1.1 Propriedades básicas dos números reais, axiomática dos números reais.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1.1 Propriedades básicas dos números reais, axiomática dos números reais."

Transcrição

1 I - Funções reais de variável real 1. Números Reais Números naturais, números relativos, números racionais e números reais. De uma forma muito simples vamos recordar os números: Números Naturais N - 1, 1+1=2, 2+1,... Números Relativos Z - são os números naturais, os seus simétricos e o 0., -3, -2, -1, 0, 1, 2, 3 Números Racionais Q - são todos os números que possam x representar-se na forma, com x e y Z e y 0 y Números Reais R - Além dos números racionais englobam também os irracionais (exemplos: 2, π, ) Obviamente N Z Q R 1.1 Propriedades básicas dos números reais, axiomática dos números reais. Vamos admitir o conjunto R, cujos elementos são os números reais, e no qual supomos definidas duas operações: adição (+) e multiplicação ( ). Na axiomática dos números reais os axiomas estão divididos em três grupos: Axiomas de Corpo Axiomas de Ordem Axioma de Supremo 1ª aula teórica. pág. 1

2 Axiomas são propriedades/preposições que não se demonstram, pois admitem-se (definem-se) como verdadeiras. Axiomas de um Corpo Axioma 1 - A adição e a multiplicação são operações comutativas no conjunto dos reais. x + y = y + x e xy = yx Axioma 2 - A adição e a multiplicação são operações associativas no conjunto dos reais. x y z x y z xy z = x yz ( ) ( ) + + = + + e ( ) ( ) Axioma 3 - A multiplicação é distributiva em relação à adição Quaisquer que sejam x, y, z R x( y + z) = xy + xz Axioma 4 - A adição e a multiplicação são operações com elemento neutro: Os elementos neutros das duas operações são números reais distintos. Tem-se para todo o x R, x + 0 = 0 + x = x e x. 1 = 1. x = x Axioma 5 - Todo o número real tem um simétrico (isto é, qualquer que seja o real x existe pelo menos um y R tal que x + y = 0; todo real distinto de zero tem inverso (quer dizer, qualquer que seja o real x 0, existe pelo menos um y R tal que ( xy = 1). Axiomas de Ordem + Axioma 6 - O conjunto dos números positivos, R, é um subconjunto de R fechado para as operações de adição e de multiplicação (esta última afirmação significa que, se x e y são números positivos, a sua soma e o seu produto também o são). Nota: um número real diz-se negativo sse o seu simétrico é positivo. 1ª aula teórica. pág. 2

3 Axioma 7- Qualquer número real ou é positivo, ou é negativo ou é nulo. Axioma do Supremo Axioma 8 - Qualquer subconjunto de R majorado e não vazio tem supremo. 1.2 Intervalos. Conjuntos ilimitados. Máximo, mínimo, supremo e ínfimo de um conjunto. Sendo a, b R e a b é costume designar-se por [ a, b],[ a, b[,] a, b] e] a, b[ respectivamente, os conjuntos dos reais, x que verificam as condições: a x b, a x < b, a < x b e a < x < b. Repare que: a, b é um intervalo fechado de extremos a e b [ ] ] a, b [ é um intervalo aberto de extremos a e b [ a, b[ e ], ] a b são intervalos semi-fechados ou semi-abertos Conjuntos ilimitados. Sendo a R existem dois tipos de intervalo de origem em a ilimitados à direita: O conjunto fechado [ a, + [ O conjunto aberto ] a, + [ O próprio conjunto R é também considerado um intervalo ilimitado, + e designado às vezes por ] [ Majorante e minorante. Seja K um subconjunto de R e a e b números reais: Diremos que b é majorante do conjunto K sse qualquer elemento de K for menor ou igual a b. 1ª aula teórica. pág. 3

4 Diremos que a é minorante de K sse a K = [ 1, 6] 1 é minorante, mas também o -2 é um minorante 6 é majorante mas também o 7 é majorante x, x K K = ] 0, + [ Neste caso qualquer número negativo é minorante (o 0 também é um minorante). Este conjunto não tem majorantes. R não tem majorantes nem minorantes Definições: Seja K R. K diz-se majorado (ou limitado superiormente, ou limitado à direita) sse tiver majorantes. K diz-se minorado (ou limitado inferiormente, ou limitado à esquerda) sse tiver minorantes. K diz-se limitado se for majorado e minorado. 2, , 4 { };{ 0 };{,,, } e ] [ K diz-se ilimitado se não for limitado.,,4 3, + ] + [ ; ] ] e [ [ Seja K R. Pode existir ou não em K um elemento maior de que todos os outros, isto é pode existir ou não um número real c que verifique conjuntamente as condições: c K e c é majorante de K. Se existir chama-se máximo do conjunto. Analogamente, o mínimo de K, se existe, é o minorante de K que pertence a K. Nota: O máximo ou mínimo a existir é único. 1ª aula teórica. pág. 4

5 Exemplos { 0, 1} tem máximo 1 e mínimo 0 [ 0, 1] tem máximo 1 e mínimo 0 ] 2, 9] tem máximo 9 e não tem mínimo (-2 é minorante mas não pertence ao conjunto) Os conjuntos R e não têm mínimo nem máximo Supremo e ínfimo Seja K R, designemos por V o conjunto de todos os seus majorantes (ter-se-á que V = sse k não for majorado). Chama-se supremo de K (e designa-se por sup K o elemento mínimo do conjunto V (no caso de V não ter mínimo dir-se-á que K não tem supremo). Nota: Quando o supremo de k existe, é único e pode pertencer ou não ao conjunto K; pertence certamente ao conjunto V, isto é, é um majorante de K (precisamente o menor de tais majorantes). Raciocínio idêntico pode ser feito para o ínfimo de K ou inf K, ou seja representa o maior dos minorantes. É óbvio que qualquer conjunto K que tenha máximo tem supremo, sendo sup K = max K; Assim como qualquer conjunto com mínimo tem ínfimo igual ao mínimo inf K = min K. sup[ 0, 1] =max[ 0, 1] = 1 ; inf[ 0, 1] =min[ 0, 1] = 0 sup ] 0, 1[ = 1 ; inf ] [ 0, 1 = 0 Nota: No intervalo aberto ] 0, 1[ não existe máximo nem mínimo. 1ª aula teórica. pág. 5

6 2. Noções topológicas no conjunto dos reais Módulo, distância, vizinhança. Def.1.1 Seja x R, designa-se módulo ou valor absoluto ao real positivo (ou nulo), x x se = x se x 0 x < 0 Prop.1.2 * Sejam x e y, dois números reais, então: (1) x 0 (2) x x (3) x = x (4) xy = x y (5) se y 0, x = y (6) x + y x + y (7) x y x y (8) se n N, x y n x = n x Equações com módulos x = 0 x = 0 x = a x b = a x = a x = a x b = a x b = a * A demonstração destas propriedades encontra-se no livro do Prof. Campos Ferreira 1ª aula teórica. pág. 6

7 Inequações com módulos + Supondo a R e b R x < a x a x < a x > a a < x a x a a x < a x ] a, a[ x a x [ a, a] ], a[ ] a + [ ], a] [ a + [ x > a x > a x < a x, x a x a x a x, x < 0 x x 0 x = 0 x < b x x + 1 se x a) x + 1 = ( x + 1 ) se x + 1 < 0 b) x + 2 = 3 x + 2 = 3 x + 2 = 3 x = 5 x = 1 c) x + 2 < 3 3 < x + 2 < 3 5 < x < 1 d) x + 2 > 3 x + 2 < 3 x + 2 > 3 x < 5 x > 1 Def.1.3 Distância entre dois números reais Seja x, y R, define-se distância entre x e y, d( x, y) = x y Prop.1.4 * Sejam x, y, e z R e d a distância definida anteriormente então, são válidas as três propriedades: (1) d( x, y) 0 e d( x, y) = 0 sse x = y (2) d( x, y) d( y, x) = (simetria da distância) (3) d( x, z) d( x, y) + d( y, z) (desigualdade triangular) 1ª aula teórica. pág. 7

8 Def.1.5 Vizinhança Seja a um n.º real, dado um n.º ε > 0, designa-se por vizinhança de a, de raio ε, ao conjunto V ( a) = { x : d( x, a) < ε} x R : x a < ε Exemplo: 1 (5) = x V { : x 5 < 1} R ={ x R : 4 < x < 6} ε R = { } 2.2- Interior, exterior, fronteira, aderência e derivado de um conjunto. Prop.1.6 Seja A um subconjunto de números reais, A R, e b um número real. Diz-se que: (i) b é um ponto interior ao conjunto A se existir uma vizinhança de b contida em A, (isto é se existir ε >0 Tal que Vε ( b) A). (ii) b é um ponto exterior ao conjunto A se existir uma vizinhança de b disjunta de A isto é se existir ε >0 tal que Vε ( b) A =. (iii) b é um ponto fronteiro de A se b não for ponto interior nem ponto exterior de A. (iv) b é um ponto aderente de A se V ε ( b) A φ (v) b é um ponto de acumulação de A se V ε ( b) ( A { b} ) φ Faça a aplicação dos conhecimentos anteriores ao conjunto A A = 1,4 10 ] ] { } 1ª aula teórica. pág. 8

9 Def.1.7 Dado um conjunto A R, designa-se: (1) Interior de A, int(a) (ou o A), o conjunto das pontos interiores de A. (2) Exterior de A, ext(a), o conjunto dos pontos exteriores de A. (3) Fronteira de A, fr(a), o conjunto dos pontos fronteiros a A. (4) Aderência de A, ou fecho de A, o conjunto int(a) fr(a) e denota-se por A, ( A = A fr (A)) (5) Derivado de A, A, é o conjunto dos pontos de acumulação. (1) B = [ 0,1 ] ] 0,1[ 0,1 B =[ 0,1] B = [ 0,1 ] ],0[ ] 1 + [ int( B ) = fr(b)={ } ext (B) =, (2) X = int ( X ) = fr(x)= X = X = ext(x)=r (3) X =R int(x)=r fr(x)= X =R X =R ext (X)= 1ª aula teórica. pág. 9

10 Obs.: c c Sendo X o complementar do conjunto X ( X =R \X) c Qualquer que seja X R e X : c (i) int( X )=ext(x) c (ii) fr( X )=fr(x) (iii) int(x) X X X 2.3- Conjuntos abertos e conjuntos fechados. Conjuntos limitados. Def.1.8 Um conjunto A R diz-se aberto se coincide com o interior (A= A) e A R diz-se fechado se coincidir com o fecho ( A = A). A=] 0,5[ A é aberto B=[ 0,3] B é fechado C=] 0,5] C não é aberto nem fechado Def.1.9 Conjunto limitado Um conjunto A R diz-se limitado se, dado um elemento b A, + existe ε R tal que A Vε (b). Caso contrário diz-se que A é ilimitado. 4 (1) B=[ 5,3[ ] 10,100[ { π,10 } B é limitado (2) C= ],π ] C não é limitado, diz-se então que é ilimitado. 1ª aula teórica. pág. 10

Licenciatura em Ciências da Computação 2010/2011

Licenciatura em Ciências da Computação 2010/2011 Cálculo Licenciatura em Ciências da Computação 2010/2011 Departamento de Matemática e Aplicações (DMA) Universidade do Minho Carla Ferreira caferrei@math.uminho.pt Gab. EC 3.22 Telef: 253604090 Horário

Leia mais

CAPÍTULO II NOÇÕES TOPOLÓGICAS EM R

CAPÍTULO II NOÇÕES TOPOLÓGICAS EM R CAPÍTULO II NOÇÕES TOPOLÓGICAS EM R 1. Distância e vizinhanças Ao número real não negativo d(x, y) = x y chama-se distância entre os números reais x e y. São imediatas as seguintes propriedades: P1 : d(x,

Leia mais

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c

Números Reais. Víctor Arturo Martínez León b + c ad + bc. b c Números Reais Víctor Arturo Martínez León (victor.leon@unila.edu.br) 1 Os números racionais Os números racionais são os números da forma a, sendo a e b inteiros e b 0; o conjunto b dos números racionais

Leia mais

Noções Topológicas em R n

Noções Topológicas em R n Noções Topológicas em R n Revisão - norma e distância em R n Chama-se norma Euclideana em R n à norma associada ao produto interno canónico em R n, isto é, à função definida por PP : R n v R x v PxP x

Leia mais

LCC 2006/2007 Ana Jacinta Soares. Notas sobre a disciplina

LCC 2006/2007 Ana Jacinta Soares. Notas sobre a disciplina Cálculo LCC 2006/2007 Ana Jacinta Soares Notas sobre a disciplina Programa Resumido Capítulo I Capítulo II Capítulo III Capítulo III Capítulo IV Tópicos sobre o corpo dos números reais. Sucessões e séries

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

O Corpo completo dos Números Reais

O Corpo completo dos Números Reais O Corpo completo dos Números Reais Márcio Nascimento da Silva 15 de janeiro de 2009 Resumo Neste trabalho definimos uma estrutura algébrica chamada corpo e a partir de fatos elementares (axiomas), deduzimos

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

Matemática Conjuntos - Teoria

Matemática Conjuntos - Teoria Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

Monotonia de uma função Dominar os conceitos. Função Par e Função Impar. Fazer exercícios.

Monotonia de uma função Dominar os conceitos. Função Par e Função Impar. Fazer exercícios. p-p6 : Generalidades sobre funções reais de variável real. Conceito de Ler com atenção. Monotonia de uma função Dominar os conceitos. Função Par e Função Impar. Fazer eercícios. Função Periódica. Conceito

Leia mais

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Números - Aula 03 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 28 de Fevereiro de 2014 Primeiro Semestre de 2014 Turma 2013106 - Engenharia Mecânica Corpos Vimos que o

Leia mais

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se

Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:

Leia mais

Conjuntos e sua Representação

Conjuntos e sua Representação Conjuntos e sua Representação Professor: Nuno Rocha nuno.ahcor@gmail.com Conjuntos Um conjunto é o agrupamento de vários elementos que possuem características semelhantes. Exemplos de conjuntos: Países

Leia mais

CAPÍTULO I NÚMEROS REAIS

CAPÍTULO I NÚMEROS REAIS CAPÍTULO I NÚMEROS REAIS 1. Introdução Admite-se o leitor já familiarizado com as propriedades básicas do corpo ordenado e completo dos números reais, razão pela qual nos limitaremos a apresentar alguns

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA

OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA Professora: Elisandra Figueiredo OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA DEFINIÇÃO 1 Sendo E um conjunto não vazio, toda aplicação f : E E E recebe o nome de operação sobre E (ou em E) ou lei de composição

Leia mais

Eduardo. Matemática Matrizes

Eduardo. Matemática Matrizes Matemática Matrizes Eduardo Definição Tabela de números dispostos em linhas e colunas. Representação ou Ordem da Matriz Se uma matriz A possui m linhas e n colunas, dizemos que A tem ordem m por n e escrevemos

Leia mais

1.3 CÁLCULO DOS VALORES APROXIMADOS

1.3 CÁLCULO DOS VALORES APROXIMADOS 1.3 CÁLCULO DOS VALORES APROXIMADOS 302 Página em branco 1.3 CÁLCULO DOS VALORES APROXIMADOS 1. - Consideremos uma recta orientada, sobre a qual se escreveu um ponto para origem e um comprimento para unidade.

Leia mais

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma

Leia mais

Álgebra Moderna Profª Ana Paula OPERAÇÕES

Álgebra Moderna Profª Ana Paula OPERAÇÕES Álgebra Moderna Profª Ana Paula OPERAÇÕES Definição 1: Sendo E. Toda aplicação f : E E E recebe o nome de operação sobre E (ou em E) ou lei de composição interna sobre E (ou em E). Notação: f : E E E fx,

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Análise I Solução da 1ª Lista de Exercícios

Análise I Solução da 1ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Matemática Análise I 0- Solução da ª Lista de Eercícios. ATENÇÃO: O enunciado

Leia mais

Aula 4 Aula 5 Aula 6. Ana Carolina Boero. Página:

Aula 4 Aula 5 Aula 6. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Números naturais Como somos apresentados aos números? Num primeiro momento, aprendemos

Leia mais

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)

Leia mais

Instituto Politécnico de Bragança Escola Superior de Educação. Curso de Professores do Ensino Básico Variante de Matemática e Ciências da Natureza

Instituto Politécnico de Bragança Escola Superior de Educação. Curso de Professores do Ensino Básico Variante de Matemática e Ciências da Natureza Curso de Professores do Ensino Básico Variante de Matemática e Ciências da Natureza Ano Lectivo: 2005/2006 Análise Infinitesimal I Referências Teóricas e Actividades Professor Carlos M. Mesquita Morais

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 10.º ano Ano Letivo de 2015/2016 Manual adotado: Máximo 10 Matemática A 10.º ano Maria Augusta Ferreira

Leia mais

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x

(A1) As operações + e são comutativas, ou seja, para todo x e y em A, x + y = y + x e x y = y x Notas de aula de MAC0329 (2003) 17 3 Álgebra Booleana Nesta parte veremos uma definição formal de álgebra booleana, a qual é feita via um conjunto de axiomas (ou postulados). Veremos também algumas leis

Leia mais

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 11º ano Ano Letivo

Leia mais

QUERIDO(A) ALUNO(A):

QUERIDO(A) ALUNO(A): 1 QUERIDO(A) ALUNO(A): SEJA BEM-VINDO AO CURSO LIVRE MATEMÁTICA PARA CONCURSOS I. ESTE CURSO OBJETIVA PRIORITARIAMENTE QUE VOCÊ DESENVOLVA COMPETÊNCIAS SIGNIFICATIVAS ATRAVÉS DOS TEMAS ABORDADOS PARA USO

Leia mais

Complementos sobre Números Complexos

Complementos sobre Números Complexos Complementos sobre Números Complexos Ementa 1 Introdução Estrutura Algébrica e Completude 1 O Corpo dos números complexos Notações 3 Interpretação Geométrica e Completude de C 4 Forma Polar de um Número

Leia mais

Escola Superior de Tecnologia e Gestão de Mirandela Instituto Politécnico de Bragança. Licenciatura em Marketing. Unidade Curricular: Matemática

Escola Superior de Tecnologia e Gestão de Mirandela Instituto Politécnico de Bragança. Licenciatura em Marketing. Unidade Curricular: Matemática Escola Superior de Tecnologia e Gestão de Mirandela Instituto Politécnico de Bragança Licenciatura em Marketing Unidade Curricular: Matemática 2007 / 2008 1 Definir um conjunto Diz-se que um conjunto A

Leia mais

MAT Análise Real - 1 semestre de 2014 Docente: Prof. Dr. Pierluigi Benevieri Notas das aulas e exercícios sugeridos - Atualizado 9.11.

MAT Análise Real - 1 semestre de 2014 Docente: Prof. Dr. Pierluigi Benevieri Notas das aulas e exercícios sugeridos - Atualizado 9.11. MAT 206 - Análise Real - semestre de 204 Docente: Prof. Dr. Pierluigi Benevieri Notas das aulas e exercícios sugeridos - Atualizado 9..204. Segunda-feira, 7 de fevereiro de 204 Apresentação do curso. www.ime.usp.br/

Leia mais

CURSO PRF 2017 MATEMÁTICA

CURSO PRF 2017 MATEMÁTICA AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem

Leia mais

Análise Matemática I 1 o Semestre de 2004/05 LEAero, LEBiom, LEFT e LMAC Exercícios para as aulas práticas

Análise Matemática I 1 o Semestre de 2004/05 LEAero, LEBiom, LEFT e LMAC Exercícios para as aulas práticas Análise Matemática I o Semestre de 2004/05 LEAero LEBiom LEFT e LMAC Eercícios para as aulas práticas I Elementos de Lógica e Teoria dos Conjuntos (20-24/9/2004) (Eercício 2 de [3]) Prove que quaisquer

Leia mais

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem

Leia mais

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x

LIMITES e CONTINUIDADE de FUNÇÕES. : R R + o x x LIMITES e CONTINUIDADE de FUNÇÕES Noções prévias 1. Valor absoluto de um número real: Chama-se valor absoluto ou módulo de um número real ao número x tal que: x se x 0 x = x se x < 0 Está assim denida

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Escolas João de Araújo Correia ORGANIZAÇÃO DO ANO LETIVO 16 17 GESTÃO CURRICULAR DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA A 11º ANO 1º PERÍODO ---------------------------------------------------------------------------------------------------------------------

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA 1 a LISTA DE EXERCÍCIOS DE MAT 17 1. Suponha que uma força de 1 newtons é aplicada em um objeto ao longo do

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

UNIVERSIDADE ESTADUAL DO PARANÁ NOTAS DE AULA: ANÁLISE REAL. Profa.: Gislaine Aparecida Periçaro Curso: Matemática, 4º ano

UNIVERSIDADE ESTADUAL DO PARANÁ NOTAS DE AULA: ANÁLISE REAL. Profa.: Gislaine Aparecida Periçaro Curso: Matemática, 4º ano UNIVERSIDADE ESTADUAL DO PARANÁ NOTAS DE AULA: ANÁLISE REAL Profa.: Gislaine Aparecida Periçaro Curso: Matemática, 4º ano CAMPO MOURÃO 203 Capítulo Conjuntos e Funções Neste capítulo vamos fazer uma breve

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500. Planificação Anual /Critérios de avaliação Disciplina: Matemática A _ 10º ano _ CCH 2015/2016 AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Início

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 2015-2016 DISCIPLINA / ANO: Matemática A 10ºano de escolaridade MANUAL ADOTADO: NOVO ESPAÇO 10 GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

1. CONJUNTOS NUMÉRICOS

1. CONJUNTOS NUMÉRICOS . CONJUNTOS NUMÉRICOS.. INTRODUÇÃO Uma exposição sistemática dos conjuntos numéricos, utilizados na Matemática, pode ser feita a partir dos números usados para contar, chamados de números naturais. Estes

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

Sucessões. Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. ou Ÿu n.

Sucessões. Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. ou Ÿu n. Sucessões Definição: Sucessão de números reais é qualquer aplicação do conjunto dos naturais, N, no conjunto dos reais, R. Notações: Ÿu n nn, Ÿu n n ou Ÿu n. u n v termo geral da sucessão Exemplos importantes:

Leia mais

Parte 1. Conjuntos finitos, enumeráveis e

Parte 1. Conjuntos finitos, enumeráveis e Parte 1 Conjuntos finitos, enumeráveis e não-enumeráveis Georg Ferdinand Ludwig Philipp Cantor (1845-1818) Rússia. A descoberta de que há diversos tipos de infinito deve-se a Georg Cantor. Mas, para os

Leia mais

ESTRUTURAS ALGÉBRICAS FICHA DE EXERCÍCIOS

ESTRUTURAS ALGÉBRICAS FICHA DE EXERCÍCIOS FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av de Moçambique, km 1, Tel: +58 1401078, Fa: +58 140108, Maputo ESTRUTURAS ALGÉBRICAS -01 FICHA DE EXERCÍCIOS

Leia mais

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita

Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita Introdução à Teoria dos Números - Notas 1 Os Princípios da Boa Ordem e de Indução Finita 1 Preliminares Neste curso, prioritariamente, estaremos trabalhando com números inteiros mas, quando necessário,

Leia mais

Capítulo 5. séries de potências

Capítulo 5. séries de potências Capítulo 5 Séries numéricas e séries de potências Inicia-se o capítulo com a definição de série numérica e com oção de convergência de séries numéricas, indicando-se exemplos, em particular o exemplo da

Leia mais

Aula 1: Conjunto dos Números Inteiros

Aula 1: Conjunto dos Números Inteiros Aula 1: Conjunto dos Números Inteiros 1 Introdução Observe que, no conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,..., a operação de subtração nem sempre é possível. a) 5 3 = 2 (é possível: 2 N) b)

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

1.1 Construção Axiomática do Corpo R

1.1 Construção Axiomática do Corpo R 1.1 Construção Axiomática do Corpo R Devido à sua importância fundamental, faremos aqui breves referências a algumas idéias que conduziram à construção dos números reais. Dentre as várias formas de construção

Leia mais

Gabarito da Primeira Prova MAT0234 Análise Matemática I Prof. Daniel Victor Tausk 13/09/2011

Gabarito da Primeira Prova MAT0234 Análise Matemática I Prof. Daniel Victor Tausk 13/09/2011 Gabarito da Primeira Prova MAT0234 Análise Matemática I Prof. Daniel Victor Tausk 13/09/2011 Questão 1. Sejam X, X conjuntos e φ : X X uma função. (a) (valor 1,25 pontos) Mostre que se A é uma σ-álgebra

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO AULA 05 RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;

Leia mais

Então (τ x, ) é um conjunto dirigido e se tomarmos x U U, para cada U vizinhança de x, então (x U ) U I é uma rede em X.

Então (τ x, ) é um conjunto dirigido e se tomarmos x U U, para cada U vizinhança de x, então (x U ) U I é uma rede em X. 1. Redes Quando trabalhamos no R n, podemos testar várias propriedades de um conjunto A usando seqüências. Por exemplo: se A = A, se A é compacto, ou se a função f : R n R m é contínua. Mas, em espaços

Leia mais

Definimos como conjunto uma coleção qualquer de elementos.

Definimos como conjunto uma coleção qualquer de elementos. Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

da Teoria do conjuntos

da Teoria do conjuntos UNIVERSIDADE FEDERAL DE SÃO CARLOS Centro de Ciências Exatas e Tecnologia - CCET Departamento de Matemática Topologia do ponto de vista da Teoria do conjuntos Aluna: Natalia de Barros Gonçalves Orientador:

Leia mais

Algoritmos geométricos

Algoritmos geométricos Algoritmos geométricos introdução a conceitos básicos de geometria computacional que serão abordados de forma mais avançada na disciplina Computação Gráfica disciplina de computação gráfica arquitetura

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Professor conteudista: Renato Zanini

Professor conteudista: Renato Zanini Matemática Básica Professor conteudista: Renato Zanini Sumário Matemática Básica Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7

Leia mais

Conjuntos Numéricos Conjunto dos números naturais

Conjuntos Numéricos Conjunto dos números naturais Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

Este material é apenas um resumo de parte do conteúdo da disciplina.

Este material é apenas um resumo de parte do conteúdo da disciplina. Aviso Este material é apenas um resumo de parte do conteúdo da disciplina. O material completo a ser estudado encontra-se no Capítulo 11 - Seção 1.3 do livro texto da disciplina: Aritmética, A. Hefez,

Leia mais

Aula 1. e o conjunto dos inteiros é :

Aula 1. e o conjunto dos inteiros é : Aula 1 1. Números reais O conjunto dos números reais, R, pode ser visto como o conjunto dos pontos da linha real, que serão em geral denotados por letras minúsculas: x, y, s, t, u, etc. R é munido de quatro

Leia mais

dia 10/08/2010

dia 10/08/2010 Número complexo Origem: Wikipédia, a enciclopédia livre. http://pt.wikipedia.org/wiki/n%c3%bamero_complexo dia 10/08/2010 Em matemática, os números complexos são os elementos do conjunto, uma extensão

Leia mais

UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS

UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS 1 UNIVERSIDADE SEVERINO SOMBRA NIVELAMENTO EM MATEMÁTICA 1 PROF. ILYDIO SÁ UNIDADE 1: OS NÚMEROS REAIS Para esta primeira unidade de nosso curso, que adaptamos a partir de material utilizado em curso de

Leia mais

Cálculo com expressões que envolvem radicais

Cálculo com expressões que envolvem radicais Escola Secundária de Aljustrel Material de apoio para o 11. o Ano Ano Lectivo 00/003 Cálculo com expressões que envolvem radicais José Paulo Coelho Abril de 003 ... Índice... 1 Radicais: definição e propriedades.

Leia mais

Construção da Matemática e formalização do número natural

Construção da Matemática e formalização do número natural Construção da Matemática e formalização do número natural 1. O número Os números são um dos dois objetos principais de que se ocupa a Matemática. O outro é o espaço, junto com as figuras geométricas nele

Leia mais

ENFOQUE USANDO CORTES DE DEDEKIND

ENFOQUE USANDO CORTES DE DEDEKIND Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação eletrônica do KIT http://www.dma.uem.br/kit CONSTRUÇÃO DOS REAIS: UM ENFOQUE

Leia mais

Limites de Funções de Variáveis Complexas

Limites de Funções de Variáveis Complexas Limites de Funções de Variáveis Complexas AULA 2 META: Introduzir o conceito de limite de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir limites de

Leia mais

inteiros positivos). ˆ Uma matriz com m linhas e n colunas diz-se do tipo m n. Se m = n ( matriz quadrada), também se diz que a matriz é de ordem n.

inteiros positivos). ˆ Uma matriz com m linhas e n colunas diz-se do tipo m n. Se m = n ( matriz quadrada), também se diz que a matriz é de ordem n. Matrizes noções gerais e notações Definição Designa-se por matriz de números reais a um quadro do tipo a 11 a 12... a 1n a 21 a 22... a 2n...... a m1 a m2... a mn onde os elementos a ij (i = 1, 2,...,

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

INSTITUTO PUPILOS DO EXÉRCITO. Apoio ao Exame de Matemática A - Programa

INSTITUTO PUPILOS DO EXÉRCITO. Apoio ao Exame de Matemática A - Programa INSTITUTO PUPILOS DO EXÉRCITO Apoio ao Exame de Matemática A - Programa 10.º ANO Lógica e Teoria de Conjuntos Duração: 20 horas Proposições Valor lógico de uma proposição; Princípio de não contradição;

Leia mais

Operações Fundamentais com Números

Operações Fundamentais com Números Capítulo 1 Operações Fundamentais com Números 1.1 QUATRO OPERAÇÕES Assim como na aritmética, quatro operações são fundamentais em álgebra: adição, subtração, multiplicação e divisão. Quando dois números

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

ESPAÇOS VETORIAIS. Álgebra Linear

ESPAÇOS VETORIAIS. Álgebra Linear Álgebra Linear ESPAÇOS VETORIAIS Com doze andares de altura e pesando 75 toneladas, o US Columbia partiu majestosamente de sua plataforma de lançamento numa manhã fresca num domingo de abril de 1981, em

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há 1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

(b) (V)[ ](F)[ ] O conjunto dos números naturais é formado por todos os

(b) (V)[ ](F)[ ] O conjunto dos números naturais é formado por todos os Cálculo I Lista zero, 25 de dezembro de 2014 Números racionais tarcisio.praciano@gmail.com prof. T. Praciano-Pereira Sobral Matemática página www.calculo.sobralmatematica.org 25 de dezembro de 2014 produzido

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6

MÓDULO II. Operações Fundamentais em Z. - Sinais iguais das parcelas, somam-se conservando o sinal comum. Exemplo: 2 4 = 6 1 MÓDULO II Nesse Módulo vamos aprofundar as operações em Z. Para introdução do assunto, vamos percorrer a História da Matemática, lendo os textos dispostos nos links a seguir: http://www.vestibular1.com.br/revisao/historia_da_matematica.doc

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Fundamentos de Análise Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Prove que para todo x 0 IR

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Noções Básicas de Funções em R n Topologia DMAT Noções Básicas sobre funções em n Introdução Vamos generalizar os conceitos de limite, continuidade e diferenciabilidade,

Leia mais

Construção dos Números Reais

Construção dos Números Reais 1 Universidade de Brasília Departamento de Matemática Construção dos Números Reais Célio W. Manzi Alvarenga Sumário 1 Seqüências de números racionais 1 2 Pares de Cauchy 2 3 Um problema 4 4 Comparação

Leia mais

Sumários Alargados. Recomenda-se a leitura de: Capítulos 0 e 1 de: J. Lewin/M. Lewin, An Introduction to Mathematical Analysis;

Sumários Alargados. Recomenda-se a leitura de: Capítulos 0 e 1 de: J. Lewin/M. Lewin, An Introduction to Mathematical Analysis; Sumários Alargados Capítulo I: Fundamentos o Rigor e a Demonstração em Análise 1. Operadores lógicos e quantificadores Recomenda-se a leitura de: Capítulos 0 e 1 de: J. Lewin/M. Lewin, An Introduction

Leia mais

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo).

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 1 a Lista de Exercícios de Álgebra II - MAT 231 1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 2. Seja A um anel associativo. Dado a A, como você definiria a m, m IN?

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu wwwestvipvpt/paginaspessoais/lucas lucas@matestvipvpt 007/008 Álgebra Linear e Geometria Analítica

Leia mais