Professora FLORENCE. Resposta:

Tamanho: px
Começar a partir da página:

Download "Professora FLORENCE. Resposta:"

Transcrição

1 1. (Uerj 01) Uma pessoa empurrou um carro por uma distância de 6 m, aplicando uma força F de mesma direção e sentido do deslocamento desse carro. O gráfico abaixo representa a variação da intensidade de F, em newtons, em função do deslocamento d, em metros. Desprezando o atrito, o trabalho total, em joules, realizado por F, equivale a: a) 117 b) 130 c) 143 d) 156 [D] No triângulo OAB: No triângulo OAC: a b 6 a b 676. (I) a 8 h. (II) No triângulo ABC: b 18 h. (III) Substituindo (II) e (III) em (I): 8 h 18 h 676 h 88 h 144 h 1 m. O trabalho da força pela força F W F é numericamente igual à área entre a linha do gráfico e o eixo do deslocamento. 6 1 W F WF 156 J. Página 1 de 13

2 . (G1 - ifba 01) Um corpo é abandonado do alto de um plano inclinado, conforme a figura abaixo. Considerando as superfícies polidas ideais, a resistência do ar nula e 10 m/s como a aceleração da gravidade local, determine o valor aproximado da velocidade com que o corpo atinge o solo: a) v = 84 m/s b) v = 45 m/s c) v = 5 m/s d) v = 10 m/s e) v = 5 m/s [D] Pela conservação da Energia Mecânica: mv EMec E 0 Mec m g h A v g h 10 5 v 10 m / s. 3. (Ufsm 01) Um estudante de Educação Física com massa de 75 kg se diverte numa rampa de skate de altura igual a 5 m. Nos trechos A, B e C, indicados na figura, os módulos das velocidades do estudante são v A, v B e v C, constantes, num referencial fixo na rampa. Considere g = 10 m/s e ignore o atrito. São feitas, então, as seguintes afirmações: I. v B = v A + 10 m/s. II. Se a massa do estudante fosse 100 kg, o aumento no módulo de velocidade v B seria 4/3 maior. III. v C = v A. Está(ão) correta(s) a) apenas I. b) apenas II. c) apenas III. d) apenas I e II. e) apenas I e III. Página de 13

3 [C] Analisando cada uma das afirmações: I. Incorreta. O sistema é conservativo. Então, tomando como referencial o plano horizontal que passa pelo ponto B. temos: B A mvb mv E A Mec E Mec mg h vb va g h vb va 10 5 vb va 100 II. Incorreta. Como foi demonstrado na afirmação anterior, a velocidade não depende da massa. III. Correta. Como os pontos A e C estão na mesma altura, as velocidades nesses pontos tem mesmo valor: v C = v A. 4. (G1 - ifsc 01) O bate-estacas é um dispositivo muito utilizado na fase inicial de uma construção. Ele é responsável pela colocação das estacas, na maioria das vezes de concreto, que fazem parte da fundação de um prédio, por exemplo. O funcionamento dele é relativamente simples: um motor suspende, através de um cabo de aço, um enorme peso (martelo), que é abandonado de uma altura, por exemplo, de 10 m, e que acaba atingindo a estaca de concreto que se encontra logo abaixo. O processo de suspensão e abandono do peso sobre a estaca continua até a estaca estar na posição desejada. É CORRETO afirmar que o funcionamento do bate-estacas é baseado no princípio de: a) transformação da energia mecânica do martelo em energia térmica da estaca. b) conservação da quantidade de movimento do martelo. c) transformação da energia potencial gravitacional em trabalho para empurrar a estaca. d) colisões do tipo elástico entre o martelo e a estaca. e) transformação da energia elétrica do motor em energia potencial elástica do martelo. [C] Durante a queda do martelo, há transformação de energia potencial gravitacional em energia cinética. No contanto com a estaca, o martelo aplica força sobre ela. Essa força realiza trabalho, empurrando a estaca. Página 3 de 13

4 5. (Unesp 01) Uma pessoa, com 80 kg de massa, gasta para realizar determinada atividade física a mesma quantidade de energia que gastaria se subisse diversos degraus de uma escada, equivalente a uma distância de 450 m na vertical, com velocidade constante, num local onde g 10 m/s. A tabela a seguir mostra a quantidade de energia, em joules, contida em porções de massas iguais de alguns alimentos. Alimento Energia por porção (kj) espaguete 360 pizza de mussarela 960 chocolate 160 batata frita 1000 castanha de caju 400 Considerando que o rendimento mecânico do corpo humano seja da ordem de 5%, ou seja, que um quarto da energia química ingerida na forma de alimentos seja utilizada para realizar um trabalho mecânico externo por meio da contração e expansão de músculos, para repor exatamente a quantidade de energia gasta por essa pessoa em sua atividade física, ela deverá ingerir 4 porções de a) castanha de caju. b) batata frita. c) chocolate. d) pizza de mussarela. e) espaguete. [E] Dados: m = 80 kg; h = 450 m; g = 10 m/s ; = 5% = 0,5 = 1/4. A energia útil (E U ) nessa atividade a energia potencial gravitacional adquirida pela pessoa. E mgh J E 360 kj. U A energia total (E T ) liberada pelo organismo nessa atividade é: EU EU 360 E T ET E 1 T 4 E J. T U Consultando a tabela dada, concluímos que essa quantidade de energia corresponde à de 4 porções de espaguete. 6. (Unicamp 01) As eclusas permitem que as embarcações façam a transposição dos desníveis causados pelas barragens. Além de ser uma monumental obra de engenharia hidráulica, a eclusa tem um funcionamento simples e econômico. Ela nada mais é do que um elevador de águas que serve para subir e descer as embarcações. A eclusa de Barra Bonita, no rio Tietê, tem um desnível de aproximadamente 5 m. Qual é o aumento da energia potencial gravitacional quando uma embarcação de massa m 1, 10 kg é elevada na eclusa? a) 4,8 10 J b) c) d) 5 1, 10 J 5 3,0 10 J 6 3,0 10 J 4 Página 4 de 13

5 [D] P 4 6 E mgh 1, J. 7. (Uem 01) Sobre a energia mecânica e a conservação de energia, assinale o que for correto. 01) Denomina-se energia cinética a energia que um corpo possui, por este estar em movimento. 0) Pode-se denominar de energia potencial gravitacional a energia que um corpo possui por se situar a uma certa altura acima da superfície terrestre. 04) A energia mecânica total de um corpo é conservada, mesmo com a ocorrência de atrito. 08) A energia total do universo é sempre constante, podendo ser transformada de uma forma para outra; entretanto, não pode ser criada e nem destruída. 16) Quando um corpo possui energia cinética, ele é capaz de realizar trabalho = 7. 01) Correta. Energia cinética é energia mecânica associada ao movimento. 0) Correta. Energia potencial gravitacional é energia mecânica de posição, dependendo, portanto, da altura em relação ao plano horizontal de referência. 04) Incorreta. A força de atrito pode atuar tanto como força dissipativa (transformando energia mecânica em térmica) ou como força incrementativa (transferindo energia mecânica ao corpo). 08) Correta. É o que afirma o princípio da conservação da energia. 16) Correta. De acordo com o teorema da energia cinética, o trabalho da resultante é igual à variação da energia cinética. OBS: nessa afirmativa há uma imprecisão, pois em Física o trabalho é realizado pela força que o corpo aplica e não pelo corpo. 8. (G1 - ifsp 01) Arlindo é um trabalhador dedicado. Passa grande parte do tempo de seu dia subindo e descendo escadas, pois trabalha fazendo manutenção em edifícios, muitas vezes no alto. Página 5 de 13

6 Considere que, ao realizar um de seus serviços, ele tenha subido uma escada com velocidade escalar constante. Nesse movimento, pode-se afirmar que, em relação ao nível horizontal do solo, o centro de massa do corpo de Arlindo a) perdeu energia cinética. b) ganhou energia cinética. c) perdeu energia potencial gravitacional. d) ganhou energia potencial gravitacional. e) perdeu energia mecânica. [D] A expressão da energia potencial é: E Pot = m g h. Se ele está subindo, a altura está aumentando, portanto, o centro de massa do corpo do Arlindo está ganhando energia potencial. 9. (Espcex (Aman) 011) Um bloco, puxado por meio de uma corda inextensível e de massa desprezível, desliza sobre uma superfície horizontal com atrito, descrevendo um movimento retilíneo e uniforme. A corda faz um ângulo de 53 com a horizontal e a tração que ela transmite ao bloco é de 80 N. Se o bloco sofrer um deslocamento de 0 m ao longo da superfície, o trabalho realizado pela tração no bloco será de: (Dados: sen 53 = 0,8 e cos 53 = 0,6) a) 480 J b) 640 J c) 960 J d) 180 J e) 1600 J [C] Aplicação de fórmula: W F.d.cos 80x0x0,6 960J Página 6 de 13

7 10. (Ufsm 011) Não se percebe a existência do ar num dia sem vento; contudo, isso não significa que ele não existe. Um corpo com massa de kg é abandonado de uma altura de 10m, caindo verticalmente num referencial fixo no solo. Por efeito da resistência do ar, 4J da energia mecânica do sistema corpo-terra se transformam em energia interna do ar e do corpo. Considerando o módulo de aceleração da gravidade como g= 10m/s, o corpo atinge o solo com velocidade de módulo, em m/s, de a) 1. b) 14. c) 15. d) 16. e) 18. [B] Como foram dissipados 4 J de energia mecânica do corpo, o trabalho das forças não conservativas é igual a 4 J. Assim, aplicando o teorema da energia cinética, vem: final inicial mv Wv E cin Wv Wv E R P F cin E cin m g h 4 não conserv v v 196 v 14 m / s. 11. (G1 - ifce 011) Um bloco de massa igual a 10 kg é empurrado, a partir do repouso, por uma força resultante constante de 10 N, que atua na mesma direção do movimento. O trabalho realizado pela força e a velocidade desse bloco, após percorrer 1,5 metros, valem, respectivamente, a) 100 J e 15 m/s. b) 15 J e 100 m/s. c) 15 J e 5 m/s. d) 100 J e 5 m/s. e) 5 J e 15 m/s. [C] Dados: m = 10 kg; R = 10 N; S = 1,5 m. Calculando o trabalho da resultante: Wv F S 10 1,5 Wv 15 J. R R A velocidade pode ser calculada pelo teorema da energia cinética: m v mv0 10 v Wv E R Cin 15 0 v 5 m / s. 1. (Fuvest 011) Um esqueitista treina em uma pista cujo perfil está representado na figura abaixo. O trecho horizontal AB está a uma altura h =,4 m em relação ao trecho, também horizontal, CD. O esqueitista percorre a pista no sentido de A para D. No trecho AB, ele está com velocidade constante, de módulo v = 4 m/s; em seguida, desce a rampa BC, percorre o trecho CD, o mais baixo da pista, e sobe a outra rampa até atingir uma altura máxima H, em Página 7 de 13

8 relação a CD. A velocidade do esqueitista no trecho CD e a altura máxima H são, respectivamente, iguais a NOTE E ADOTE g = 10 m/s Desconsiderar: - Efeitos dissipativos. - Movimentos do esqueitista em relação ao esqueite. a) 5 m/s e,4 m. b) 7 m/s e,4 m. c) 7 m/s e 3, m. d) 8 m/s e,4 m. e) 8 m/s e 3, m. [E] Dados: h =,4 m; v AB = 4 m/s. Usando duas vezes a conservação da energia mecânica: AB CD mv EMec EMec AB mv mgh CD 4 vcd 10(, 4) vcd 64 v CD = 8 ms. CD E mvcd 8 EMec EMec mgh 10 H H = 3, m. 13. (Enem 011) Uma das modalidades presentes nas olimpíadas é o salto com vara. As etapas de um dos saltos de um atleta estão representadas na figura: Página 8 de 13

9 Desprezando-se as forças dissipativas (resistência do ar e atrito), para que o salto atinja a maior altura possível, ou seja, o máximo de energia seja conservada, é necessário que a) a energia cinética, representada na etapa I, seja totalmente convertida em energia potencial elástica representada na etapa IV. b) a energia cinética, representada na etapa II, seja totalmente convertida em energia potencial gravitacional, representada na etapa IV. c) a energia cinética, representada na etapa I, seja totalmente convertida em energia potencial gravitacional, representada na etapa III. d) a energia potencial gravitacional, representada na etapa II, seja totalmente convertida em energia potencial elástica, representada na etapa IV. e) a energia potencial gravitacional, representada na etapa I, seja totalmente convertida em energia potencial elástica, representada na etapa III. [C] Pela conservação da energia mecânica, toda energia cinética que o atleta adquire na etapa I, é transformada em energia potencial na etapa III, quando ele praticamente para no ar. OBS: Cabe ressaltar que o sistema é não conservativo (incrementativo), pois no esforço para saltar, o atleta consome energia química do seu organismo, transformando parte em energia mecânica, portanto, aumentando a energia mecânica do sistema. 14. (G1 - ifsp 011) Um atleta de salto com vara, durante sua corrida para transpor o obstáculo a sua frente, transforma a sua energia em energia devido ao ganho de altura e consequentemente ao/à de sua velocidade. As lacunas do texto acima são, correta e respectivamente, preenchidas por: a) potencial cinética aumento. b) térmica potencial diminuição. c) cinética potencial diminuição. d) cinética térmica aumento. e) térmica cinética aumento. [C] Página 9 de 13

10 No salto com vara, o atleta transforma energia cinética em energia potencial gravitacional. Devido ao ganho de altura, ocorre diminuição de sua velocidade. TEXTO PARA A PRÓXIMA QUESTÃO: Dados: Aceleração da gravidade: 10 m/s 3 3 Densidade da água: 10 kg/m Velocidade da luz no vácuo: 30º 37º 45º sen 0,50 0,60 0,71 cos 0,86 0,80 0, m/s 15. (Ufpe 011) O gráfico seguinte mostra como a energia potencial de uma partícula varia com a sua posição. O valor da energia mecânica da partícula, E, também aparece no gráfico. A partícula de massa 0,1 kg se move em linha reta. Todas as forcas que atuam na partícula são conservativas. Obtenha a velocidade máxima da partícula, em m/s. M Dados: m = 0,1 kg; E M = 45 J. Como o sistema é conservativo, a velocidade é máxima no ponto onde a energia cinética máxima, ou seja, onde a energia potencial é mínima. Analisando o gráfico, o mínimo valor da energia potencial é zero quando a energia cinética é máxima, igual a 45 J. Assim: máx 0,1 vmáx cinmáx mv 45 E 45 vmáx 900 0,1 v 30m / s. máx 16. (Fgv 010) Contando que ao término da prova os vestibulandos da GV estivessem loucos por um docinho, o vendedor de churros levou seu carrinho até o local de saída dos candidatos. Para chegar lá, percorreu 800 m, metade sobre solo horizontal e a outra metade em uma ladeira de inclinação constante, sempre aplicando sobre o carrinho uma força de intensidade 30 N, paralela ao plano da superfície sobre a qual se deslocava e na direção do movimento. Levando em conta o esforço aplicado pelo vendedor sobre o carrinho, considerando todo o traslado, pode-se dizer que, Página 10 de 13

11 a) na primeira metade do trajeto, o trabalho exercido foi de 1 kj, enquanto que, na segunda metade, o trabalho foi maior. b) na primeira metade do trajeto, o trabalho exercido foi de 5 kj, enquanto que, na segunda metade, o trabalho foi menor. c) na primeira metade do trajeto, o trabalho exercido foi nulo, assumindo, na segunda metade, o valor de 1 kj. d) tanto na primeira metade do trajeto como na segunda metade, o trabalho foi de mesma intensidade, totalizando 4 kj. e) o trabalho total foi nulo, porque o carrinho parte de um estado de repouso e termina o movimento na mesma condição. [D] Dados: F = 30 N; S = 800 m. O trabalho (W) de uma força constante ( F ) é dado pela expressão: W F S cos. Como a força é paralela ao deslocamento, = 0, cos = 1. Então: W F F 30 (800) = J = 4 kj. 17. (Pucrj 010) O Cristo Redentor, localizado no Corcovado, encontra-se a 710 m do nível no mar e pesa ton. Considerando-se g = 10 m/s, é correto afirmar que o trabalho total realizado para levar todo o material que compõe a estátua até o topo do Corcovado foi de, no mínimo: a) kj b) kj c) kj d) kj e) kj [E] Dados: m = ton = 1, kg; h = 710 m; g = 10 m/s. W = m g h = (1, ) (10) (710) = 8, J = J F W = kj. F 18. (G1 - cftsc 010) A ilustração abaixo representa um bloco apoiado sobre uma superfície horizontal com atrito, puxado por uma força F com velocidade constante. Com base na ilustração acima e na situação descrita no enunciado, é correto afirmar que: a) o trabalho realizado pela força F é nulo. b) o trabalho total realizado sobre o bloco é nulo. Página 11 de 13

12 c) o trabalho realizado pela força de atrito f é nulo. d) o trabalho realizado pela força de atrito f é positivo. e) o trabalho realizado pela força F é igual à variação da energia cinética do bloco. [B] O teorema da energia cinética afirma que o trabalho da resultante é igual à variação da energia cinética. Como a velocidade é constante, a variação da energia cinética é nula, sendo, então, nulo, o trabalho da resultante (trabalho total) realizado sobre o bloco. 19. (Ufpb 010) Um foguete de 1 tonelada de massa viaja com uma velocidade de 360 km/h em uma região do espaço onde as forças da gravidade são desprezíveis. Em um determinado momento, seus motores são acionados e, após a queima de 00 kg de combustível, sua velocidade passa a ser de 70 km/h. Com base no que foi exposto, é correto afirmar que o trabalho realizado sobre o foguete pelo motor, durante a queima do combustível, corresponde a: a) 4,7 x 10 7 J b) 1,1 x 10 7 J c) 1,5 x 10 7 J d) 1,4 x 10 7 J e) 1,9 x 10 7 J [B] Dados: m 1= kg; v 1= 360 km/h = 100 m/s; m = 800 kg; v = 70 km/h = 00 m/s. Aplicando o teorema da energia cinética: mv m1v Wres Ecin 1,6 10 0, Wres 1,1 10 J. 0. (Ufla 010) Um esquilo voador consegue planar do alto de uma árvore, a uma altura de 10 m até o chão, com velocidade constante de 5 m/s. Considerando a aceleração da gravidade g = 10 m/s e a massa do esquilo kg, é CORRETO afirmar que o trabalho da força de sustentação que atua sobre o esquilo ao longo desse deslocamento é de a) 50 J. b) 00 J. c) 0 J. d) 5 J. [B] Dados: v = 10 m/s; g = 10 m/s ; h = 10 m; m = kg. Página 1 de 13

13 Enquanto voa, no esquilo agem duas forças: o peso P e a força de sustentação Far do ar. Como a velocidade é constante, o trabalho da resultante R é nulo. Mas o trabalho da resultante é igual ao somatório dos trabalhos das forças atuantes. Assim: W 0 W W 0 m g h = W W R P Far Far Far (10) (10) W 00 J. Far Página 13 de 13

Lista de Exercícios 3ª Série Trabalho, Potência e Energia

Lista de Exercícios 3ª Série Trabalho, Potência e Energia 1) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em,0 min, ela realizaria um trabalho a) duas vezes

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Fgv 013) A montadora de determinado veículo produzido no Brasil apregoa que a potência do motor que equipa o carro é de 100 HP (1HP 750W). Em uma pista horizontal e retilínea de provas, esse veículo,

Leia mais

1) Uma caixa com um litro de leite tem aproximadamente 1,0 kg de massa.

1) Uma caixa com um litro de leite tem aproximadamente 1,0 kg de massa. 1) Uma caixa com um litro de leite tem aproximadamente 1,0 kg de massa. 2 Considerando g 10 m / s, se ela for levantada verticalmente, com velocidade constante, 10cm em 1,0 s, a potência desenvolvida será,

Leia mais

Dado: g 10 m / s a) 20 b) 16 c) 24 d) 38 e) 15

Dado: g 10 m / s a) 20 b) 16 c) 24 d) 38 e) 15 1. (Unicamp 016) Músculos artificiais feitos de nanotubos de carbono embebidos em cera de parafina podem suportar até duzentas vezes mais peso que um músculo natural do mesmo tamanho. Considere uma fibra

Leia mais

FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO

FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO Fixação 1) O bloco da figura, de peso P = 50N, é arrastado ao longo do plano horizontal pela força F de intensidade F = 100N. A força de

Leia mais

Rafael Machado dos Santos Assinatura do docente: Data: / /

Rafael Machado dos Santos Assinatura do docente: Data: / / Curso : Engenharia civil Disciplina: Física Geral e Experimental 1 Professor(a): Nome do Aluno(a): Lista de Exercícios 01) Um homem de massa 75 kg sobe uma escada com 15 degraus em 10 s. Cada degrau possui

Leia mais

FÍSICA - Lucas SALA DE ESTUDOS 2º TRIMESTRE Ensino Médio 3º ano classe: Prof.LUCAS MUNIZ Nome: nº

FÍSICA - Lucas SALA DE ESTUDOS 2º TRIMESTRE Ensino Médio 3º ano classe: Prof.LUCAS MUNIZ Nome: nº FÍSICA - Lucas SALA DE ESTUDOS º TRIMESTRE Ensino Médio 3º ano classe: Prof.LUCAS MUNIZ Nome: nº Sala de Estudos ENERGIA MECÂNICA, POTÊNCIA E ELETRODINÂMICA 1. (Espcex (Aman) 014) Uma esfera é lançada

Leia mais

Trabalho Mecânico - T = Fxd e área do gráfico Fxd

Trabalho Mecânico - T = Fxd e área do gráfico Fxd Trabalho Mecânico - T = Fxd e área do gráfico Fxd 1. (Pucrj 2015) Um elevador de 500 kg deve subir uma carga de 2,5 toneladas a uma altura de 20 metros, em um tempo inferior a 25 segundos. Qual deve ser

Leia mais

Aula de Exercícios Recuperação Paralela (Leis de Newton)

Aula de Exercícios Recuperação Paralela (Leis de Newton) Aula de Exercícios Recuperação Paralela (Leis de Newton) Exercício 1. (TAUBATÉ) Um automóvel viaja com velocidade constante de 72km/h em trecho retilíneo de estrada. Pode-se afirmar que a resultante das

Leia mais

Trabalho de uma força

Trabalho de uma força Questão 01 Um bloco de massa m desce escorregando por uma rampa inclinada, inicialmente com velocidade v, até atingir a base inferior da rampa com velocidade 2v, como mostra a figura. Sabendo que não há

Leia mais

PR1 FÍSICA - Lucas 1 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Leis de Newton e suas Aplicações

PR1 FÍSICA - Lucas 1 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Leis de Newton e suas Aplicações PR1 FÍSICA - Lucas 1 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Leis de Newton e suas Aplicações 1. (G1 - utfpr 01) Associe a Coluna I (Afirmação) com a Coluna II (Lei Física).

Leia mais

Capítulo TRABALHO E ENERGIA

Capítulo TRABALHO E ENERGIA Capítulo 6 TRABALHO E ENERGIA A B C DISCIPLINA DE FÍSICA CAPÍTULO 6 - TRABALHO E ENERGIA 6.1 Um bloco, com 20kg de massa, sobe uma rampa com 15º de inclinação e percorre 55,375 metros até parar. Os coeficientes

Leia mais

PLANO INCLINADO. a. a aceleração com que o bloco desce o plano; b. a intensidade da reação normal sobre o bloco;

PLANO INCLINADO. a. a aceleração com que o bloco desce o plano; b. a intensidade da reação normal sobre o bloco; PLANO INCLINADO 1. Um corpo de massa m = 10kg está apoiado num plano inclinado de 30 em relação à horizontal, sem atrito, e é abandonado no ponto A, distante 20m do solo. Supondo a aceleração da gravidade

Leia mais

Lista de Exercícios - Unidade 6 Aprendendo sobre energia

Lista de Exercícios - Unidade 6 Aprendendo sobre energia Lista de Exercícios - Unidade 6 Aprendendo sobre energia Energia Cinética e Potencial 1. (UEM 01) Sobre a energia mecânica e a conservação de energia, assinale o que for correto. (01) Denomina-se energia

Leia mais

Capítulo 13. Quantidade de movimento e impulso

Capítulo 13. Quantidade de movimento e impulso Capítulo 13 Quantidade de movimento e impulso Quantidade de movimento e impulso Introdução Neste capítulo, definiremos duas grandezas importantes no estudo do movimento de um corpo: uma caracterizada pela

Leia mais

(B) v = 45 m/s PROFESSOR: EQUIPE DE FÍSICA

(B) v = 45 m/s PROFESSOR: EQUIPE DE FÍSICA PROFESSOR: EQUIPE DE FÍSICA BANCO DE QUESTÕES - FÍSICA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================================== 01- Um corpo é abandonado

Leia mais

1º ANO 18 FÍSICA 1º Lista

1º ANO 18 FÍSICA 1º Lista Nome do aluno Turma Nº Questões Disciplina Trimestre Trabalho Data 1º ANO 18 FÍSICA 1º Lista LISTA EXTRA LANÇAMENTO VERTICAL, HORIZONTAL E OBLÍQUO 1. (UFPE-2002) A figura mostra a variação da velocidade

Leia mais

http://aprendendofisica.net/rede - @apfisica - http://www.cp2centro.net/

http://aprendendofisica.net/rede - @apfisica - http://www.cp2centro.net/ COLÉGIO PEDRO II - CAMPUS CENTRO Lista de Exercícios de Dinâmica 2 a. Série 2015 d.c Coordenador: Prof. Marcos Gonçalves Professor: Sérgio F. Lima 1) Determine as trações nas cordas 1 e 2 da figura abaixo.

Leia mais

XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA)

XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA) XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA) 1) Na Figura 1, uma esfera lisa pode ser lançada por três escorregadores polidos. Ordene os escorregadores de acordo com o trabalho que a força gravitacional

Leia mais

LISTA DE TRABALHO-ENERGIA-POTENCIA 2º TRI PARTE 2

LISTA DE TRABALHO-ENERGIA-POTENCIA 2º TRI PARTE 2 LISTA DE TRABALHO-ENERGIA-POTENCIA 2º TRI PARTE 2 1) (UEM 2012) Sobre a energia mecânica e a conservação de energia, assinale o que for correto. (01) Denomina-se energia cinética a energia que um corpo

Leia mais

MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS

MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS 1 MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS 1. (Ufrj) Dois blocos de massa igual a 4kg e 2kg, respectivamente, estão presos entre si por um fio inextensível e de massa desprezível. Deseja-se

Leia mais

a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B.

a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B. Prof. Renato SESI Carrão Física 1º. ano 2011 Lista de exercícios 1 (Aulas 13 a 24) *** Formulário *** v = Δx/Δt Δx = x f x i Δt = t f t i a = Δv/Δt Δv = v f v i F R = m.a g = 10 m/s 2 P = m.g F at = μ.n

Leia mais

Aula m s. a) J. b) 800 J. c) J. d) 0J. e) 900 J.

Aula m s. a) J. b) 800 J. c) J. d) 0J. e) 900 J. Aula 1. (G1 - ifsp 016) O revezamento da tocha olímpica é um evento que ocorre desde os jogos de Berlim 1936. Este rito é um retrato das cerimônias que um dia fizeram parte dos Jogos Olímpicos da Antiguidade.

Leia mais

Note e adote: - forças dissipativas devem ser ignoradas; - a aceleração local da gravidade é g. a) 2 m g h d / d. b) 2 m g h d / d

Note e adote: - forças dissipativas devem ser ignoradas; - a aceleração local da gravidade é g. a) 2 m g h d / d. b) 2 m g h d / d 1. (Fuvest 015) No desenvolvimento do sistema amortecedor de queda de um elevador de massa m, o engenheiro projetista impõe que a mola deve se contrair de um valor máximo d, quando o elevador cai, a partir

Leia mais

PLANO DE ESTUDO TRIMESTRE:1º

PLANO DE ESTUDO TRIMESTRE:1º C O L É G I O K E N N E D Y / R E D E P I T Á G O R A S PLANO DE ESTUDO TRIMESTRE:1º PLANO DE ESTUDO PROFESSOR:MARCÃO DATA DA AVALIAÇÃO: 30/09/16 CONTEÚDO(S) A SER(EM) COBRADO(S) NA AVALIAÇÃO: DISCIPLINA:

Leia mais

LISTA EXTRA - UERJ. Desprezando o atrito, o trabalho total, em joules, realizado por F, equivale a: a) 117 b) 130 c) 143 d) 156

LISTA EXTRA - UERJ. Desprezando o atrito, o trabalho total, em joules, realizado por F, equivale a: a) 117 b) 130 c) 143 d) 156 1. (Uerj 01) Uma pessoa empurrou um carro por uma distância de 6 m, aplicando uma força F de mesma direção e sentido do deslocamento desse carro. O gráfico abaixo representa a variação da intensidade de

Leia mais

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2 Trabalho Mecânico 1. (G1 - ifce 2012) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em 2,0 min, ela

Leia mais

Lista de exercícios nº 3

Lista de exercícios nº 3 F107 Física (Biologia) Turma B Prof. Odilon D. D. Couto Jr. Lista de exercícios nº 3 FORÇAS, LEIS DE NEWTON e EQUILÍBRIO Exercício 1: Um corpo de 10 kg apoiado sobre uma mesa sem atrito está sujeito à

Leia mais

LISTA DE EXERCÍCIOS: POTÊNCIA, TRABALHO E ENERGIA TURMAS: 1C01 a 1C10 (PROF. KELLER)

LISTA DE EXERCÍCIOS: POTÊNCIA, TRABALHO E ENERGIA TURMAS: 1C01 a 1C10 (PROF. KELLER) LISTA DE EXERCÍCIOS: POTÊNCIA, TRABALHO E ENERGIA TURMAS: 1C01 a 1C10 (PROF. KELLER) 1) Uma máquina consome 4000 J de energia em 100 segundos. Sabendo-se que o rendimento dessa máquina é de 80%, calcule

Leia mais

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico 1. (Uern 2013) A tabela apresenta a força elástica e a deformação

Leia mais

LISTA DE EXERCÍCIOS DE FÍSICA

LISTA DE EXERCÍCIOS DE FÍSICA LISTA DE EXERCÍCIOS DE FÍSICA / /2012 ALUNO: N.º TURMA 01. Em um jogo de basebol, o rebatedor aplica uma força de contato do taco com a bola. Com a tecnologia atual, é possível medir a força média aplicada

Leia mais

Lista de Exercícios (Profº Ito) Blocos

Lista de Exercícios (Profº Ito) Blocos TEXTO PARA A PRÓXIMA QUESTÃO Constantes físicas necessárias para a solução dos problemas: Aceleração da gravidade: 10 m/s 1. Dois blocos, de massas M e M, estão ligados através de um fio inextensível de

Leia mais

TRABALHO. Fonte da imagem: UFC

TRABALHO. Fonte da imagem: UFC TRABALHO 1. (Adaptado) Cláudia é inventora imaginativa e cheia de idéias. Ela criou um aparelho que faz gráficos das forças aplicadas em blocos pela distância percorrida. Um bloco de 4,0 kg move-se em

Leia mais

EQUILÍBRIO DA PARTÍCULA

EQUILÍBRIO DA PARTÍCULA Questão 1 - As cordas A, B e C mostradas na figura a seguir têm massa desprezível e são inextensíveis. As cordas A e B estão presas no teto horizontal e se unem à corda C no ponto P. A corda C tem preso

Leia mais

Professor Adriano Oliveira Física Data: 08/03/2014

Professor Adriano Oliveira Física Data: 08/03/2014 Física Data: 08/03/014 1. (Espcex (Aman) 014) Uma esfera é lançada com velocidade horizontal constante de módulo v=5 m/s da borda de uma mesa horizontal. Ela atinge o solo num ponto situado a 5 m do pé

Leia mais

LEIS DE NEWTON. a) Qual é a tensão no fio? b) Qual é a velocidade angular da massa? Se for necessário, use: sen 60 = 0,87, cos 60 = 0,5.

LEIS DE NEWTON. a) Qual é a tensão no fio? b) Qual é a velocidade angular da massa? Se for necessário, use: sen 60 = 0,87, cos 60 = 0,5. LEIS DE NEWTON 1. Um pêndulo cônico é formado por um fio de massa desprezível e comprimento L = 1,25 m, que suporta uma massa m = 0,5 kg na sua extremidade inferior. A extremidade superior do fio é presa

Leia mais

1º ANO 20 FÍSICA 1º Bimestral 28/03/12

1º ANO 20 FÍSICA 1º Bimestral 28/03/12 Nome do aluno Turma Nº Questões Disciplina Trimestre Trabalho Data 1º ANO 20 FÍSICA 1º Bimestral 28/03/12 1. (Faap-1996) A velocidade de um avião é de 360km/h. Qual das seguintes alternativas expressa

Leia mais

01- Sobre a energia mecânica e a conservação de energia, assinale o que for correto.

01- Sobre a energia mecânica e a conservação de energia, assinale o que for correto. PROFESSOR: EQUIPE DE FÍSICA BANCO DE QUESTÕES - FÍSICA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================= 01- Sobre a energia mecânica e a conservação

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Física Conteúdo: A seguir apresenta-se o conteúdo contemplado no programa de recuperação: Trabalho e Potência; Energia Mecânica (conservação

Leia mais

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão:

Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão: PROVA DE FÍSICA DO VESTIBULAR 96/97 DO INSTITUTO MILITAR DE ENGENHARIA (03/12/96) 1 a Questão: Valor : 1,0 Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da

Leia mais

a) o módulo da aceleração do carrinho; (a c = 0,50 m/s) b) o módulo da aceleração do sistema constituído por A e B; (a = 4,0 m/s 2 )

a) o módulo da aceleração do carrinho; (a c = 0,50 m/s) b) o módulo da aceleração do sistema constituído por A e B; (a = 4,0 m/s 2 ) 1 - Dois blocos, A e B, ambos de massa m, estão ligados por um fio leve e flexível, que passa por uma polia de massa desprezível, que gira sem atrito. O bloco A está apoiado sobre um carrinho de massa

Leia mais

Centro Educacional Colúmbia 2000

Centro Educacional Colúmbia 2000 Discente: Centro Educacional Colúmbia 2000 Tri. 3º/2018 Dependência Docente: Marcos Vinicius Turma: 1º ano Disciplina: Física Rio, / / Ens. Médio Nº 1. (UFRGS) Um paraquedista cai com velocidade constante.

Leia mais

FÍSICA LEIS DE NEWTON, FORÇA CENTRÍPETA, TRABALHO E ENERGIA LEIS DE NEWTON. c) 20. d) 10.

FÍSICA LEIS DE NEWTON, FORÇA CENTRÍPETA, TRABALHO E ENERGIA LEIS DE NEWTON. c) 20. d) 10. FÍSICA Prof. Bruno LEIS DE NEWTON, FORÇA CENTRÍPETA, TRABALHO E ENERGIA LEIS DE NEWTON 1. Um trabalhador empurra um conjunto formado por dois blocos A e B de massas 4kg e 6kg, respectivamente, exercendo

Leia mais

Vestibular Nacional Unicamp 1998. 2 ª Fase - 13 de Janeiro de 1998. Física

Vestibular Nacional Unicamp 1998. 2 ª Fase - 13 de Janeiro de 1998. Física Vestibular Nacional Unicamp 1998 2 ª Fase - 13 de Janeiro de 1998 Física 1 FÍSICA Atenção: Escreva a resolução COMPLETA de cada questão nos espaços reservados para as mesmas. Adote a aceleração da gravidade

Leia mais

Trabalho Mecânico Teorema da energia cinética

Trabalho Mecânico Teorema da energia cinética 1. (Mackenzie 01) Trabalho Mecânico Teorema da energia cinética Um corpo de massa,0 kg é lançado sobre um plano horizontal rugoso com uma velocidade inicial de,0 m / s e sua velocidade varia com o tempo,

Leia mais

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total.

1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total. 46 e FÍSICA No interior de um ônibus que trafega em uma estrada retilínea e horizontal, com velocidade constante de 90 km/h, um passageiro sentado lança verticalmente para cima um pequeno objeto com velocidade

Leia mais

Energia Mecânica- Básico

Energia Mecânica- Básico Questão 01 - (FATEC SP/2012) Em alguns parques de diversão, há um brinquedo radical que funciona como um pêndulo humano. A pessoa, presa por uma corda inextensível amarrada a um ponto fixo acima de sua

Leia mais

Fís. Leonardo Gomes (Arthur Ferreira Vieira)

Fís. Leonardo Gomes (Arthur Ferreira Vieira) Semana 12 Leonardo Gomes (Arthur Ferreira Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

Mecânica Geral. Apostila 1: Momento Linear. Professor Renan Faria

Mecânica Geral. Apostila 1: Momento Linear. Professor Renan Faria Mecânica Geral Apostila 1: Momento Linear Professor Renan Faria Impulso Como já vimos, para que um corpo entre em movimento, é necessário que haja um interação entre dois corpos. Se considerarmos o tempo

Leia mais

Equilíbrio de Corpos Extensos

Equilíbrio de Corpos Extensos Equilíbrio de Corpos Extensos 1. (G1 - ifsp 2013) Em um parque de diversão, Carlos e Isabela brincam em uma gangorra que dispõe de dois lugares possíveis de se sentar nas suas extremidades. As distâncias

Leia mais

LISTA 03. Trabalho, energia cinética e potencial, conservação da energia

LISTA 03. Trabalho, energia cinética e potencial, conservação da energia UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA FEP2195 - Física Geral e Experimental para Engenharia I LISTA 03 Trabalho, energia cinética e potencial, conservação da energia 1. Um saco de farinha de 5,

Leia mais

1ª Aula do Cap. 08. Energia Potencial e Conservação de Energia

1ª Aula do Cap. 08. Energia Potencial e Conservação de Energia 1ª Aula do Cap. 8 Energia Potencial e Conservação de Energia Conteúdo: Energia Potencial U gravitacional e Energia Potencial elástica. Força gravitacional e Força elástica. Conservação da Energia Mecânica.

Leia mais

1 = Pontuação: Os itens A e B valem três pontos cada; o item C vale quatro pontos.

1 = Pontuação: Os itens A e B valem três pontos cada; o item C vale quatro pontos. Física 0. Duas pessoas pegam simultaneamente escadas rolantes, paralelas, de mesmo comprimento l, em uma loja, sendo que uma delas desce e a outra sobe. escada que desce tem velocidade V = m/s e a que

Leia mais

2. TRANSFERÊNCIA OU TRANSFORMAÇÃO DE ENERGIA

2. TRANSFERÊNCIA OU TRANSFORMAÇÃO DE ENERGIA Física: 1º ano Jair Júnior Nota de aula (7/11/014) 1. ENERGIA Um dos princípios básicos da Física diz que a energia pode ser transformada ou transferida, mas nunca criada ou destruída. Então, o que é energia?

Leia mais

Dependência 1ª série 2016. Conteúdo programático. 1- Cinemática. Cronograma de Avaliação

Dependência 1ª série 2016. Conteúdo programático. 1- Cinemática. Cronograma de Avaliação Dependência 1ª série 2016 Conteúdo programático 1- Cinemática 1.1 Movimento Uniforme 1.2 - Movimento Uniformemente Variado 1.3 Cinemática Vetorial 2 Dinâmica 2.1 Princípios Fundamentais da dinâmica 2.2

Leia mais

FÍSICA - 1 o ANO MÓDULO 30 QUANTIDADE DE MOVIMENTO E IMPULSÃO REVISÃO

FÍSICA - 1 o ANO MÓDULO 30 QUANTIDADE DE MOVIMENTO E IMPULSÃO REVISÃO FÍSICA - 1 o ANO MÓDULO 30 QUANTIDADE DE MOVIMENTO E IMPULSÃO REVISÃO Como pode cair no enem? Quando uma fábrica lança um modelo novo de automóvel é necessário que muitos testes sejam feitos para garantir

Leia mais

Gráficos de MUV Movimento Uniformemente Variado

Gráficos de MUV Movimento Uniformemente Variado Gráficos de MUV Movimento Uniformemente Variado 1. (Uel 1994) Dois móveis partem simultaneamente de um mesmo ponto e suas velocidades estão representadas no mesmo gráfico a seguir. A diferença entre as

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Lista de Exercícios 2_2 BIMESTRE Nome: Nº Turma: 9 EF Profa Kelly Data: Conteúdo: Algumas forças especiais; Energia cinética, potencial (gravitacional e elástica);

Leia mais

Lista de Exercícios - Aula 02 Aplicações das Leis de Newton

Lista de Exercícios - Aula 02 Aplicações das Leis de Newton Lista de Exercícios - Aula 02 Aplicações das Leis de Newton 1 - Equilíbrio Estático 1 - Um garoto, apoiando-se em uma bengala, encontra-se em cima de uma balança que marca 40 Kg. Se o garoto empurrar fortemente

Leia mais

Clique para editar o estilo do título mestre

Clique para editar o estilo do título mestre Máquinas simples Dispositivo que proporciona uma vantagem mecânica. Alavancas Máquinas simples Polias ou roldanas Plano inclinado Alavancas Dê-me uma alavanca com um ponto de apoio e moverei o mundo. Alavancas

Leia mais

Exercícios de Mecânica - Área 3

Exercícios de Mecânica - Área 3 1) O bloco de peso 10lb tem uma velocidade inicial de 12 pés/s sobre um plano liso. Uma força F = (3,5t) lb onde t é dado em segundos, age sobre o bloco durante 3s. Determine a velocidade final do bloco

Leia mais

Lista de Exercícios (Profº Ito) Componentes da Resultante

Lista de Exercícios (Profº Ito) Componentes da Resultante 1. Um balão de ar quente está sujeito às forças representadas na figura a seguir. Qual é a intensidade, a direção e o sentido da resultante dessas forças? c) qual o valor do módulo das tensões nas cordas

Leia mais

Parte I ( Questões de Trabalho Mecânico e Energia )

Parte I ( Questões de Trabalho Mecânico e Energia ) Parte I ( Questões de Trabalho Mecânico e Energia ) 1) Uma força horizontal de 20 N arrasta por 5,0 m um peso de 30 N, sobre uma superfície horizontal. Os trabalhos realizados pela força de 20 N e pela

Leia mais

Física Legal.NET O seu site de Física na Internet

Física Legal.NET O seu site de Física na Internet 31. (Pucsp 2005) Certo carro nacional demora 30 s para acelerar de 0 a 108 km/h. Supondo sua massa igual a 1200 kg, o módulo da força resultante que atua no veículo durante esse intervalo de tempo é, em

Leia mais

Questões Conceituais

Questões Conceituais Questões em Aula Questões Conceituais QC.1) Determine os sinais positivo ou negativo da posição, da velocidade e da aceleração da partícula da Fig. Q1.7. QC.) O movimento de uma partícula é apresentado

Leia mais

Energia. A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos

Energia. A figura a seguir representa um atleta durante um salto com vara, em três instantes distintos Energia 1- O bloco de peso P = 10N parte do repouso e sobe uma rampa mediante a aplicação da força F, cujo gráfico em função de x está indicado. O trabalho da força de atrito de 0 até A, em módulo, é 20J.

Leia mais

Aprimorando os Conhecimentos de Mecânica Lista 6 Vetores II

Aprimorando os Conhecimentos de Mecânica Lista 6 Vetores II Aprimorando os Conhecimentos de Mecânica Lista 6 Vetores II O texto seguinte refere-se às questões 1 e 2. O Atol das Rocas, localizado em mar territorial brasileiro (aproximadamente 267km da cidade de

Leia mais

EXERCÍCIOS SOBRE TRABALHO E ENERGIA.

EXERCÍCIOS SOBRE TRABALHO E ENERGIA. EXERCÍCIOS SOBRE TRABALHO E ENERGIA. QUESTÃO 01 (UFMG) Uma pessoa empurra um armário com uma força F sobre uma superfície horizontal com atrito, colocando-o em movimento. A figura mostra o diagrama das

Leia mais

EXPERIÊNCIA 05. Nome Número Turma Data. Figura 5.1 Plano inclinado

EXPERIÊNCIA 05. Nome Número Turma Data. Figura 5.1 Plano inclinado Faculdade de Engenharia de Sorocaba Laboratório de Física Física Experimental I EXPERIÊNCIA 05 Nome Número Turma Data Plano Inclinado 5.1 Fundamentos Teóricos Componente do Peso Considere o plano inclinado

Leia mais

Movimento uniformemente variado. Capítulo 4 (MUV)

Movimento uniformemente variado. Capítulo 4 (MUV) Movimento uniformemente variado Capítulo 4 (MUV) Movimento uniformemente variado MUV aceleração escalar (α) é constante e não nula. O quociente α = v t é constante e não nulo. Função horária da velocidade

Leia mais

Prática 1: RELAÇÃO ENTRE FORÇA E ACELERAÇÃO

Prática 1: RELAÇÃO ENTRE FORÇA E ACELERAÇÃO Prática 1: RELAÇÃO ENTRE FORÇA E ACELERAÇÃO 1.1 Objetivo: Estudar a relação entre a força, massa e aceleração. 1.2 Material Necessário: 01 Plano Inclinado com ajuste angular regulável 01 Carrinho de movimento

Leia mais

Exercícios Propostos

Exercícios Propostos Lista 4: Terceira Lei de Newton Q.1) A figura mostra duas massa em repouso. A corda é desprovida de massa, e a polia livre de atrito. A escala do dinamômetro está calibrada em kg. Quanto marca o dinamômetro?

Leia mais

2ª Série do Ensino Médio

2ª Série do Ensino Médio 2ª Série do Ensino Médio 16. O módulo da força resultante necessária para manter um objeto em movimento retilíneo e uniforme é: (A) zero. (B) proporcional à sua massa. (C) inversamente proporcional à sua

Leia mais

LEIS DE NEWTON. Física Lista de exercícios Prof.ª Michelle

LEIS DE NEWTON. Física Lista de exercícios Prof.ª Michelle Física Lista de exercícios Prof.ª Michelle LEIS DE NEWTON A figura se refere a um indivíduo exercendo uma força horizontal sobre uma caixa. A caixa está sobre uma superfície horizontal com atrito. É desprezível

Leia mais

Professora Florence. Para haver movimento, a resultante das forças ativas deve ter intensidade maior que a da força de atrito estática máxima.

Professora Florence. Para haver movimento, a resultante das forças ativas deve ter intensidade maior que a da força de atrito estática máxima. 1. (Uepb 2013) Um jovem aluno de física, atendendo ao pedido de sua mãe para alterar a posição de alguns móveis da residência, começou empurrando o guarda-roupa do seu quarto, que tem 200 kg de massa.

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Lista de Exercícios 2_3 BIMESTRE Nome: Nº Turma: 1 EM Profa Kelly Data: Conteúdo: Trabalho de uma força; Energia mecânica - trabalho. 1 - Um corpo de massa m desliza

Leia mais

CESAR ALVES DE ALMEIDA COSTA - CEL. INT. R1

CESAR ALVES DE ALMEIDA COSTA - CEL. INT. R1 ESCOLA DE ENSINO FUND. E MÉDIO TEN. RÊGO BARROS. DIRETOR: CESAR ALVES DE ALMEIDA COSTA - CEL. INT. R1 PROFESSORES: RENATO-POMPEU ALUNO (A): N º SÉRIE: 9 a TURMA: 9A EXERCÍCIOS DE REVISÃO DE POTÊNCIA, RENDIMENTO

Leia mais

COLÉGIO MONJOLO ENSINO MÉDIO

COLÉGIO MONJOLO ENSINO MÉDIO COLÉGIO MONJOLO ENSINO MÉDIO Aluno (a): Professor: Jadson Rodrigo Corrêa Data: 11/09/2018 TRABALHO DE UMA FORÇA E ENERGIAS 1ª série 1. Determine o trabalho de uma força constante de 300N a aplicada a um

Leia mais

Sala de Estudos FÍSICA Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Sistemas Conservativos e Potência Mecânica

Sala de Estudos FÍSICA Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Sistemas Conservativos e Potência Mecânica Sala de Estudos FÍSICA Lucas trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Sistemas Conservativos e Potência Mecânica 1. (G1 - ifsc 01) A ilustração abaixo representa um bloco

Leia mais

Lista Extra de Física -------------3ºano--------------Professora Eliane Korn. Dilatação, Temperatura, Impulso e Quantidade de movimento

Lista Extra de Física -------------3ºano--------------Professora Eliane Korn. Dilatação, Temperatura, Impulso e Quantidade de movimento Lista Extra de Física -------------3ºano--------------Professora Eliane Korn Dilatação, Temperatura, Impulso e Quantidade de movimento 1) Qual temperatura na escala Celsius é equivalente a 86o F? a) 186,8

Leia mais

2 Com base na situação apresentada no exercício número 1, reescreva as afirmativas incorretas, fazendo as correções necessárias, justificando-as.

2 Com base na situação apresentada no exercício número 1, reescreva as afirmativas incorretas, fazendo as correções necessárias, justificando-as. EXERCÍCIOS CONCEITOS BÁSICOS DE CINEMÁTICA 9ºANO 3ºBIMESTRE 1-Uma pessoa (A), parada ao lado da via férrea, observa uma locomotiva passar sem vagões. Ela vê o maquinista (B) e uma lâmpada (C) acessa dentro

Leia mais

Professora Florence. 2. (G1 - utfpr 2012) Associe a Coluna I (Afirmação) com a Coluna II (Lei Física).

Professora Florence. 2. (G1 - utfpr 2012) Associe a Coluna I (Afirmação) com a Coluna II (Lei Física). 1. (Ufsm 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por isso, o avião se move para frente. Esse fenômeno é explicado

Leia mais

MÓD. 2 FORÇA ELÉTRICA/LEI DE COULOMB

MÓD. 2 FORÇA ELÉTRICA/LEI DE COULOMB MÓD. FORÇA ELÉTRICA/LEI DE COULOMB 1. (Fgv 010) Posicionadas rigidamente sobre os vértices de um cubo de aresta 1 m, encontram-se oito cargas elétricas positivas de mesmo módulo. Sendo k o valor da constante

Leia mais

1 a fase prova para alunos do 9º ano (8 a série)

1 a fase prova para alunos do 9º ano (8 a série) 1 a fase prova para alunos do 9º ano (8 a série) LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01) Esta prova destina-se exclusivamente a alunos do 9º ano (8ª série). Ela contém vinte questões. 02) Cada questão

Leia mais

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08

ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma

Leia mais

Trabalho. Parte I. Página 1. 2 3 4m. Para essas condições, determine

Trabalho. Parte I.  Página 1. 2 3 4m. Para essas condições, determine Parte I Trabalho 1. (Uerj 014) Um chuveiro elétrico com resistência igual a 5Ω é conectado a uma rede elétrica que fornece 10 V de tensão eficaz. Determine a energia elétrica, em kwh, consumida pelo chuveiro

Leia mais

ESTÁTICA DO PONTO MATERIAL

ESTÁTICA DO PONTO MATERIAL ESTÁTICA DO PONTO MATERIAL 0) CFTMG- As figuras e a seguir representam, respectivamente, todas as forças, constantes e coplanares, que atuam sobre uma partícula e o diagrama da soma vetorial destas forças.

Leia mais

Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 1º ano classe: Prof.LUCAS Nome: nº

Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 1º ano classe: Prof.LUCAS Nome: nº Sala de Estudos FÍSICA - Lucas 3 trimestre Ensino Médio 1º ano classe: Prof.LUCAS Nome: nº Sala de Estudos: Lentes: Estudo Analítico de Gauss Mecânica: Queda Livre e Lançamento Vertical 1. (Unicamp 2013)

Leia mais

1) (UFF modificado) Um homem de massa 70 kg sobe uma escada, do ponto A ao ponto B, e depois desce do ponto B ao ponto C, conforme indica a figura.

1) (UFF modificado) Um homem de massa 70 kg sobe uma escada, do ponto A ao ponto B, e depois desce do ponto B ao ponto C, conforme indica a figura. ESTUDO DIRIGIDO PROVA MENSAL 1ºEM 1) (UFF modificado) Um homem de massa 70 kg sobe uma escada, do ponto A ao ponto B, e depois desce do ponto B ao ponto C, conforme indica a figura. Qual foi o trabalho

Leia mais

LISTA DE EXERCÍCIOS - Energia Mecânica

LISTA DE EXERCÍCIOS - Energia Mecânica MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CÂMPUS ITAJAÍ - CURSO: TÉCNICO INTEGRADO EM MECÂNICA PROFESSORES:

Leia mais

CINEMÁTICA DO PONTO MATERIAL

CINEMÁTICA DO PONTO MATERIAL 1.0 Conceitos CINEMÁTICA DO PONTO MATERIAL Cinemática é a parte da Mecânica que descreve os movimentos. Ponto material é um corpo móvel cujas dimensões não interferem no estudo em questão. Trajetória é

Leia mais

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica Trabalho Mecânico

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica Trabalho Mecânico Sala de Estudos FÍSICA - Lucas trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica Trabalho Mecânico 1. (G1 - ifpe 01) O sistema da figura é formado por um bloco de

Leia mais

Apostila 2. Capitulo 8. Energia: O universo em movimento. Página 244

Apostila 2. Capitulo 8. Energia: O universo em movimento. Página 244 Apostila 2 Não é possív el exibir esta imagem no momento. Página 244 Capitulo 8 Energia: O universo em movimento LHC acelerador de partículas Utilizado para o estudo da energia. Definição? Não se define

Leia mais

Energia Mecânica. Sistema Não Conservativo Sistema Dissipativo

Energia Mecânica. Sistema Não Conservativo Sistema Dissipativo Energia Mecânica Sistema Não Conservativo Sistema Dissipativo TEXTO PARA A PRÓXIMA QUESTÃO: Leia o texto e responda à(s) questão(ões). Um motorista conduzia seu automóvel de massa.000 kg que trafegava

Leia mais

Faculdades Oswaldo Cruz ESQ (Física I Profº Ito Lista de Torque)

Faculdades Oswaldo Cruz ESQ (Física I Profº Ito Lista de Torque) 1. Um ponto material está parado sobre uma prancha rígida horizontal, de massa desprezível, apoiada nas extremidades. O comprimento da prancha é de 3,0 m. O peso do ponto material é de 60 N e este está

Leia mais

MOMENTO LINEAR - IMPULSO - COLISÕES

MOMENTO LINEAR - IMPULSO - COLISÕES ESQ - EXERCÍCIOS DE FISICA I 2 011 MOMENTO LINEAR - IMPULSO - COLISÕES EX - 01 ) Determinar a variação do momento linear de um caminhão entre um instante inicial nulo e o instante t = 5,0 s. O caminhão

Leia mais

Dinâmica dos bloquinhos 2ª e3ª Leis de Newton

Dinâmica dos bloquinhos 2ª e3ª Leis de Newton Dinâmica dos bloquinhos ª e3ª Leis de Newton 1. (G1 - cftmg 01) Na figura, os blocos A e B, com massas iguais a 5 e 0 kg, respectivamente, são ligados por meio de um cordão inextensível. Desprezando-se

Leia mais

Lista de exercícios: Trabalho, potência e rendimento (Mecânica)

Lista de exercícios: Trabalho, potência e rendimento (Mecânica) Lista de exercícios: Trabalho, potência e rendimento (Mecânica) 1. (PUC Minas) Considere um corpo sendo arrastado, com velocidade constante, sobre uma superfície horizontal onde o atrito não é desprezível.

Leia mais

COLÉGIO SHALOM. Trabalho de recuperação Ensino Médio 1º Ano Profº: Wesley da Silva Mota Física

COLÉGIO SHALOM. Trabalho de recuperação Ensino Médio 1º Ano Profº: Wesley da Silva Mota Física COLÉGIO SHALOM Trabalho de recuperação Ensino Médio 1º Ano Profº: Wesley da Silva Mota Física Entrega na data da prova Aluno (a) :. No. 01-(Ufrrj-RJ) A figura a seguir mostra um atleta de ginástica olímpica

Leia mais