ELETROTÉCNICA (ENE078)

Tamanho: px
Começar a partir da página:

Download "ELETROTÉCNICA (ENE078)"

Transcrição

1 UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenharia Civil ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES Aula Número: 20

2 Revisão da aula passada... Circuitos com a corrente adiantada em relação à tensão Predominância de elementos capacitivos Circuito capacitivo Circuitos com a corrente atrasada em relação à tensão Predominância de elementos indutivos Circuito indutivo Análise de circuitos sem necessidade de cálculo de derivadas e integrais com Resistência, reatância indutiva e reatância capacitiva Álgebra complexa: solução para se tratar circuitos CA, onde tensões e correntes são funções SENOIDAIS de mesma frequencia. 2

3 Revisão da aula passada... Forma retangular Eixos real e imaginário j Im (j) parte real parte imaginária j unidade imaginária j 1 Re 3

4 Revisão da aula passada... Forma polar ou trigonométrica Eixos real e imaginário módulo ângulo Im (j) 2 2 cos arctan sin Re 4

5 Revisão da aula passada... Representação de uma senóide por meio de um número complexo sin g t A t G A m m Para soma de senóides como g(t), podemos utilizar a álgebra de números complexos sob os fasores G A álgebra de fasores só pode ser aplicada a formas de onda senoidais de mesma frequência!!! 5

6 6

7 FASORES Fasor Definição: O fasor é um vetor bidimensional (plano complexo ou de Argand-Gauss) para representar uma onda em movimento harmônico simples. Observação 1: O eixo-x do diagrama fasorial é o eixo dos reais e o eixo-y é o eixo dos imaginário Diagrama fasorial genérico Observação 2: O sentido de rotação do fasor é o anti-horário. 7

8 FASORES Fasor Aplicação: O comportamento da tensão e corrente em CA para os diversos elementos de circuitos já estudados é senoidal/cosenoidal. Isso permite a comparação a seguir: Diagrama fasorial da tensão CA (senoidal) Onde: α = ωt (ângulo variável com o tempo) 8

9 FASORES Fasor Aplicação: A análise anterior propicia a seguinte decomposição fasorial do comportamento das tensões e correntes em CA. Domínio do Tempo rms Domínio da frequência 9

10 FASORES Fasor Exemplo: Dado o circuito abaixo determine i(t). Represente o diagrama fasorial com v(t) e i(t). Dado: v(t) i(t) R = 100Ω v(t) = 100sen(ωt) [V] Resposta: i(t) = 1sen(ωt) [A] I m.fasor: v t = V m sen ωt + θ 0 V = V m θ 0 v t = 100 sen ωt + 0 V = i t = 1 sen ωt + 0 I = 1 0 I = 1 0 V = R e 10

11 Como resolver a soma de tensões senoidais? Tensões e correntes alternadas até aqui... Como somar? v T t = v 1 t = V m1 sen wt + θ 1 + v 2 t = V m2 sen wt + θ 2? Soma ponto a ponto... Processo difícil e improdutivo Em circuitos CA, isto acontecerá várias vezes... 11

12 Como resolver a soma de tensões senoidais? Tensões e correntes alternadas a partir daqui... Um método mais rápido usa um vetor radial girante. Este vetor radial que um módulo (comprimento) constante e com uma extremidade fixa na origem é denominado FASOR quanto usado na análise de circuitos elétricos em CA v 1 t = V m1 sen wt + θ 1 = V m1 θ 1 v 2 t = V m2 sen wt + θ 2 = V m2 θ 2 12

13 Transformando senóides em fasores Tensões e correntes alternadas a partir daqui... Usaremos os FASORES, isto é, a álgebra dos números complexos para representar todas as grandezas dos circuitos em corrente/tensão alternada Os módulos e posições relativas dos FASORES das grandezas elétricas envolvidas é chamado de DIAGRAMAS FASORIAL Exemplo: Somar tensões transfomar v(t) em fasor v 1 t = V m1 sen wt + θ 1 = V m1 θ 1 v 2 t = V m2 sen wt + θ 2 = V m2 θ 2 O resultado da soma de fasores usando a álgebra complexa: V T θ T = v T t = V T sen wt + θ T Domínio do tempo Domínio fasorial/complexo 13

14 Transformando senóides em fasores Tensões e correntes alternadas a partir daqui... Exemplo de soma de duas corrente quaisquer senoidais: 14

15 Uso dos números complexos em CA O modelo matemático dos circuitos e equipamentos elétricos de corrente alternada utiliza o tratamento matemático relativo aos números complexos. No estudo das raízes, foi ampliado o conceito de número: A unidade imaginária i passou a formar uma classe de números imaginários, enquanto os demais passaram a ser chamados de números reais. 15

16 Uso dos números complexos em CA A soma a + bi de um número real com um imaginário puro denomina-se número complexo, onde a e b são números reais e i é a unidade imaginária. Um número complexo na forma z = a + bi está na forma algébrica. O número complexo z = a + bi pode ser representado em um plano ortogonal, onde o eixo horizontal é o eixo dos números reais e o eixo vertical, o dos números imaginários: 16

17 Uso dos números complexos em CA Com o uso de trigonometria, obtém-se: z é o módulo do número complexo z. O ângulo é chamado de argumento. 17

18 Uso dos números complexos em CA Um número complexo está expresso na forma polar quando indicado da seguinte forma: O conjugado do número complexo z = a + bi é definido por : Em Eletricidade, a unidade imaginária é usualmente representada pela letra j. 18

19 Uso dos números complexos em CA TRANSFORMAÇÃO DA FORMA ALGÉBRICA PARA A POLAR Sendo z = a + jb um número complexo na forma algébrica, para obter sua forma polar deve-se calcular o módulo e o argumento, respectivamente, conforme segue: Exemplo 1: z 1 = 5 j10 Exemplo 2: z 2 = 2 + j3 19

20 Uso dos números complexos em CA Re(z) = z cos Im(z) = z sen Re(z 1 ) = z 1 cos = 10 cos 60º = 5 Im(z 1 ) = z 1 sen = 10 sen 60º = 8,66 z 1 = 5 + j8,66 Re(z 2 ) = z 2 cos = 50 cos ( 90º) = 0 Im(z 2 ) = z 2 sen = 50 sen ( 90º) = 50 z 2 = j50 20

21 Uso dos números complexos em CA OBTENÇÃO DO CONJUGADO Determinar o conjugado de: z 1 = 5 j4 SOMA E SUBTRAÇÃO DE NÚMEROS COMPLEXOS Na soma e na subtração de números complexos, eles deverão estar na forma algébrica. Então, faz-se a operação matemática com as partes reais em separado e, da mesma forma, com as partes imaginárias. Exemplo 1: Somar os números complexos z 1 = 5 + j10 e z 2 = 15 j25 z 1 + z 2 = 5 + j j25 = (5 + 15) + j(10 25) z 1 + z 2 = 20 j15 21

22 Uso dos números complexos em CA Re(z 1 ) = 10,324 Im(z 1 ) = 14,745 Re(z 2 ) = 13,199 Im(z 2 ) = 13,667 z 1 z 2 = 10,324 j14,745 (13,199 + j13,667) z 1 z 2 = (10,324 13,199) + j( 14,745 13,667) z 1 z 2 = 2,875 j28,412 22

23 Uso dos números complexos em CA MULTIPLICAÇÃO E DIVISÃO DE NÚMEROS COMPLEXOS Em Eletricidade, é usual fazer estas operações trabalhando-se com os números complexos na forma polar, da seguinte forma: na multiplicação, multiplicam-se os módulos e somamse os argumentos; na divisão, dividem-se os módulos (o do numerador pelo do denominador) e subtraem-se os argumentos (o argumento do numerador menos o argumento do denominador). 23

24 Uso dos números complexos em CA Exemplo 1: Multiplicar os números complexos z 1 = 5 + j12 e z 2 = 3 j4,5 24

25 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA INTRODUÇÃO Circuito monofásico: circuito suprido por uma única fonte de tensão alternada. Todos os circuitos elétricos de corrente alternada (CA) contêm alguma quantidade de resistência, indutância e capacitância. Em um determinado circuito, o efeito de algum destes elementos pode ser muito pequeno e aí, ele pode ser desprezado. A resistência, juntamente com as reatâncias, limitam a corrente nos circuitos de corrente alternada. A oposição total causada por estes três elementos limitadores de corrente é denominada impedância. 25

26 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA Os circuitos formados por combinações dos elementos R, X L e X C são os seguintes: circuito RL: são os que contêm resistência e indutância e a capacitância é desprezível; circuito RC: contêm resistência e capacitância e a indutância é desconsiderada; circuito LC: contêm indutância e capacitância e o efeito da resistência é desprezado; circuito RLC: os três elementos afetam a corrente, de modo que nenhum deles pode ser desconsiderado. 26

27 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA FASORES Cada elemento, R, L ou C, tem, em circuitos CA, um comportamento peculiar, que gera uma defasagem específica entre a onda de corrente e a onda de tensão. A solução dos circuitos elétricos contendo esses elementos poderia envolver a combinação gráfica das ondas defasadas, porém este método é às vezes muito trabalhoso: 27

28 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA É mais prático empregar vetores para representar as grandezas senoidais que variam com o tempo. Uma senóide pode ser considerada como o desenvolvimento, em coordenadas retangulares, de um vetor de módulo constante, que gira em sentido antihorário. Este vetor girante é denominado fasor. O fasor tem módulo igual à amplitude (valor máximo) da senóide. Quando conveniente, o fasor pode ter como módulo o valor eficaz da senóide. 28

29 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA Onda senoidal de período T, representada em um sistema de coordenadas retangulares Embora cada posição do FASOR represente a onda senoidal, em eletricidade CA consideraremos a posição de cada FASOR apenas em wt=0. Isto se justifica pelo fato de várias senóides de mesma frequencia mantêm sua distância angular em qualquer instante de tempo considerado. 29

30 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA O semi-eixo horizontal positivo é geralmente tomado como referência para a marcação do ângulo de defasagem entre os fasores. Como os fasores giram no sentido anti-horário, os ângulos que concordam com este sentido são positivos; os ângulos em sentido contrário, são negativos. 30

31 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA Em um circuito resistivo puro, os fasores de tensão e de corrente estão em fase. 31

32 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA Nos circuitos indutivos puros, a corrente está 90 graus atrasada da tensão, ou a tensão está 90 graus adiantada da corrente. j (phi) é a letra grega que designa o ângulo de defasagem entre os fasores. 32

33 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA Nos circuitos capacitivos puros, a corrente está 90 graus adiantada da tensão, ou a tensão está 90 graus atrasada da corrente. Como j (phi) representa a defasagem entre os fasores, não é conveniente atribuir-lhe sinal graficamente. 33

34 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA USO DOS NÚMEROS COMPLEXOS EM ELETRICIDADE A parte real dos números complexos é associada às resistências e à potência ativa. Às reatâncias e à potência reativa se atribui a parte imaginária dos números complexos. Uma reatância indutiva é designada por +jx L. Por ter efeito oposto ao da reatância indutiva, a reatância capacitiva é designada por jx C. A resistência elétrica sempre será um número real e positivo. A potência ativa é um número real e sempre positivo. 34

35 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA A potência reativa é imaginária e positiva, designada por +jq, se a reatância que lhe deu origem for indutiva; é imaginária e negativa, designada por jq, se a reatância for capacitiva. O ângulo de defasagem entre a corrente e a tensão da fonte é designado por letras gregas como j ou θ. Multiplicar um fasor por j é o mesmo que fazê-lo girar adiantando-se 90 graus em relação ao ângulo de origem; multiplicar um fasor por j atrasa-o 90º de sua posição original. 35

36 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA CIRCUITOS SÉRIE EM CORRENTE ALTERNADA Em um circuito de corrente alternada que contém um resistor, um indutor e um capacitor em série, o estudo é feito após o cálculo das reatâncias indutiva e capacitiva: 36

37 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA As propriedades básicas de um circuito série não sofrem modificações, quando estão presentes resistores, indutores e capacitores. Contudo, é necessário utilizar números complexos para considerar o comportamento particular de cada um destes elementos no circuito de corrente alternada. Uma vez calculadas as reatâncias, a impedância do circuito terá sempre a forma: Z = R + jx L jx C A impedância representa a oposição total causada pelos 3 elementos a corrente alternada! 37

38 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA O módulo e o argumento (fase) da impedância Z são obtidos fazendo-se, respectivamente: Z = R 2 + (X L X C ) 2 A representação gráfica da impedância resulta no triângulo da impedância: 38

39 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA em que: R = Z cos j X = Z sen j sendo X = X L X C. O argumento da impedância do circuito série coincide com o ângulo de defasagem j. 39

40 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA A corrente que flui no circuito, fornecida pela fonte, é a mesma em qualquer um de seus elementos: I = IR = IL = IC Esta corrente é obtida através da Lei de Ohm: 40

41 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA As tensões individuais são obtidas pela Lei de Ohm: A soma fasorial das tensões individuais resultará na tensão aplicada pela fonte: Sendo nulo o efeito de qualquer elemento R, L ou C no circuito, retira-se das equações o termo correspondente. 41

42 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA CIRCUITOS CA COM COMPONENTES EM PARALELO As propriedades são as seguintes: cada elemento em paralelo fica submetido à mesma tensão da fonte: 42

43 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA determinadas as reatâncias, as correntes individuais são obtidas pela Lei de Ohm: a corrente total fornecida pela fonte é igual à soma fasorial das correntes individuais: 43

44 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA a impedância do circuito pode ser calculada de dois modos: - pela Lei de Ohm: - resolvendo a equação dos inversos: se o efeito de um elemento qualquer for desprezível, retira-se das equações o termo correspondente. 44

45 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA FATOR DE POTÊNCIA É o co-seno do ângulo de defasagem j entre a corrente e a tensão da fonte: O fator de potência pode ser expresso em número decimal (o resultado da extração do co-seno) ou em porcentagem (multiplicando o resultado do co-seno por 100). Para um circuito resistivo, j = 0º. Como cos 0º = 1, então o fator de potência deste tipo de circuito é unitário. 45

46 ASSOCIAÇÕES SÉRIE E EM PARALELO DE RESISTORES, INDUTORES E CAPACITORES EM CIRCUITOS DE CORRENTE ALTERNADA Em um circuito indutivo puro, j = 90º. Decorre que cos 90º = zero, daí o fator de potência em um circuito indutivo puro é zero. Para um circuito capacitivo puro, o fator de potência também é zero. Para especificar o tipo de circuito, deve-se acrescentar, junto ao valor do fator de potência, o termo capacitivo ou indutivo. Os circuitos resistivos não precisam de especificação complementar, já que somente eles têm cos j = 1. 46

47 Alguma dúvida? Circuitos em Corrente Alternada Sala: 4273, ao lado do R.U. Horário preferencial: 2ª e 4ª Feira no início da tarde 47

Análise de Circuitos 2

Análise de Circuitos 2 Análise de Circuitos 2 Introdução (revisão) Prof. César M. Vargas Benítez Departamento Acadêmico de Eletrônica, Universidade Tecnológica Federal do Paraná (UTFPR) 1 Análise de Circuitos 2 - Prof. César

Leia mais

ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA

ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA Eletricidade Aplicada I 12ª Aula Corrente Alternada Corrente Alternada: Introdução A expressão em função do tempo é: v(t)=v máx sen(wt+a). V máx é

Leia mais

IMPEDÂNCIA Impedância

IMPEDÂNCIA Impedância IMPEDÂNCIA Em um circuito real a resistência elétrica, que é propriedade física dos materiais que o constituem, está sempre presente. Ela pode ser minimizada, mas não eliminada. Portanto, circuitos indutivos

Leia mais

Curso Técnico em Eletrotécnica Impedância e o Diagrama de Fasores. Vitória-ES

Curso Técnico em Eletrotécnica Impedância e o Diagrama de Fasores. Vitória-ES INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Impedância e o Diagrama de Fasores -1-19. 9 Curso Técnico em Eletrotécnica Impedância e o Diagrama de Fasores Circuitos

Leia mais

Aula 5 Análise de circuitos indutivos em CA circuitos RL

Aula 5 Análise de circuitos indutivos em CA circuitos RL Aula 5 Análise de circuitos indutivos em CA circuitos RL Objetivos Aprender analisar circuitos RL em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números complexos,

Leia mais

Verificando a parte imaginária da impedância equivalente na forma complexa

Verificando a parte imaginária da impedância equivalente na forma complexa Aula 7 Circuitos RLC Objetivos Aprender analisar circuitos RLC em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números complexos, forma matemática, forma de

Leia mais

Aula 6 Análise de circuitos capacitivos em CA circuitos RC

Aula 6 Análise de circuitos capacitivos em CA circuitos RC Aula 6 Análise de circuitos capacitivos em CA circuitos RC Objetivos Aprender analisar circuitos RC em série e em paralelo em corrente alternada, utilizando as diversas formas de representação: números

Leia mais

Circuitos Elétricos. Circuitos Contendo Resistência, Indutância e Capacitância. Prof.: Welbert Rodrigues

Circuitos Elétricos. Circuitos Contendo Resistência, Indutância e Capacitância. Prof.: Welbert Rodrigues Circuitos Elétricos Circuitos Contendo Resistência, Indutância e Capacitância Prof.: Welbert Rodrigues Introdução Serão estudadas as relações existentes entre as tensões e as correntes alternadas senoidais

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Aula 10 - Espaço de Estados (II) e Circuitos sob Excitação

Leia mais

I φ= V φ R. Fazendo a mesma análise para um circuito indutivo, se aplicarmos uma tensão v(t) = V m sen(ωt + I (φ 90)= V φ X L

I φ= V φ R. Fazendo a mesma análise para um circuito indutivo, se aplicarmos uma tensão v(t) = V m sen(ωt + I (φ 90)= V φ X L Impedância Em um circuito de corrente alternada puramente resistivo, vimos que, se uma tensão v(t) = V m sen(ωt + ), a corrente que fluirá no resistor será i(t) = I m sen(ωt + ), onde I m = V m /R. Representando

Leia mais

LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada

LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada LINHAS DE TRANSMISSÃO DE ENERGIA LTE Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada Tópicos da Aula Tensões e Correntes Variantes no Tempo Sistema em Regime Permanente Senoidal Interpretação

Leia mais

Aquino, Josué Alexandre.

Aquino, Josué Alexandre. Aquino, Josué Alexandre. A657e Eletrotécnica para engenharia de produção : análise de circuitos : corrente e tensão alternada / Josué Alexandre Aquino. Varginha, 2015. 53 slides; il. Sistema requerido:

Leia mais

Fasores e Números Complexos

Fasores e Números Complexos Fasores e Números Complexos Evandro Bastos dos Santos 21 de Maio de 2017 1 Introdução Vamos relembrar das aulas anteriores em que vimos que uma corrente ou tensão alternada pode ser representada por funções

Leia mais

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua Eletricidade II Aula 1 Resolução de circuitos série de corrente contínua Livro ELETRICIDADE II Avaliações Provas - 100 pontos lesp-ifmg.webnode.com 2 Conexão de um circuito série Um circuito série contém

Leia mais

Análise de Circuitos I I

Análise de Circuitos I I MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE SÃO JOSÉ CURSO TÉCNICO INTEGRADO EM TELECOMUNICAÇÕES

Leia mais

CIRCUITOS ELÉTRICOS. Aula 03 RESISTORES EM CORRENTE ALTERNADA E CIRCUITOS RL

CIRCUITOS ELÉTRICOS. Aula 03 RESISTORES EM CORRENTE ALTERNADA E CIRCUITOS RL CIRCUITOS ELÉTRICOS Aula 03 RESISTORES EM CORRENTE ALTERNADA E CIRCUITOS RL Mas como sempre, primeiro a revisão... Indutância L Capacidade de armazenar energia magnética por meio do campo criado pela corrente.

Leia mais

Circuitos Elétricos. Dispositivos Básicos e os Fasores. Prof. Dr. Eduardo Giometti Bertogna

Circuitos Elétricos. Dispositivos Básicos e os Fasores. Prof. Dr. Eduardo Giometti Bertogna Circuitos Elétricos Dispositivos Básicos e os Fasores Prof. Dr. Eduardo Giometti Bertogna Fasores Método válido porém longo é somar algebricamente as ordenadas em cada ponto ao longo da abscissa. Fasores

Leia mais

BC 1519 Circuitos Elétricos e Fotônica

BC 1519 Circuitos Elétricos e Fotônica BC 1519 Circuitos Elétricos e Fotônica Circuitos em Corrente Alternada 013.1 1 Circuitos em Corrente Alternada (CA) Cálculos de tensão e corrente em regime permanente senoidal (RPS) Conceitos de fasor

Leia mais

Revisão de Eletricidade

Revisão de Eletricidade Departamento Acadêmico de Eletrônica Pós-Graduação em Desen. de Produtos Eletrônicos Conversores Estáticos e Fontes Chaveadas Revisão de Eletricidade Prof. Clóvis Antônio Petry. Florianópolis, fevereiro

Leia mais

CIRCUITOS ELÉTRICOS EM CA. Fonte: profezequias.net

CIRCUITOS ELÉTRICOS EM CA. Fonte: profezequias.net CIRCUITOS ELÉTRICOS EM CA Fonte: profezequias.net OBJETIVO Ao final deste capitulo o aluno estará apto a entender, aplicar e realizar cálculos referente a Circuitos Elétricos em CA. CIRCUITOS DE CORRENTE

Leia mais

Revisão de Eletricidade

Revisão de Eletricidade Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Pós-Graduação em Desen. de Produtos Eletrônicos Conversores Estáticos e Fontes Chaveadas Revisão

Leia mais

FASORES E NÚMEROS COMPLEXOS

FASORES E NÚMEROS COMPLEXOS Capítulo FSORES E NÚMEROS COMPLEXOS. Introdução.1 Fasor.1.1 Representação Fasorial de uma Onda Senoidal e Co-senoidal.1. Diagramas Fasoriais. Sistema de Números Complexos..1 Plano Complexo.. Operador j.3

Leia mais

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE 1) CORRENTE ALTERNADA: é gerada pelo movimento rotacional de um condutor ou um conjunto de condutores no interior de um campo magnético (B)

Leia mais

Circuitos Elétricos. Dispositivos Básicos e os Fasores. Prof. Me. Luciane Agnoletti dos Santos Pedotti

Circuitos Elétricos. Dispositivos Básicos e os Fasores. Prof. Me. Luciane Agnoletti dos Santos Pedotti Circuitos Elétricos Dispositivos Básicos e os Fasores Prof. Me. Luciane Agnoletti dos Santos Pedotti Fasores Método válido porém longo é somar algebricamente as ordenadas em cada ponto ao longo da abscissa.

Leia mais

Circuitos com excitação Senoidal

Circuitos com excitação Senoidal MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

ANÁLISE DE CIRCUITOS ELÉTRICOS II

ANÁLISE DE CIRCUITOS ELÉTRICOS II ANÁLISE DE CIRCUITOS ELÉTRICOS II Módulo III FASORES E IMPEDÂNCIA Números Complexos Forma Retangular: 2 Números Complexos Operações com o j: 3 Números Complexos Forma Retangular: z = x+jy sendo j=(-1)

Leia mais

Potência em CA AULA II. Vitória-ES

Potência em CA AULA II. Vitória-ES INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA Potência em Corrente Alternada II - 1-25. 14 Curso Técnico em Eletrotécnica Potência (CA) 1. Revisão; 2. Triângulo das

Leia mais

Vamos considerar um gerador de tensão alternada ε(t) = ε m sen ωt ligado a um resistor de resistência R. A tensão no resistor é igual à fem do gerador

Vamos considerar um gerador de tensão alternada ε(t) = ε m sen ωt ligado a um resistor de resistência R. A tensão no resistor é igual à fem do gerador Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo uiz Viana Referências bibliográficas: H. 36-1, 36-3, 36-4, 36-5, 36-6 S. 32-2, 32-3, 32-4,

Leia mais

Potência em Corrente Alternada

Potência em Corrente Alternada Potência em Corrente Alternada Evandro Bastos dos Santos 22 de Maio de 2017 (Esse material pode ser ministrado em duas aulas) 1 Introdução A discussão sobre potência que vimos nas aulas anteriores é apenas

Leia mais

Teoria de Eletricidade Aplicada

Teoria de Eletricidade Aplicada 1/24 Teoria de Eletricidade Aplicada Representação Vetorial de Ondas Senoidais Prof. Jorge Cormane Engenharia de Energia 2/24 SUMÁRIO 1. Introdução 2. Números Complexos 3. Funções Exponenciais Complexas

Leia mais

Experiência 4 - Sinais Senoidais e Fasores

Experiência 4 - Sinais Senoidais e Fasores ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI 3212 LABORATÓRIO DE CIRCUITOS ELÉTRICOS Edição 2017 Cinthia Itiki, Inés Pereyra, Marcelo Carreño Experiência

Leia mais

Aula 4 Circuitos básicos em corrente alternada continuação

Aula 4 Circuitos básicos em corrente alternada continuação Aula 4 Circuitos básicos em corrente alternada continuação Objetivos Continuar o estudo sobre circuitos básicos iniciado na aula anterior. Conhecer o capacitor e o conceito de capacitância e reatância

Leia mais

7.1 - Números Complexos - Revisão de Matemática

7.1 - Números Complexos - Revisão de Matemática MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CURSO TÉCNICO EM TELECOMUNICAÇÕES Disciplina: Eletricidade

Leia mais

Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita

Eletricidade Aplicada. Aulas Teóricas Professor: Jorge Andrés Cormane Angarita Eletricidade Aplicada Aulas eóricas Professor: Jorge Andrés Cormane Angarita Análise da Potência Eletricidade Aplicada Introdução Existem duas formas de calcular a potência fornecida ou recebida por um

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 9

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 9 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo 9 Steinmetz Tesla Hertz Westinghouse Conteúdo 9 - Análise de Regime Permanente Senoidal...1 9.1 - Números complexos...1 9.2 -

Leia mais

NÚMEROS COMPLEXOS. Prof. Edgar Zuim (*)

NÚMEROS COMPLEXOS. Prof. Edgar Zuim (*) NÚMEROS COMPLEXOS Prof. Edgar Zuim (*) 1 Conteúdo 1 - Introdução... 3 - Relações do fasor com a forma retangular... 4 3 - Operações com números complexos... 5 4 - Conversões de forma retangular/polar e

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 6

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 6 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 6 Steinmetz Tesla Hertz Westinghouse Conteúdo 6 - Análise de Regime Permanente Senoidal...1 6.1 - Números complexos...1

Leia mais

Conjunto dos números complexos

Conjunto dos números complexos NÚMEROS COMPLEXOS Conjunto dos números complexos I C R Q Z N Número imaginário x² + 1 = 0 x² = 1 x = ± 1 Número imaginário i x = ± i x² + 4 = 0 x² = 4 x = ± 4 x = ± 1 4 x = ± 2i Número imaginário i = 1

Leia mais

FASORES E NÚMEROS COMPLEXOS

FASORES E NÚMEROS COMPLEXOS e(t) θ3 θ 0 π/ π 3π/ π ωt[rad] FASORES E NÚMEROS COMPLEXOS Q = E I sen(θ) SሬԦ = E I θ I* I cos( θ) E θ E θ I sen( θ) I DEPARTAMENTO DA ÁREA DE ELETRO-ELETRÔNICA COORDENAÇÃO DE ELETROTÉCNICA Prof. Rupert

Leia mais

Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia

Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia Universidade Federal de Itajubá EEL 012 Laboratório de Conversão Eletromecânica de Energia Guia da 2 a aula prática 2014 Carga RLC Monofásica Assunto: - Medição de potência em carga RLC monofásica e correção

Leia mais

Aula 26. Introdução a Potência em CA

Aula 26. Introdução a Potência em CA Aula 26 Introdução a Potência em CA Valor eficaz - RMS Valor eficaz de uma corrente periódica é a CC que libera a mesma potência média para um resistor que a corrente periódica Potência média para um circuito

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. José Azcue; Dr. Eng. Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides

Leia mais

2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω?

2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω? Professor: Caio Marcelo de Miranda Turma: T11 Nome: Data: 05/10/2016 COMPONENTES PASSIVOS E CIRCUITOS RL, RC E RLC EM CORRENTE ALTERNADA graus. Observação: Quando não informado, considere o ângulo inicial

Leia mais

Revisão números Complexos

Revisão números Complexos ELETRICIDADE Revisão números Complexos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Números complexos No passado, os matemáticos esbarraram em uma situação oriunda da resolução de uma

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Potência em CA Prof. Clóvis Antônio Petry. Florianópolis, agosto de 2007. Nesta aula Capítulo 19: Potência

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores Correntes e Tensões Alternadas Senoidais Prof. Clóvis Antônio Petry. Florianópolis, julho de 2007. Bibliografia

Leia mais

INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA

INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA -1-20. 8 Curso Técnico em Eletrotécnica Os Dispositivos Básicos e os 1.. Sequência de conteúdos: 1. Revisão; 2.. Vitória-ES

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório AULA 05 SEGUNDA PARTE OSCILOSCÓPIO 1 INTRODUÇÃO Nas aulas anteriores de laboratório

Leia mais

Sumário CIRCUITOS DE CORRENTE ALTERNADA. Prof. Fábio da Conceição Cruz 21/10/ Introdução. 2. Formas de ondas alternadas senoidais

Sumário CIRCUITOS DE CORRENTE ALTERNADA. Prof. Fábio da Conceição Cruz 21/10/ Introdução. 2. Formas de ondas alternadas senoidais CIRCUITOS DE CORRENTE ALTERNADA Prof. Fábio da Conceição Cruz Sumário 1. Introdução 2. Formas de ondas alternadas senoidais 3. Respostas dos dispositivos às tensões senoidais 4. Potência em corrente alternada

Leia mais

Circuitos RC série. Aplicando a Lei das Malhas temos: = + sen=.+ sen= [.+ ] 1 = +

Circuitos RC série. Aplicando a Lei das Malhas temos: = + sen=.+ sen= [.+ ] 1 = + 1 Circuitos RC série Quando aplicamos uma voltagem CC em uma associação série de um resistor e um capacitor, o capacitor é carregado até a tensão da fonte seguindo um crescimento exponencial e satura neste

Leia mais

Resistores e CA. sen =. logo

Resistores e CA. sen =. logo Resistores e CA Quando aplicamos uma voltagem CA em um resistor, como mostrado na figura, uma corrente irá fluir através do resistor. Certo, mas quanta corrente irá atravessar o resistor. Pode a Lei de

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. Dr. José Luis Azcue Puma Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides

Leia mais

Capítulo 12. Potência em Regime Permanente C.A.

Capítulo 12. Potência em Regime Permanente C.A. Capítulo Potência em Regime Permanente C.A. . Potência Média Em circuitos lineares cujas entradas são funções periódicas no tempo, as tensões e correntes em regime permanente produzidas são periódicas.

Leia mais

RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS

RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS Sabemos, do estudo da física, que uma relação entre causa e efeito não ocorre sem um oposição, ou seja, a relação entre causa

Leia mais

Corrente alternada em Circuitos monofásicos

Corrente alternada em Circuitos monofásicos Corrente alternada em Circuitos monofásicos Forma de onda A forma de onda de uma grandeza elétrica é representada pelo respectivo gráfico em função do tempo. Por exemplo, a tensão u 1 (t) dada por: u 1

Leia mais

RESOLUÇÃO DA LISTA II P3

RESOLUÇÃO DA LISTA II P3 RESOLUÇÃO DA LISTA II P3 9.25) Determine a expressão em regime permanente i o (t) no circuito abaixo se v s = 750cos (5000t)mV Z L = jωl = 40 0 3 5000 Z L = 200j Z C = jωc = j 5000 0,4 0 6 Z C = 500j Sabemos

Leia mais

Circuitos Elétricos II

Circuitos Elétricos II Universidade Federal do ABC Eng. de Instrumentação, Automação e Robótica Circuitos Elétricos II José Azcue, Prof. Dr. Potência em Sistemas Trifásicos 1 Potência em Carga Monofásica v t = V max cos (ωt)

Leia mais

NÚMEROS COMPLEXOS EM ELETRÔNICA Formulário para circuitos AC

NÚMEROS COMPLEXOS EM ELETRÔNICA Formulário para circuitos AC NÚMEOS OMPEOS EM EEÔNA Formulário para circuitos A É uma forma na qual se inclui ângulo de fase e magnitude de uma ou mais grandezas. Uma expressão complexa compreende uma parte real e uma parte imaginária,

Leia mais

ELETROTÉCNICA ENGENHARIA

ELETROTÉCNICA ENGENHARIA Aquino, Josué Alexandre. A657e Eletrotécnica : engenharia / Josué Alexandre Aquino. Varginha, 2015. 50 slides; il. Sistema requerido: Adobe Acrobat Reader Modo de Acesso: World Wide Web 1. Eletrotécnica.

Leia mais

NÚMEROS COMPLEXOS EM ELETRÔNICA

NÚMEROS COMPLEXOS EM ELETRÔNICA NÚMEOS OMPEOS EM EEÔNA É uma forma na qual se inclui ângulo de fase e magnitude de uma ou mais grandezas. Uma expressão complexa compreende uma parte real e uma parte imaginária, conforme mostra a figura

Leia mais

Lista de Exercícios P1. Entregar resolvida individualmente no dia da 1ª Prova. a) 25Hz b) 35MHz c) 1Hz d)25khz. a) 1/60s b) 0,01s c) 35ms d) 25µs

Lista de Exercícios P1. Entregar resolvida individualmente no dia da 1ª Prova. a) 25Hz b) 35MHz c) 1Hz d)25khz. a) 1/60s b) 0,01s c) 35ms d) 25µs 1 Universidade Tecnológica Federal do Paraná Campus Campo Mourão Engenharia Eletrônica LT34C - Circuitos Elétricos Prof. Dr. Eduardo G Bertogna Lista de Exercícios P1 Entregar resolvida individualmente

Leia mais

Aula 3 Corrente alternada circuitos básicos

Aula 3 Corrente alternada circuitos básicos Aula 3 Corrente alternada circuitos básicos Objetivos Aprender os princípios básicos de corrente alternada. Aprender a analisar circuitos puros em corrente alternada utilizando as diversas formas de representação

Leia mais

Disciplina: Circuitos Elétricos Elaboração: Prof. Douglas Roberto Jakubiak, Prof. Cláudio Barbalho, Prof.Nilson Kominek

Disciplina: Circuitos Elétricos Elaboração: Prof. Douglas Roberto Jakubiak, Prof. Cláudio Barbalho, Prof.Nilson Kominek Ministério da Educação Universidade Tecnológica Federal do Paraná Pró-Reitoria de Graduação Departamento Acadêmico de Eletrônica Engenharia Eletrônica PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prática

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório Aula 05 Primeira parte UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA EEL7040 Circuitos Elétricos I - Laboratório AULA 05 PRIMEIRA PARTE OSCILOSCÓPIO 1 INTRODUÇÃO Nas aulas

Leia mais

Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada

Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada Experimento 7 Circuitos RC e RL em corrente alternada 1. OBJETIO Parte A: Circuito RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação

Leia mais

Apoio didático para o Ensaio 1

Apoio didático para o Ensaio 1 Apoio didático para o Ensaio 1 1. Carga linear [1] Quando uma onda de tensão alternada senoidal é aplicada aos terminais de uma carga linear, a corrente que passa pela carga também é uma onda senoidal.

Leia mais

Circuitos RC com corrente alternada. 5.1 Material. resistor de 10 Ω; capacitor de 2,2 µf.

Circuitos RC com corrente alternada. 5.1 Material. resistor de 10 Ω; capacitor de 2,2 µf. Circuitos RC com corrente alternada 5 5.1 Material resistor de 1 Ω; capacitor de, µf. 5. Introdução Como vimos na aula sobre capacitores, a equação característica do capacitor ideal é dada por i(t) = C

Leia mais

CEFET BA Vitória da Conquista CIRCUITOS INDUTIVOS

CEFET BA Vitória da Conquista CIRCUITOS INDUTIVOS CEFET BA Vitória da Conquista CIRCUITOS INDUTIVOS Se numa tensão CA, v for aplicada a um circuito que tenha somente indutância, a corrente CA resultante que passa pela indutância, i L, estará atrasada

Leia mais

Circuitos resistivos alimentados com onda senoidal. Indutância mútua.

Circuitos resistivos alimentados com onda senoidal. Indutância mútua. Capítulo 6 Circuitos resistivos alimentados com onda senoidal. Indutância mútua. 6.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 6.2 Introdução

Leia mais

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente Experimento 10 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de

Leia mais

Um estudo dos Componentes e Equipamentos Elétricos e Eletrônicos aplicados em engenharia Civil.

Um estudo dos Componentes e Equipamentos Elétricos e Eletrônicos aplicados em engenharia Civil. Unidade Universitária Escola de Engenharia Curso Engenharia Mecânica Disciplina Eletricidade Professor(es) Teoria: Paulo Guerra Junior Laboratório: José Gomes e Francisco Sukys Carga horária 4 Código da

Leia mais

Unidade III. 2. Circuitos mistos: RL, RC, RLC. Ressonância. Circuitos série-paralelo. Circuitos CA

Unidade III. 2. Circuitos mistos: RL, RC, RLC. Ressonância. Circuitos série-paralelo. Circuitos CA Unidade III 2. Circuitos mistos: RL, RC, RLC. Ressonância. Circuitos série-paralelo. Circuito RL Circuitos RL são formados por resistências e indutâncias, em série ou paralelo. São usados para representar

Leia mais

Introdução: Um pouco de História

Introdução: Um pouco de História Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas

Leia mais

ELETROTÉCNICA. Impedância

ELETROTÉCNICA. Impedância ELETROTÉCNICA Impedância 1 Números complexos As equações algébricas do tipo x =-3não possuem soluções no campo dos números reais. Tais equações podem ser resolvidas somente com a introdução de uma unidade

Leia mais

Parte A: Circuitos RC com corrente alternada

Parte A: Circuitos RC com corrente alternada Circuitos RC e RL com Corrente Alternada 6 Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2 µf. 6.2 Introdução

Leia mais

Circuitos RC e RL com Corrente Alternada

Circuitos RC e RL com Corrente Alternada Experimento 6 Circuitos RC e RL com Corrente Alternada Parte A: Circuitos RC com corrente alternada 6.1 Material osciloscópio; multímetro digital; gerador de sinais; resistor de 10 Ω; capacitor de 2,2

Leia mais

Circuitos resistivos alimentados com onda senoidal

Circuitos resistivos alimentados com onda senoidal Experimento 5 Circuitos resistivos alimentados com onda senoidal 5.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 5.2 Introdução Nas aulas anteriores

Leia mais

A potência instantânea é por definição o produto da corrente pela tensão.

A potência instantânea é por definição o produto da corrente pela tensão. CONCETOS BÁSCOS van Camargo Revisão - Aril de 007 1) ntrodução A disciplina de Conversão de Energia faz parte da área de Sistemas Elétricos de Potência. Esta área compreende outras disciplinas como Circuitos

Leia mais

Corrente Alternada. Circuitos Monofásicos (Parte 2)

Corrente Alternada. Circuitos Monofásicos (Parte 2) Corrente Alternada. Circuitos Monofásicos (Parte 2) SUMÁRIO Sinais Senoidais Circuitos CA Resistivos Circuitos CA Indutivos Circuitos CA Capacitivos Circuitos RLC GERADOR TRIFÁSICO Gerador Monofásico GRÁFICO

Leia mais

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente

Experimento 10 Circuitos RLC em série em corrente alternada: diferença de fase entre voltagem e corrente Experimento 0 ircuitos em série em corrente alternada: diferença de fase entre voltagem e corrente. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos em presença de uma fonte de alimentação

Leia mais

CIRCUITOS ELÉTRICOS. Aula 06 POTÊNCIA EM CORRENTE ALTERNADA

CIRCUITOS ELÉTRICOS. Aula 06 POTÊNCIA EM CORRENTE ALTERNADA CIRCUITOS ELÉTRICOS Aula 06 POTÊNCIA EM CORRENTE ALTERNADA Introdução Potência em corrente Alternada: Quando falamos em potência em circuitos de corrente alternada, temos que ser específicos sobre qual

Leia mais

1 SOLUÇÃO DOS PROBLEMAS DO LIVRO CIRCUITOS POLIFÁSICOS

1 SOLUÇÃO DOS PROBLEMAS DO LIVRO CIRCUITOS POLIFÁSICOS 1 SOLUÇÃO DOS PROBLEMAS DO LIVRO CIRCUITOS POLIFÁSICOS Profs. Wilson Gonçalves de Almeida & Francisco Damasceno Freitas Departamento de Engenharia Elétrica Universidade de Brasília - UnB O presente texto

Leia mais

Notas de aula da disciplina de Ana lise de Circuitos 2

Notas de aula da disciplina de Ana lise de Circuitos 2 1 Notas de aula da disciplina de Ana lise de Circuitos 2 Prof. Luciano Baracho Rocha Maio de 2016 Sumário Potência aparente e fator de potência... 2 Exercício 1:... 4 Exercício 2:... 5 Potência Complexa...

Leia mais

Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento Acadêmico de Eletrônica Retificadores. Prof. Clóvis Antônio Petry. entro Federal de Educação Tecnológica de Santa atarina Departaento Acadêico de Eletrônica Retificadores Resposta de R, e e A e Potência Média Prof. lóvis Antônio Petry. Florianópolis, agosto de 2008. Bibliografia

Leia mais

Circuitos em Corrente Alternada contendo R, L e C. R = Resistor; L = Indutor; C = Capacitor

Circuitos em Corrente Alternada contendo R, L e C. R = Resistor; L = Indutor; C = Capacitor Circuitos em Corrente Alternada contendo R, L e C. R = Resistor; L = ndutor; C = Capacitor No Resistor Considerando uma corrente i( = m cos( ω t + φ) circulando no resistor, teremos nos seus terminais

Leia mais

FIS1053 Projeto de Apoio Eletromagnetismo 23-Maio Lista de Problemas 12 -Circuito RL, LC Corrente Alternada.

FIS1053 Projeto de Apoio Eletromagnetismo 23-Maio Lista de Problemas 12 -Circuito RL, LC Corrente Alternada. FIS53 Projeto de Apoio Eletromagnetismo 23-Maio-2014. Lista de Problemas 12 -Circuito RL, LC Corrente Alternada. QUESTÃO 1: Considere o circuito abaixo onde C é um capacitor de pf, L um indutor de μh,

Leia mais

A origem de i ao quadrado igual a -1

A origem de i ao quadrado igual a -1 A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações

Leia mais

Reatância e Impedância

Reatância e Impedância Reatância e Impedância Evandro Bastos dos Santos 21 de Maio de 2017 1 Intodução Nessa aula veremos como é o comportamento dos principais dispositivos de um circuito em corrente alternada: Resistores, Indutores

Leia mais

Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada

Experimento 7 Circuitos RC e RL em corrente alternada. Parte A: Circuito RC em corrente alternada Experimento 7 ircuitos R e RL em corrente alternada Parte A: ircuito R em corrente alternada 1 OBJETIO O objetivo desta aula é estudar o comportamento de circuitos R em presença de uma fonte de alimentação

Leia mais

Experimento 9 Circuitos RL em corrente alternada

Experimento 9 Circuitos RL em corrente alternada 1. OBJETIO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO

Leia mais

Fundamentos de Eletrônica

Fundamentos de Eletrônica 6872 - Fundamentos de Eletrônica Lei de Ohm Última Aula Elvio J. Leonardo Universidade Estadual de Maringá Departamento de Informática Bacharelado em Ciência da Computação Associação de Resistores Análise

Leia mais

Introdução a Corrente Alternada

Introdução a Corrente Alternada Introdução a Corrente Alternada Tensão Continua Uma tensão é chamada de continua ou constante quando o seu valor não se altera com o tempo. Exemplo de geradores que geram tensão continua são as pilhas

Leia mais

Exp 3 Comparação entre tensão contínua e tensão alternada

Exp 3 Comparação entre tensão contínua e tensão alternada Reprografia proibida Exp 3 Comparação entre tensão contínua e tensão alternada Característica da tensão contínua Quando a tensão, medida em qualquer ponto de um circuito, não muda conforme o tempo passa,

Leia mais

Eletricidade Aula 09. Resistência, Indutância e Capacitância em Circuitos de Corrente Alternada

Eletricidade Aula 09. Resistência, Indutância e Capacitância em Circuitos de Corrente Alternada Eletricidade Aula 09 Resistência, Indutância e Capacitância em Circuitos de Corrente Alternada Tensão e corrente nos circuitos resistivos Em circuitos de corrente alternada em que só há resistores, como

Leia mais

Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente

Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente Aula 23 Fasores I Fontes senoidais Exemplo de representações de fontes senoidais Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente v t = V

Leia mais

30 o 50 o 70 o 90 o 110 o 130 o 150 o 170 o 190 o 210 o 230 o 250 o 270 o 290 o 310 o 330 o 350 o

30 o 50 o 70 o 90 o 110 o 130 o 150 o 170 o 190 o 210 o 230 o 250 o 270 o 290 o 310 o 330 o 350 o Fasores 1- FASORES Fasores, são na realidade vetores que giram e uma determinada velocidade em um círculo trigonométrico, dando origem as funções senoidais. Então toda função senoidal pode ser representada

Leia mais

Experimento 9 Circuitos RL em corrente alternada

Experimento 9 Circuitos RL em corrente alternada 1. OBJETIVO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges Exercícios Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil http://cursos.if.uff.br/fisica2-2015/ Exercício 01 01)

Leia mais

Circuitos resistivos alimentados com onda senoidal

Circuitos resistivos alimentados com onda senoidal Circuitos resistivos alimentados com onda senoidal 5 5.1 Material Gerador de funções; osciloscópio; multímetro; resistor de 1 kω; indutores de 9,54, 23,2 e 50 mh. 5.2 Introdução Nas aulas anteriores estudamos

Leia mais

Oscilações Eletromagnéticas e Corrente Alternada

Oscilações Eletromagnéticas e Corrente Alternada Cap. 31 Oscilações Eletromagnéticas e Corrente Alternada Copyright 31-1 Oscilações Eletromagnéticas Oito estágios em um ciclo de oscilação de um circuito LC sem resistência. Os histogramas mostram a energia

Leia mais