V máx é

Leia mais

Circuitos resistivos alimentados com onda senoidal

Circuitos resistivos alimentados com onda senoidal Circuitos resistivos alimentados com onda senoidal 5 5.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 5.2 Introdução Nas aulas anteriores estudamos

Leia mais

Fundamentos de Eletrônica

Fundamentos de Eletrônica 6872 - Fundamentos de Eletrônica Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação 2014 Última Aula Lei de Ohm Associação de Resistores

Leia mais

ELETROTÉCNICA (ENE078)

ELETROTÉCNICA (ENE078) UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Civil ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mail: ricardo.henriques@ufjf.edu.br Aula Número: 20 Revisão da aula passada... Circuitos

Leia mais

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA EXPERIÊNCIA N o PEA50 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA RETIFICADORES NÃO CONTROLADOS DE DOIS CAMINHOS W. KAISER 0/009 1. OBJETIVOS Estudo do funcionamento e processo de comutação em retificadores

Leia mais

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série.

Se no terminal b do circuito for conectado um terceiro componente, como na figura abaixo, os resistores R 1 e R 2 não estarão mais em série. Circuitos em Série Um circuito consiste em um número qualquer de elementos unidos por seus terminais, com pelo menos um caminho fechado através do qual a carga possa fluir. Dois elementos de circuitos

Leia mais

Eletricidade Aula 09. Resistência, Indutância e Capacitância em Circuitos de Corrente Alternada

Eletricidade Aula 09. Resistência, Indutância e Capacitância em Circuitos de Corrente Alternada Eletricidade Aula 09 Resistência, Indutância e Capacitância em Circuitos de Corrente Alternada Tensão e corrente nos circuitos resistivos Em circuitos de corrente alternada em que só há resistores, como

Leia mais

Experimento 4 Indutores e circuitos RL com onda quadrada

Experimento 4 Indutores e circuitos RL com onda quadrada Experimento 4 Indutores e circuitos RL com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar o comportamento de indutores associados a resistores em circuitos alimentados com onda quadrada. 2.

Leia mais

Eletrotécnica Geral. Lista de Exercícios 1

Eletrotécnica Geral. Lista de Exercícios 1 ESCOL POLITÉCNIC D UNIVERSIDDE DE SÃO PULO PE - Departamento de Engenharia de Energia e utomação Elétricas Eletrotécnica Geral Lista de Exercícios 1 1. Circuitos em corrente contínua 2. Circuitos monofásicos

Leia mais

Lista de Exercícios P1. Entregar resolvida individualmente no dia da 1ª Prova. a) 25Hz b) 35MHz c) 1Hz d)25khz. a) 1/60s b) 0,01s c) 35ms d) 25µs

Lista de Exercícios P1. Entregar resolvida individualmente no dia da 1ª Prova. a) 25Hz b) 35MHz c) 1Hz d)25khz. a) 1/60s b) 0,01s c) 35ms d) 25µs 1 Universidade Tecnológica Federal do Paraná Campus Campo Mourão Engenharia Eletrônica LT34C - Circuitos Elétricos Prof. Dr. Eduardo G Bertogna Lista de Exercícios P1 Entregar resolvida individualmente

Leia mais

0.1 Introdução Conceitos básicos

0.1 Introdução Conceitos básicos Laboratório de Eletricidade S.J.Troise Exp. 0 - Laboratório de eletricidade 0.1 Introdução Conceitos básicos O modelo aceito modernamente para o átomo apresenta o aspecto de uma esfera central chamada

Leia mais

Índice. Dia 03 de fevereiro de Apresentação conversa com os alunos Dia 06 de fevereiro de Sinais Aperiódicos...

Índice. Dia 03 de fevereiro de Apresentação conversa com os alunos Dia 06 de fevereiro de Sinais Aperiódicos... Índice Dia 03 de fevereiro de 2014....3 Apresentação conversa com os alunos.... 3 Dia 06 de fevereiro de 2014....4 Sinais Aperiódicos.... 4 Dia 10 de fevereiro de 2014....5 - Corrente continua:... 5 -

Leia mais

Física Experimental III

Física Experimental III Física Experimental III Unidade 5: Experimentos simples em corrente alternada capacitores e circuitos http://www.if.ufrj.br/~fisexp3 agosto/26 omo já vimos na Unidade 3, Eq.(3.2), a equação caraterística

Leia mais

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA

PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA EXPERIÊNCIA 4 PEA2502 LABORATÓRIO DE ELETRÔNICA DE POTÊNCIA RETIFICADOR TRIFÁSICO EM PONTE CONTROLADO W. KAISER 02/2009 1. OBJETIVOS Estudo do funcionamento de uma ponte trifásica a tiristores controlada

Leia mais

Ficha Técnica 4 Introdução à Eletrónica

Ficha Técnica 4 Introdução à Eletrónica Ficha Técnica 4 Introdução à Eletrónica 7. Análise de circuitos em Corrente Alternada 7. Grandezas variáveis no tempo Nas fichas técnicas anteriores, os circuitos foram analisados considerando que a fonte

Leia mais

Agrupamento de Escolas da Senhora da Hora

Agrupamento de Escolas da Senhora da Hora Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Gestão de Equipamentos Informáticos Informação Prova da Disciplina de Física e Química - Módulo: 5 Circuitos eléctricos de corrente

Leia mais

Experiência 4 - Sinais Senoidais e Fasores

Experiência 4 - Sinais Senoidais e Fasores ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Edição 2017 Cinthia Itiki, Inés Pereyra, Marcelo Carreño Experiência

Leia mais

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 04 Correção de Fator de Potência

ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 04 Correção de Fator de Potência ELETROTÉCNICA ELM ROTEIRO DA AULA PRÁTICA 04 Correção de Fator de Potência NOME TURMA DATA 1. OBJETIVOS Compreender na prática os conceitos de potência aparente (S), potência ativa (P) e potência reativa

Leia mais

Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado.

Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado. Em um circuito DC, seja ele resistivo ou não, a corrente varia somente no instante em que o circuito é aberto ou fechado. Quando o circuito é puramente resistivo essas variações são instantâneas, porém

Leia mais

Aula-11 Corrente alternada

Aula-11 Corrente alternada Aula-11 orrente alternada urso de Física Geral F-38 1º semestre, 014 F38 1014 1 Oscilações forçadas ( com fem) As oscilações de um circuito não serão totalmente amortecidas se um dispositivo de fem externo

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Potência em CA Prof. Clóvis Antônio Petry. Florianópolis, agosto de 2007. Nesta aula Capítulo 19: Potência

Leia mais

Retificadores com tiristores

Retificadores com tiristores Retificadores com tiristores 5 O retificador controlado trifásico de meia onda Os retificadores trifásicos são alimentados pela rede de energia trifásica cujas tensões podem ser descritas pelas expressões

Leia mais

Reatância e Impedância

Reatância e Impedância Reatância e Impedância Evandro Bastos dos Santos 21 de Maio de 2017 1 Intodução Nessa aula veremos como é o comportamento dos principais dispositivos de um circuito em corrente alternada: Resistores, Indutores

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores Potência em CA Triângulo das Potências e Correção de Fator de Potência Prof. Clóvis Antônio Petry.

Leia mais

Circuitos Elétricos Ativos, análise via transformada de Laplace

Circuitos Elétricos Ativos, análise via transformada de Laplace Circuitos Elétricos Ativos, análise via transformada de Laplace Carlos Eduardo de Brito Novaes carlosnov@gmail.com 8 de maio de 0 Introdução Utilizando a transformada de Laplace, a modelagem dinâmica de

Leia mais

Lista de Exercícios 3 - Circuitos Elétricos II

Lista de Exercícios 3 - Circuitos Elétricos II Lista de Exercícios 3 - Circuitos Elétricos II Tópicos: Potência instantânea, Potência Média, Valor Médio e Eficaz, Potência Aparente, Potência Ativa, Potência Reativa, Fator de Potência, Potência Complexa.

Leia mais

Indução Magnética. E=N d Φ dt

Indução Magnética. E=N d Φ dt Indução Magnética Se uma bobina de N espiras é colocada em uma região onde o fluxo magnético está variando, existirá uma tensão elétrica induzida na bobina, e que pode ser calculada com o auxílio da Lei

Leia mais

Olimpíadas de Física Seleção para as provas internacionais. Prova Experimental B

Olimpíadas de Física Seleção para as provas internacionais. Prova Experimental B SOCIEDADE PORTUGUESA DE FÍSICA Olimpíadas de Física 015 Seleção para as provas internacionais Prova Experimental B 16/maio/015 Olimpíadas de Física 015 Seleção para as provas internacionais Prova Experimental

Leia mais

ELETRICIDADE CAPÍTULO 2 ELEMENTOS DOS CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 2 ELEMENTOS DOS CIRCUITOS ELÉTRICOS ELETRICIDADE CAPÍTULO 2 ELEMENTOS DOS CIRCUITOS ELÉTRICOS 2.1 - INTRODUÇÃO - EXISTEM CINCO ELEMENTOS BÁSICOS IDEAIS QUE SÃO UTILIZADOS EM CIRCUITOS ELÉTRICOS. - ELEMENTOS ATIVOS (GERAM ENERGIA ELÉTRICA)

Leia mais

Abra o arquivo ExpCA05. Identifique o circuito da Fig12a. Ative-o. Anote o valor da corrente no circuito.

Abra o arquivo ExpCA05. Identifique o circuito da Fig12a. Ative-o. Anote o valor da corrente no circuito. Curso CA Parte3 a) Primeiramente deveremos calcular a reatância X C = 1 / (..60.0,1.10-6 ) =6.55 Agora poderemos calcular a impedância. Z = 40 6,5 = 48K b) = U / Z = 10V / 48K =,5 ma c) V C = X C. = 6,5K.,5mA

Leia mais

Décimo Quinto Encontro Regional Ibero-americano do CIGRÉ Foz do Iguaçu-PR, Brasil 19 a 23 de maio de 2013

Décimo Quinto Encontro Regional Ibero-americano do CIGRÉ Foz do Iguaçu-PR, Brasil 19 a 23 de maio de 2013 UM MÉTODO PRÁTICO PARA REPRESENTAÇÃO DE TRANSFORMADORES DE POTÊNCIA BASEADO EM MEDIÇÕES DE RESPOSTA EM FREQUÊNCIA Rogério Magalhães de Azevedo Marcelo Guimarães Rodrigues Walter Cerqueira CEPEL RESUMO

Leia mais

Retificadores (ENG ) Lista de Exercícios de Eletromagnetismo

Retificadores (ENG ) Lista de Exercícios de Eletromagnetismo Retificadores (ENG - 20301) Lista de Exercícios de Eletromagnetismo 01) Para o eletroimã da figura abaixo, determine: a) Calcule a densidade de fluxo no núcleo; b) Faça um esboço das linhas de campo e

Leia mais

Características da Tensão e da Corrente Alternada

Características da Tensão e da Corrente Alternada Características da Tensão e da Corrente Alternada Evandro Bastos dos Santos 9 de Abril de 2017 1 Introdução Até aqui vimos como funciona circuitos de corrente contínua. Hoje veremos que existem circuitos

Leia mais

Retificadores de meia-onda Cap. 3 - Power Electronics - Hart. Prof. Dr. Marcos Lajovic Carneiro

Retificadores de meia-onda Cap. 3 - Power Electronics - Hart. Prof. Dr. Marcos Lajovic Carneiro Retificadores de meia-onda Cap. 3 - Power Electronics - Hart Prof. Dr. Marcos Lajovic Carneiro Tópicos da aula 3.1 Retificador de meia onda com carga resistiva (R) 3.2 Retificador de meia onda com carga

Leia mais

Lista de exercícios - Regra de Kirchhoff

Lista de exercícios - Regra de Kirchhoff Lista de exercícios - Regra de Kirchhoff Circuitos Complexos Regra de Kirchhoff Existem alguns circuitos em que não é possível fazer a separação de partes em série e/ou em paralelo e além disto podem ter

Leia mais

Circuitos em Corrente Alternada contendo R, L e C. R = Resistor; L = Indutor; C = Capacitor

Circuitos em Corrente Alternada contendo R, L e C. R = Resistor; L = Indutor; C = Capacitor Circuitos em Corrente Alternada contendo R, L e C. R = Resistor; L = ndutor; C = Capacitor No Resistor Considerando uma corrente i( = m cos( ω t + φ) circulando no resistor, teremos nos seus terminais

Leia mais

Medidas com circuito Ponte de Wheatstone DC e AC O aluno deverá entregar placa padrão com os circuitos montados, o kit montado não será devolvido.

Medidas com circuito Ponte de Wheatstone DC e AC O aluno deverá entregar placa padrão com os circuitos montados, o kit montado não será devolvido. Experiência Metrologia Elétrica Medidas com circuito Ponte de Wheatstone DC e AC O aluno deverá entregar placa padrão com os circuitos montados, o kit montado não será devolvido. ) Monte uma ponte de Wheatstone

Leia mais

Fasores e Números Complexos

Fasores e Números Complexos Fasores e Números Complexos Evandro Bastos dos Santos 21 de Maio de 2017 1 Introdução Vamos relembrar das aulas anteriores em que vimos que uma corrente ou tensão alternada pode ser representada por funções

Leia mais

Aula 12: Oscilações Eletromagnéticas. Curso de Física Geral III F o semestre, 2014

Aula 12: Oscilações Eletromagnéticas. Curso de Física Geral III F o semestre, 2014 Aula : Oscilações Eletromagnéticas urso de Física Geral III F-38 o semestre, 4 Oscilações eletromagnéticas () Vimos: ircuitos R e R: q(t), i(t) e V(t): têm comportamento exponencial Veremos: ircuito :

Leia mais

Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia

Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia Guia da 2 a aula prática 2014 Carga RLC Monofásica Assunto: - Medição de potência em carga RLC monofásica e correção

Leia mais

CAPÍTULO V I APLICAÇÕES DOS AMPLIFICADORES OPERACIONAIS

CAPÍTULO V I APLICAÇÕES DOS AMPLIFICADORES OPERACIONAIS CAPÍTULO V I APLICAÇÕES DOS AMPLIFICADORES OPERACIONAIS Neste capítulo, o objetivo é o estudo das aplicações com os Amplificadores Operacionais realizando funções matemáticas. Como integração, diferenciação,

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório UNIVERSIDADE FEDERAL DE SANA CAARINA DEPARAMENO DE ENGENHARIA ELÉRICA EEL7040 Circuitos Elétricos I - Laboratório AULA 07 POÊNCIA MONOFÁSICA E FAOR DE POÊNCIA 1 INRODUÇÃO A análise de circuitos em corrente

Leia mais

Lab. Eletrônica: Oscilador senoidal usando amplificador operacional

Lab. Eletrônica: Oscilador senoidal usando amplificador operacional Lab. Eletrônica: Oscilador senoidal usando amplificador operacional Prof. Marcos Augusto Stemmer 27 de abril de 206 Introdução teórica: Fasores Circuitos contendo capacitores ou indutores são resolvidos

Leia mais

Capítulo 12. Potência em Regime Permanente C.A.

Capítulo 12. Potência em Regime Permanente C.A. Capítulo Potência em Regime Permanente C.A. . Potência Média Em circuitos lineares cujas entradas são funções periódicas no tempo, as tensões e correntes em regime permanente produzidas são periódicas.

Leia mais

2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais.

2 Objetivos Verificação e análise das diversas características de amplificadores operacionais reais. Universidade Federal de Juiz de Fora Laboratório de Eletrônica CEL 037 Página 1 de 6 1 Título Prática 11 Características dos Amplificadores Operacionais 2 Objetivos Verificação e análise das diversas características

Leia mais

Experimento 6 Corrente alternada: circuitos resistivos

Experimento 6 Corrente alternada: circuitos resistivos 1. OBJETIO Experimento 6 Corrente alternada: circuitos resistivos O objetivo desta aula é estudar o comportamento de circuitos resistivos em presença de uma fonte de alimentação de corrente alternada.

Leia mais

BC 1519 Circuitos Elétricos e Fotônica

BC 1519 Circuitos Elétricos e Fotônica BC 1519 Circuitos Elétricos e Fotônica Circuitos em Corrente Alternada 013.1 1 Circuitos em Corrente Alternada (CA) Cálculos de tensão e corrente em regime permanente senoidal (RPS) Conceitos de fasor

Leia mais

CEFET BA Vitória da Conquista CIRCUITOS INDUTIVOS

CEFET BA Vitória da Conquista CIRCUITOS INDUTIVOS CEFET BA Vitória da Conquista CIRCUITOS INDUTIVOS Se numa tensão CA, v for aplicada a um circuito que tenha somente indutância, a corrente CA resultante que passa pela indutância, i L, estará atrasada

Leia mais

Resistência elétrica e Protoboard

Resistência elétrica e Protoboard Resistência elétrica e Protoboard 1. A resistência elétrica A resistência elétrica é um componente eletrónico que oferece uma oposição à passagem da corrente elétrica. Este componente tem diversas aplicações

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. Dr. José Luis Azcue Puma Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides

Leia mais

Notas de aula da disciplina de Ana lise de Circuitos 2

Notas de aula da disciplina de Ana lise de Circuitos 2 1 Notas de aula da disciplina de Ana lise de Circuitos 2 Prof. Luciano Baracho Rocha Maio de 2016 Sumário Potência aparente e fator de potência... 2 Exercício 1:... 4 Exercício 2:... 5 Potência Complexa...

Leia mais

Experimento 4 Indutores e circuitos RL com onda quadrada

Experimento 4 Indutores e circuitos RL com onda quadrada 1. OBJETIVO Experimento 4 Indutores e circuitos RL com onda quadrada O objetivo desta aula é estudar o comportamento de indutores associados a resistores em circuitos alimentados com onda quadrada. 2.

Leia mais