Programa de Nivelamento 2010

Tamanho: px
Começar a partir da página:

Download "Programa de Nivelamento 2010"

Transcrição

1 Programa de Nivelamento 2010 Apresentação A presente apostila foi confeccionada com o objetivo retomar alguns conteúdos que fizeram parte do currículo da disciplina de Física do ensino médio e serão necessários para sua compreensão de assuntos tratados no decorrer do seu curso universitário. O material é organizado de forma a contemplar, em ordem crescente de dificuldade, boa parte dos tópicos que serão solicitados em suas próximas avaliações e atividades experimentais. Ele está estruturado sob a forma de listas de exercícios que deverão ser resolvidas com auxílio do professor que ministrará o curso de nivelamento. Os aspectos teóricos serão abordados no decorrer de cada aula e podem ser aprofundados no livro texto da disciplina. Aproveite para explorar da melhor forma o curso de nivelamento e sua inserção na sociedade do conhecimento. Bons estudos!

2 Sistema métrico decimal e cinemática Iniciaremos o nosso curso com algumas transformações de unidades úteis para o curso de física. 01 Transformação de Unidades: 1.A - Transforme em m: a) 7 km b) 680 cm c) 980 mm 1D - Transforme em cm 2 : a) 2 km 2 b) 4 mm 2 c) 80 m 2 1.B - Transforme em km: a) 8100 m b) 150 cm c) m 1E - Transforme em litros: a) 216 cm 3 b) 3,15 m 3 c) 800 mm 3 1C - Transforme em m 2 : a) 32 km 2 b) 8600 cm 2 c) mm 2 1F - Transforme em horas: a) 200 s b) 30 min. c) 2,5 dias VELOCIDADE. É a grandeza vetorial que indica como varia a posição de um corpo com o tempo. Em outras palavras, está relacionada com quão rápido um corpo se movimenta. Um dos animais terrestres mais velozes que temos é o guepardo, que acelera de 0 a 72 km/h em 2 segundos. Ele alcança uma velocidade de 115 km/h em distâncias de até 500m. V M deslocamento tempo gasto V M s t v m s t s t s 2 1 t 2 1 Unidade do S.I. s = metros (m)

3 t = segundos (s) v m = metros por segundo (m/s) [v] = L.T -1 x3,6 m/ s km/ h 3,6 km/ h m / s Movimento Progressivo: Os espaços aumentam à medida que o tempo passa. (movimento no sentido positivo da trajetória) V+ Movimento Retrógrado: Os espaços diminuem à medida que o tempo passa. (movimento no sentido negativo da trajetória) V- Testes 01. Um ônibus sai de Curitiba às 8 h e chega a Apucarana, que dista 350 km da capital, às 11 h 30 min. No trecho de Apucarana a Mandaguari, de aproximadamente 45 km, a sua velocidade foi constante e igual a 90 km/h. (a) Qual a velocidade média, em km/h, no trajeto Curitiba Apucarana? (b) Em quanto tempo o ônibus cumpre o trecho Apucarana Mandaguari?

4 02. Um automóvel percorre um trecho retilíneo de estrada, indo da cidade A até a cidade B distante 150 km da primeira. Saindo às 10 h de A, pára às 11 h em um restaurante situado no ponto médio do trecho AB, onde gasta exatamente 1h para almoçar. A seguir prossegue a viagem e gasta mais uma hora para chegar à cidade B. Sua velocidade média no trecho AB foi de? ACELERAÇÃO. Aceleração é a grandeza vetorial que indica a taxa da variação da velocidade com o tempo. Evidentemente se a velocidade não varia a aceleração é igual a zero. Por definição, temos que aceleração escalar média é: a m v t v t 2 2 v t 1 1 UNIDADES NO SI: v = metros por segundo (m/s) t = segundos (s) a m = metros por segundo ao quadrado (m/s 2 ) [a] = L.T -2 Movimento Acelerado: O módulo da velocidade aumenta com o tempo. Ou seja, a velocidade e a aceleração possuem o mesmo sentido. Movimento Retardado: O módulo da velocidade diminui com o tempo. Ou seja, a velocidade e a aceleração possuem sentidos opostos. Testes 01. Numa pista de prova, um automóvel, partindo do repouso, atinge uma velocidade escalar de 108 km/h em 6,0 s. Qual a sua aceleração escalar média?

5 02. Em cada caso, classifique o movimento em progressivo ou retrógrado, e acelerado ou retardado. (a) (b) (c) (d) Movimento Uniforme O movimento de uma partícula é uniforme quando ela percorre ao longo de sua trajetória, espaços iguais em intervalos de tempos iguais. Resumindo o que foi dito, Movimento Uniforme é o que se processa com velocidade escalar constante, ou em outras palavras, quando o módulo (intensidade) da velocidade for constante a razão S t será constante, portanto, para o mesmo intervalo de tempo teremos percorrido a mesma distância. Sendo o módulo da velocidade constante (velocidade escalar) a aceleração escalar será nula, pois a aceleração escalar provoca uma variação no módulo da velocidade; existe ainda outra forma de aceleração, chama-se aceleração centrípeta, que por sua vez varia a direção da velocidade, porém esta aceleração centrípeta será convenientemente explicada em outro momento, mais adiante.

6 S S V. t 0 Onde no S.I. S = posição final (m) S 0 = posição inicial (m) V = velocidade (m/s) t = tempo (s) A equação acima é uma equação de primeiro grau (y = a.x + b), onde S 0 representaria o Coeficiente Linear (b) da reta e V representaria o Coeficiente Angular (a) da reta e onde o espaço (S) varia com o tempo (t). Testes: 01. Um trem de 150 metros de comprimento, com velocidade de 90 Km/h, leva 0,5 minuto para atravessar um túnel. Determine o comprimento do túnel. 02. Dada a equação x = t, determine: a) A posição inicial. b) A velecidade do móvel. c) A posição do móvel no instante 5s. d) O instante em que o móvel se encontra na posição 80m. Movimento Uniformemente Variado Um movimento no qual o móvel mantém sua aceleração escalar constante, não nula, é denominado movimento uniformemente variado. Em conseqüência, a aceleração escalar instantânea (a) e a aceleração escalar média (a m ) são iguais e o móvel percorrerá espaços diferentes para intervalos de tempos iguais. Neste movimento a velocidade escalar varia com o tempo, variação essa que provem da presença da aceleração escalar.

7 A figura acima mostra uma partícula que parte do repouso (v 0 = 0) da origem (s 0 = 0) num instante inicial (t 0 = 0) e a cada instante a velocidade está crescendo algebricamente (uniformemente variado) e os espaços variam com o tempo em proporções diferentes. Características essas do movimento uniformemente variado, se considerarmos a aceleração desta partícula de 10m/s 2, a cada segundo a velocidade aumenta de 10m/s e no primeiro segundo o móvel tem andado 5m e no segundo seguinte 15m e no próximo 25m e a assim sucessivamente; demonstrando numericamente o que a teoria nos informa. EQUAÇÕES DO M.U.V. EQUAÇÃO HORÁRIA DA VELOCIDADE V V a. t 0 Onde no S.I. V = velocidade final (m/s) V 0 = velocidade inicial (m/s) a = aceleração (m/s 2 ) t = tempo (s) EQUAÇÃO HORÁRIA DOS ESPAÇOS S S 0 V. t 0 a. t 2 2 Onde no S.I. S = posição final (m)

8 S 0 = posição inicial (m) v 0 = velocidade inicial (m/s) a = aceleração (m/s 2 ) t = tempo (s) EQUAÇÃO DE TORRICELLI V 2 2 V 2. a. S 0 Testes: 01. Sabendo que um móvel se move segundo a equação X = 12-4t + 5t 2. Determine: a) a posição inicial, a velocidade inicial e a aceleração do móvel. b) A posição do móvel no instante 2s. c) A velocidade do móvel no instante 3s 02. Um corpo é lançado verticalmente para cima com velocidade de 30 m/s, a partir do solo. Considerando g=10 m/s 2 e desprezando a resistência do ar, pede-se: a) a altura máxima atingida; b) a altura e a velocidade do corpo após 5 s de movimento; c) o instante e a velocidade com que o corpo retorna ao ponto de lançamento. Dinâmica - Leis de Newton PRINCÍPIO DA INÉRCIA 1 A LEI DE NEWTON Todo corpo continua em seu estado de repouso ou de movimento uniforme em uma linha reta, a menos que ele seja forçado a mudar aquele estado por forças imprimidas sobre ele. (Isaac Newton - Principia) PRINCÍPIO FUNDAMENTAL DA DINÂMICA 2 A LEI DE NEWTON

9 A mudança de movimento é proporcional à força motora imprimida, e é produzida na direção da linha reta na qual aquela força é imprimida. (Isaac Newton - Principia) O Princípio Fundamental nos mostra como fazer para tirar um corpo do estado de equilíbrio. Em outras palavras a 2 a Lei de Newton estabelece que se houver uma força resultante atuando sobre o corpo, a velocidade vetorial desse corpo sofrerá alterações, ou seja, a força resultante atuando sobre o corpo fará surgir nele uma aceleração. A aceleração é diretamente proporcional a força resultante aplicada sobre o corpo e inversamente proporcional a massa do corpo. FR a m Expressando esse Princípio, matematicamente, temos: F R m. a A direção e o sentido da Força Resultante serão sempre iguais à aceleração. Mesmo porque a força e a aceleração são grandezas vetoriais e a massa uma grandeza escalar. UNIDADES NO SI: F R Força (N) m massa (kg) a aceleração (m/s 2 ) PRINCÍPIO DA AÇÃO E REAÇÃO 3 A LEI DE NEWTON

10 A toda ação há sempre oposta uma reação igual, ou, as ações mútuas de dois corpos um sobre o outro são sempre iguais e dirigidas a partes opostas. (Isaac Newton - Principia) O Princípio de Ação e Reação nos mostra que cada vez que se aplica uma força você terá uma reação de mesmo valor, mesma direção, mas de sentido contrário. Essas forças (ação e reação) ocorrem sempre em corpos diferentes. Observe o exemplo abaixo. Um jogador ao chutar a bola, aplica (o seu pé) nesta uma força F. Pelo princípio da Ação e Reação temos que a bola reage e aplica uma força F, isto é, uma força de mesma direção, mesmo valor (módulo), mas de sentido diferente. F ATENÇÃO: Forças de ação e reação nunca se anulam, pois são aplicadas em corpos diferentes. F ALGUMAS FORÇAS PARTICULARES: Apresentaremos a seguir algumas das forças que aparecerão com maior freqüência nos exercícios de dinâmica.

11 Força de reação normal N: É a força de contato entre um corpo e a superfície na qual ele se apóia, que se caracteriza por ter direção sempre perpendicular ao plano de apoio. A figura abaixo apresenta um bloco que está apoiado sobre uma mesa. N bloco N mesa : Força aplicada sobre a mesa pelo bloco. N bloco : Reação da mesa sobre o bloco. N bloco = - N mesa N mesa Obs.: Peso e reação Normal não são um par de forças de ação e reação. Força de tração ou tensão T : É a força de contato que aparecerá sempre que um corpo estiver preso a um fio (corda, cabo). Caracteriza-se por ter sempre a mesma direção do fio e atuar no sentido em que se tracione o fio. Na seqüência de figuras abaixo, representamos a força de tração T que atua num fio que mantém um corpo preso ao teto de uma sala. Vetores 01. (F. M. Taubaté) Uma grandeza física vetorial fica perfeitamente definida quando dela se conhecem a) valor numérico, desvio e unidade. b) valor numérico, desvio, unidade e direção. c) valor numérico, desvio, unidade e sentido. d) valor numérico, unidade, direção e sentido. e) desvio, direção, sentido e unidade. 02. (U. E. Ponta Grossa) Quando dizemos que a velocidade de uma bola é de 20m/s, horizontal e para a direita, estamos definindo a velocidade como uma grandeza: a) escalar. b) algébrica. c) linear. d) vetorial. e) n.d.a. 03. Considere dois vetores de módulos V 1 = 5 Km/h e 3 km/h, atuando simultaneamente sobre um objeto esférico. Encontre as características do vetor resultante que atua na referida esfera.

12 V 1 60º V Execute a operação: Levando em consideração o conjunto de vetores mostrados a seguir: a) V 1 90º V 2 V 1 = 16, V 2 = 12 unidades e cosseno de 90º = 0 b) V 1 120º V 2 V 1 = 16, V 2 = 16 unidades e cosseno de 120º = - 0,5. c) V 1 45º V 2 V 1 = 2, V 2 = 2 unidades e cosseno de 45º = 05. Assinale, dentre as alternativas mostradas abaixo, o que for correto: 01. Os termos direção e sentido apresentam o mesmo significado, fisicamente falando. 02. Se dois vetores de módulos iguais a 20 unidades, de mesma direção, forem somados, certamente o resultado obtido para a operação vetorial será nulo. 04. Se dois vetores de módulos iguais a 20 unidades de mesmo sentido e direção forem somados certamente o resultado obtido será igual ao dobro de seus módulos. 08. O vetor - tem o mesmo sentido do vetor. 16. O vetor - tem a mesma direção do vetor.

13 06. Explique a diferença entre as palavras usadas para diferenciar a direção e o sentido de uma grandeza vetorial. 07. Considere dois vetores de módulos 45 e 25 unidades. Se ambos possuem a mesma direção e sentidos opostos, calcule o valor do vetor resultante obtido a partir de sua soma. Represente geometricamente as possibilidades para esta operação vetorial. 08. Considere dois vetores de módulos 45 e 25 unidades. Se ambos possuem a mesma direção e sentidos iguais, calcule o valor do vetor resultante obtido a partir de sua soma. Represente geometricamente as possibilidades para esta operação vetorial. 09. Um barco a motor é capaz de adquirir em um lago a velocidade máxima de 25 km/h. Se este barco for colocado para se mover em um rio cuja correnteza possui velocidade constante de 9 Km/h, determine os valores máximo e mínimo que poderíamos esperar para a velocidade deste barco. 10. (Mackenzie - SP) O vetor resultante da soma de é: Demonstre ao lado da figura como você obteve a resultante. 11. No esquema estão representados os vetores. A relação vetorial correta entre esses vetores é: mostre o resultado correto ao lado da figura. 12. (UELPR)

14 Na figura a seguir estão desenhados dois vetores. Esses vetores representam deslocamentos sucessivos de um corpo. Qual é o módulo do vetor igual a? a) 4 cm. b) 5 cm. c) 8 cm. d) 13 cm. e) 25 cm. 13. Na figura estão representados ao vetores, assim como os versores. a) Obtenha, em função de e, as expressões dos vetores,, e. b) Determine os módulos dos vetores 14. Considere os vetores, representados na figura, tendo todos mesmos módulos iguais a v. Calcule, em função de v, o módulo do vetor:

15 15. Considere dois vetores que representam velocidades V 1 e V 2. Seus módulos são indicados na figura onde cada retículo quadriculado representa 1 km/h. Represente em cada um dos casos mostrados o valor do vetor resultante da operação. 16. Uma sala tem 5 m de comprimento, 4 m de largura e 3 m de altura. Uma mosca parte do chão, de um canto da sala, voa para o teto e pousa no canto diagonalmente oposto da mesma parede. a) Quais os possíveis módulos para o módulo de deslocamento da mosca? b) A distância percorrida pela mosca pode ser menor do que esse valor? Maior do que ele? Igual a ele? c) Se a mosca decide andar e não voar qual a menor distancia que ela terá que percorrer? 17. Saindo de BH em direção ao Rio de Janeiro, próximo à cidade encontra-se a Serra da Moeda, local para os amantes dos esportes radicais, como o vôo livre. Num vôo partindo do alto da serra, um atleta atinge uma velocidade de 20 m/s, conforme o esquema abaixo. Tomando como orientação a bússola mostrada na figura, podemos afirmar corretamente que os valores das componentes da velocidade nas direções Leste Oeste e Norte Sul são, respectivamente: (dados: sen 30º = 0,50 e cos 30º = 0,87)

16 a) 17,4 m / s e 10 m / s. b) 10 m / s e 17,4 m / s. c) 17,4 km / h e 10 km / h. d) 10 km / h e 17,4 km / h. e) Outro conjunto de valores. 18. Encontre o vetor resultante, obtido a partir da soma dos vetores a e b mostrados no diagrama a seguir: 19. Encontre o vetor resultante, obtido a partir da soma dos vetores a e b mostrados no diagrama a seguir: 20. Encontre o vetor resultante, obtido a partir da soma dos vetores a e b mostrados no diagrama a seguir:

17 Força elástica - Lei de Hooke F el K. x Onde K é chamado constante elástica da mola e é um número que depende da mola usada em nossa experiência; x é a deformação da mola, o quanto ela estica ou comprime. A proporcionalidade que existe entre a força elástica (restauradora) e a sua deformação está descrita abaixo no gráfico. Exercícios 01. Três corpos A, B e C de massa m A = 1 kg, m B = 3 kg e m C = 6 kg estão apoiados numa superfície horizontal perfeitamente lisa, conforme mostra a Figura. A força constante de F = 5 N, horizontal é aplicada ao primeiro bloco (A). Adote g = 10m/s 2. F A B C Calcule o valor da aceleração adquirida pelo sistema sob a ação dessa força. 01) 2 m/s 2. 02) 1 m/s 2. 04) 4 m/s 2. 08) 0,5 m/s 2. 16) 10 m/s 2. 32) Outro valor diferente dos citados acima. 02. Dois corpos A e B de massa iguais a m A = 2 kg, m B = 4 kg estão apoiados numa superfície horizontal perfeitamente lisa, conforme mostra a Figura. O fio que liga A e B é ideal, isto é, de massa desprezível e inextensível. A força horizontal de F = 12 N é constante. Adote g = 10m/s 2. A T F B Com base nas informações fornecidas, identifique o valor da força de tração que o une os corpos A e B. 01) 2 N. 02) 4 N. 04) 16N. 08) 8 N. 16) 1N. 32) Outro valor diferente dos citados acima. 03. Dois corpos A e B de massa iguais a m A = 6 kg, m B = 2 kg, conforme mostra a Figura, a superfície horizontal perfeitamente lisa, e o fio que liga A e B é de massa desprezível e inextensível. Não há atrito entre o fio e a polia, considerada sem inércia. Adote g = 10m/s 2. T A B

18 Calcule o valor da aceleração adquirida pelo sistema. 01) 2 m/s 2. 02) 1 m/s 2. 04) 4 m/s 2. 08) 0,5 m/s 2. 16) 10 m/s 2. 32) Outro valor diferente dos citados acima. 04. Ainda tomando como base o enunciado da questão anterior, calcule o valor da força de tração que une os blocos A e B. 01) 10 N. 02) 15 N. 04) 20 N. 08) 40 N. 16) 25N. 32) Outro valor diferente dos citados acima. 05. No arranjo experimental da figura, os corpos A e B tem massas iguais a 10 kg. O plano inclinado é perfeitamente liso e o fio que liga A e B é de massa desprezível e inextensível. Não há atrito entre o fio e a polia, considerada sem inércia. Adote g = 10m/s 2. A = 30 o B Calcule o valor da força (adicional) necessária para manter o sistema figurado em equilíbrio. 01) 10 N. 02) 15 N. 04) 20 N. 08) 40 N. 16) 5N. 32) Outro valor diferente dos citados acima FORÇA DE ATRITO (F AT ) Na maioria das vezes consideramos as superfícies de contato lisas e bem polidas, de tal forma que não exista nenhuma dificuldade para o movimento. Mas na realidade isso não ocorre, pois na prática deparamos com forças dificultando o movimento ou tentativa de movimento. Essas forças são chamadas de FORÇAS DE ATRITO. Quando existe movimento relativo entre os corpos de contato o atrito é denominado ATRITO DINÂMICO. Quando não há movimento o atrito é denominado ATRITO ESTÁTICO. Portanto Atrito é uma força que se opõe ao movimento ou a tentativa do mesmo. Ela está ligada ao material que compõem a superfície de contato e força de reação que a superfície faz sobre o corpo. Fat. N coeficiente de atrito (adimensional) N reação normal (no SI => N) SENTIDO: Oposto ao movimento ou tendência de movimento. DIREÇÃO: Tangente às superfícies de contato.

19 Força Centrípeta Note que a corda age na pedra com uma força perpendicular ao seu movimento e, portanto, perpendicular à velocidade; essa força é dirigida para o centro da trajetória e devido a isso recebe o nome de Força Centrípeta Assim, aplicando o princípio fundamental da dinâmica, observamos que o corpo possui aceleração dirigida para o centro, chamada aceleração centrípeta. F cp m. a cp Vimos na apostila 02, que a aceleração centrípeta é dada por: a cp 2 v R Assim, temos:

20 F cp v m. R 2 Ou em termos da velocidade angular (w), temos: 2 Fcp m..r 6- Testes: 6.A - As figuras abaixo mostram as forças que agem em um corpo, bem como a massa de cada corpo. Para cada um dos casos apresentados, determine a força resultante (módulo, direção e sentido) que age sobre o corpo e a aceleração a que este fica sujeito. (a) (b) (c) (d) 6.B - O corpo da figura abaixo tem massa de 5 kg e é puxado horizontalmente sobre uma mesa pela força F de intensidade 30 N. Se o coeficiente de atrito entre o corpo e a mesa é = 0,1, determine a aceleração adquirida pelo corpo. Adote g = 10 m/s 2. Questões 01. Submete-se um corpo de massa 5000 kg à ação de uma força constante que lhe imprime, a partir do repouso, uma velocidade de 72 km/h ao fim de 40s. Determine a intensidade da força e o espaço percorrido pelo corpo.

21 02. Qual o valor, em Newtons, da força média necessária para fazer parar, num percurso de 20m, um automóvel de 1, kg, que está a uma velocidade de 72 km/h? 03. Uma força horizontal de 10N é aplicada ao bloco A, de 6 kg o qual por sua vez está apoiado em um segundo bloco B de 4 kg. Se os blocos deslizam sobre um plano horizontal sem atrito, qual a força em Newtons que um bloco exerce sobre o outro? 04. Três blocos A, B e C, de massas m A = 5 kg, m B = 3 kg e m C = 4 kg estão sobre uma superfície horizontal sem atrito e presos um ao outro por meio de cordas inextensíveis e de massas desprezíveis, como mostra a figura. No cabo A é aplicado uma força de 60N, horizontal e de módulo constante. Determine: 05. No problema anterior, suponha que as cordas tenham massas iguais a 1,5 kg cada uma. Determine: a) a aceleração do bloco C; b) as forças que as cordas aplicam em cada bloco. 06. Determine a força tensora no cabo que sustenta a cabine de um elevador, de 500 kg, quando o elevador: adote g = 10 m/s2. a) sobe com velocidade constante; b) sobe com aceleração de 2 m/s2; c) sobe com movimento uniformemente retardado de aceleração de 2 m/s2; d) desce com movimento uniformemente retardado de aceleração 2 m/s Um homem de 80kg está sobre uma balança, dentro de um elevador em movimento. Se o elevador está descendo em movimento uniformemente acelerado, com a aceleração de 2 m/s 2, a balança acusa maior ou menor peso? Qual a indicação da balança se estiver graduada em Newtons? (adote g = 10m/s2) BA FC a) a aceleração do bloco B; b) a tração na corda que liga A a B; c) a tração na corda que liga B a C. 08. Num elevador há uma balança graduada em Newton. Um homem de 60 kg lê sobre a mesma 720 Newton quando o elevador sobe com certa aceleração e 456 Newtons quando o elevador desce com a mesma aceleração. Quais as acelerações da gravidade e do elevador? Quanto registrará a balança se o elevador subir ou descer com velocidade constante? Que deverá ter ocorrido quando a balança registrar zero? 09. Um corpo de peso 300N se encontra parado sobre um plano horizontal onde existe atrito. Sabendo-se que o coeficiente de atrito estático entre o bloco e o chão é 0,5, calcule a força mínima que se deve imprimir ao bloco para colocá-lo em movimento.

22 10. Deslizando por um plano inclinado de 37º, uma moeda (m = 10g) possui aceleração de 4,4 m/s 2 (sen 37º = 0,60, cos 37º = 0,80). Adotar g = 10m/s2. Determinar a força de atrito exercida na moeda. 11. Para o sistema abaixo o coeficiente de atrito (estático ou cinético) entre o bloco A e a superfície horizontal é 0,2. Calcule a aceleração do sistema e a tração na corda. 12. Um automóvel em movimento uniforme entra numa curva circular de raio R, contida em um plano horizontal. Sendo g o módulo da aceleração da gravidade determine a máxima velocidade possível na curva sem que o carro derrape. O coeficiente de atrito entre os pneus e o chão é constante e vale. 13. Um corpo de massa 1 kg descreve sobre uma mesa polida uma trajetória circular de raio igual a 1 metro, quando preso mediante um fio a um ponto fixo na mesa. A velocidade do movimento tem intensidade igual a 2 m/s. Calcule a tração exercida no fio. 14. Um corpo de massa 100g gira num plano horizontal, sem atrito, em torno de um ponto fixo desse plano, preso por um fio de comprimento 1,0 metro e capaz de resistir a uma tração máxima de 10N. Calcule a velocidade máxima que o corpo pode atingir. 15. Um corpo de massa 5kg apóia-se sobre um plano horizontal sem atrito e está ligado por meio de um fio, a outro corpo de massa 50kg que pende verticalmente, por um fio passando por um furo feito no plano. Fazendo-se o corpo de massa m girar em torno do furo verifica-se que o outro fica em repouso quando a parte do fio sobre o plano horizontal mede 25cm. Assumindo g = 10m/s 2 determinar a velocidade do corpo que gira. seu peso? 16. Um automóvel está percorrendo uma pista circular contida em um plano vertical. Seja R o raio da pista, considerando o automóvel como sendo um ponto material. e sendo g a aceleração da gravidade, com que velocidade o carro deve passar no ponto mais baixo da trajetória, para que a força normal que o chão exerça sobre o carro seja igual ao triplo do 17. Um bloco está descendo um plano inclinado, com velocidade constante, cujo ângulo de inclinação com a horizontal é. Mostre que o coeficiente de atrito entre o bloco e o plano é dado por tg.

23 18. Determine a aceleração do conjunto na situação esquematizada, nos casos abaixo. Considere o fio e a polia com massas desprezíveis e sen 30º = 0,5 cos 30º a) sem atrito; b) com atrito entre o bloco e o plano com = 0,2 19) Uma mola é pendurada em um teto e nela pendura-se um corpo de massa 10kg. Sabendose que o corpo deslocou a mola em 20cm de sua posição de equilíbrio, qual a constante elástica da mola? 19. Uma mola é pendurada em um teto e nela pendura-se um corpo de massa 10kg. Sabendo-se que o corpo deslocou a mola em 20 cm de sua posição de equilíbrio, qual a constante elástica da mola? 20. A figura representa um carro guincho de massa kg, que transporta uma carga de kg suspensa por um cabo ideal. Durante o movimento uniformemente acelerado, o cabo faz com a vertical um ângulo cuja tangente é 0,15. Calcular a força horizontal que acelera o guincho. Admitir g = 10m/s 2. Trabalho Mecânico Consideremos Uma força constante F atuando numa partícula enquanto ela sofre um deslocamento S, do ponto A ao ponto B. O trabalho realizado por essa força nesse deslocamento, sendo o ângulo entre F e S, é a grandeza escalar F, definida por: F. S. cos F (Unidade no SI: joule = J) (J = N. m) [ ] = M.L 2.T -2

24 Energia Potencial Gravitacional Como vimos anteriormente, o corpo quando se encontra na altura h, dizemos que a força peso tem a capacidade de realizar um trabalho igual a mgh. Podemos então falar que o corpo quando se encontra na altura h ele terá uma capacidade de realizar trabalho portanto ele terá uma energia denominada de energia potencial gravitacional que será igual ao trabalho que o corpo poderá realizar ao cair. Portanto a energia potencial gravitacional de um corpo que se encontra a uma altura h do solo é dada por: EP = m. g. h Se você fizer uma força contra o peso para que o corpo suba, ele então terá uma energia potencial maior. O acréscimo desta energia será igual ao trabalho que você realizou sobre o corpo. Portanto podemos escrever que o trabalho realizado sobre o corpo é igual à variação da energia potencial sofrida pelo corpo. = EP = EP F EP 0 As forças conservativas quando realizam um trabalho negativo significa que a energia potencial está aumentando. Note que no exemplo, quando o corpo está subindo a força peso realiza um trabalho negativo. Sendo assim o corpo ganha altura e logicamente ganhará também energia potencial. Já quando o corpo está descendo, o peso realiza um trabalho positivo. A altura diminui e por conseqüência a energia potencial gravitacional também diminui. Está relacionada com a posição que um corpo ocupa no campo gravitacional terrestre e sua capacidade de vir a realizar trabalho mecânico. Energia Potencial Elástica Ao aplicar sobre uma mola uma força, a mola irá fazer uma força contraria ao movimento, denominada força elástica. Como a força elástica é uma força conservativa e o trabalho da força elástica é negativo, isto significa que a mola irá adquirir uma energia potencial que denominamos de energia potencial elástica.

25 Esta energia fica acumulada na mola e ela passa ter a capacidade de realizar um trabalho igual a el = k. x 2 2 como vimos anteriormente. Portanto podemos concluir que a energia potencial armazenada na mola é dada por E Pel = k. x 2. Ela dependerá da constante elástica da mola e da elongação da mesma. 2 Energia Cinética Consideremos uma partícula submetida à ação de uma força resultante F. O trabalho que esta força irá realizar durante um deslocamento S será dado por: = F. S Pela segunda lei de Newton temos que F = m. a, então a fórmula do trabalho poderá ser : = m. a. S O termo (a. d ) poderá ser colocado em função da velocidade, uma vez que a energia cinética é a energia de movimento e nada melhor do que a velocidade para descrever um movimento: v 2 = v a.d a.d = v 2 v Então o trabalho poderá ser dado por: = m. v Os termos mv 2 mv e v ou ainda = mv 2 mv 2 2 são denominados de Energia cinética final e Energia cinética inicial. m. v 2 EC Quando você quiser saber da energia cinética num determinado instante basta usar: 2 Teorema da energia cinética: 2 0 Já vimos que = mv 2 mv Este é o teorema da energia cinética. O trabalho realizado pela força resultante que atua sobre um corpo é igual à variação de energia cinética sofrida por esse corpo. = EC F EC 0

26 = EC Energia Mecânica - Energia Potencial Gravitacional Energia mecânica EM de um sistema de corpos é a soma de todas as energias presentes no sistema. Energias potenciais (gravitacionais e elásticas), energia cinética. Para sistemas que agem forças conservativas podemos dizer que a Energia Mecânica inicial é igual à Energia Mecânica final. EM = EC + EP Exercícios 01. Um corpo de massa m é empurrado contra uma mola cuja constante elástica é 600 N/s, comprimindo-a 30 cm. Ele é liberado e a mola o projeta ao longo de uma superfície sem atrito que termina numa rampa inclinada conforme a figura. Sabendo que a altura máxima atingida pelo corpo na rampa é de 0,9 m e g = 10 m/s 2, calcule m. (Despreze as forças resistivas.) 02. Um carrinho está em movimento sobre uma montanha russa, como indica a figura acima. Qual a velocidade do carrinho no ponto C? 03. Um automóvel está percorrendo uma pista circular contida em um plano vertical. Seja R o raio da pista, considerando o automóvel como sendo um ponto material. e sendo g a aceleração da gravidade, com que velocidade o carro deve passar no ponto mais baixo da trajetória, para que a força normal que o chão exerça sobre o carro seja igual ao triplo do seu peso? 04. Um bloco está descendo um plano inclinado, com velocidade constante, cujo ângulo de inclinação com a horizontal é. Mostre que o coeficiente de atrito entre o bloco e o plano é dado por tg. 05. Determine a aceleração do conjunto na situação esquematizada, nos casos abaixo. Considere o fio e a polia com massas desprezíveis e sen 30º = 0,5 cos 30º a) sem atrito; b) com atrito entre o bloco e o plano

27 com = 0,2 19) Uma mola é pendurada em um teto e nela pendura-se um corpo de massa 10kg. Sabendo-se que o corpo deslocou a mola em 20cm de sua posição de equilíbrio, qual a constante elástica da mola? 20) A figura representa um carro guincho de massa kg, que transporta uma carga de kg suspensa por um cabo ideal. Durante o movimento uniformemente acelerado, o cabo faz com a vertical um ângulo cuja tangente é 0,15. Calcular a força horizontal que acelera o guincho. Admitir g = 10m/s2. Impulso e quantidade de movimento Estudamos, até agora, a existência de várias grandezas físicas que se inter-relacionam. Passaremos a estudar agora a relação entre a força aplicada a um corpo com o intervalo de tempo de sua atuação e seus efeitos. Veremos que as grandezas Impulso e Quantidade de Movimento são dimensionalmente iguais e são extremamente importantes para entendermos melhor o nosso dia-a-dia. O Conceito Físico Impulso está relacionado com a força aplicada durante um intervalo de tempo. Ou seja, quanto maior a força maior o impulso e quanto maior o tempo que você aplica maior será o impulso. No caso em que a força aplicada sobre o corpo seja variável não podemos utilizar a fórmula anterior para resolver, então como faremos? A resposta é aquela utilizada para o cálculo do trabalho de forças variáveis, ou seja, determinar o gráfico e calcular a área. Imaginemos uma força constante aplicada sobre um corpo durante um intervalo de tempo t. O gráfico F x t seria: Determinando a área da parte pintada, temos: Força Variável No caso em que a força aplicada sobre o corpo seja variável não podemos utilizar a fórmula anterior para resolver, então como faremos? A resposta é aquela utilizada para o cálculo do trabalho de forças variáveis, ou seja, determinar o gráfico e calcular a área. Imaginemos uma força constante aplicada sobre um corpo durante um intervalo de tempo t. O gráfico F x t seria:

28 É importante dizer que esta propriedade vale também para o caso da força variar. Exemplo: O gráfico a seguir nos dá a intensidade da força que atua sobre um corpo, no decorrer do tempo. A partir desse gráfico, calcule o impulso comunicado ao corpo entre os instantes t1 = 0 e t2 = 14 s. QUANTIDADE DE MOVIMENTO Em certas situações a Força não é tudo. Quando um jogador de voleibol corta uma bola ele transfere algo para ela. Esse algo que ele transfere para a bola é a grandeza física denominada quantidade de movimento. A grandeza quantidade de movimento envolve a massa e a velocidade. Portanto uma cortada no jogo de voleibol será mais potente quanto maior for a velocidade no braço do jogador, pois é exatamente o movimento do braço que está sendo transferido para o movimento da bola.

29 1) Mostre que as grandezas Quantidade de Movimento e Impulso são dimensionalmente iguais. 2) Uma partícula de massa 0,5 kg realiza um movimento obedecendo à função horária: s = 5 + 2t + 3t2 (SI). Determine o módulo da quantidade de movimento da partícula no instante t = 2 s. TEOREMA DO IMPULSO Embora no fim desta parte de nosso estudo nós cheguemos a uma expressão matemática, o conceito do Teorema do Impulso é muito mais importante do que a matemática dele. Observemos a seqüência abaixo: Imagine uma criança num balanço com certa velocidade. Imagine também que num certo instante o pai desta criança aplica-lhe uma força durante um intervalo de tempo, ou seja, lhe dá um impulso. O resultado do impulso dado pelo pai é um aumento na quantidade de movimento que o menino possuía. O teorema do impulso diz que se pegarmos o movimento que o menino passou a ter no final e compararmos com o movimento que ele tinha veremos que ele ganhou certo movimento que é exatamente o impulso dado pelo pai. Colocamos a palavra movimento entre aspas, pois na realidade é a quantidade de movimento. O Teorema do Impulso é válido para qualquer tipo de movimento. Entretanto iremos demonstrá-lo para o caso de uma partícula que realiza um movimento retilíneo uniformemente variado (MRUV). Retomando o desenho do balanço: Demonstração:

30 01. Uma força constante atua durante 5 s sobre uma partícula de massa 2 kg, na direção e no sentido de seu movimento, fazendo com que sua velocidade escalar varie de 5 m/s para 9 m/s. Determine: (a) o módulo da variação da quantidade de movimento; (b) a intensidade do impulso da força atuante; (c) a intensidade da força. 02. Um corpo é lançado verticalmente para cima com velocidade inicial 20 m/s. Sendo 5 kg a massa do corpo, determine a intensidade do impulso da força peso entre o instante inicial e o instante em que o corpo atinge o ponto mais alto da trajetória. PRINCÍPIO DA CONSERVAÇÃO DA QUANTIDADE DE MOVIMENTO Os Princípios de Conservação, em física, são extremamente importantes para melhor compreensão dos fenômenos do dia-a-dia e ajudam muito na resolução de problemas complexos. Neste caso é necessário que saibamos o conceito de Sistema Isolado; sistema no qual a resultante das forças externas que atuam sobre ele é nula. Antes de enunciarmos este princípio, vejamos sua demonstração.

31 Exercícios. 01. Um canhão de artilharia horizontal de 1 t dispara uma bala de 2 kg que sai da peça com velocidade de 300 m/s. Admita a velocidade da bala constante no interior do canhão. Determine a velocidade de recuo da peça do canhão. 02. Um foguete de massa M move-se no espaço sideral com velocidade de módulo v. Uma repentina explosão fragmenta esse foguete em três partes iguais que continuam a se movimentar na mesma direção e no mesmo sentido do foguete original. Uma das partes está se movimentando com velocidade de módulo v/5, outra parte com velocidade v/2. Qual o módulo da velocidade da 3a parte. 03. Ao da o saque viagem ao fundo do mar num jogo de voleibol, um jogador aplica uma força de intensidade N sobre a bola, durante um intervalo de 1, s. Calcule a intensidade do impulso da força aplicada pelo jogador. 04. Um projétil de massa 20 g incide horizontalmente sobre a tábua com velocidade 500 m/s e a abandona com velocidade horizontal e de mesmo sentido de valor 300 m/s. Qual a intensidade do impulso comunicado ao projétil pela tábua? 05. Um vagão de trem, com massa m1 = kg, desloca-se com velocidade v1 = 0,5 m/s num trecho retilíneo e horizontal de ferrovia. Esse vagão choca-se com outro, de massa m 2 = kg, que se movia em sentido contrário, com velocidade v 2 = 0,4 m/s, e os dois passaram a se mover engatados. Qual a velocidade do conjunto após o choque? 06. Um tenista recebe uma bola com velocidade de 50 m/s e a rebate, na mesma direção e em sentido contrário, com velocidade de 30 m/s. A massa da bola é de 0,15 kg. Supondo que o choque tenha durado 0,1 s, calcule a intensidade da força aplicada pela raquete à bola. 07. Na figura temos uma massa M = 132 g, inicialmente em repouso, presa a uma mola de constante elástica k = 1, N/m, podendo se deslocar sem atrito sobre a mesa em que se encontra. Atira-se uma bala de massa m = 12 g que encontra o bloco horizontalmente, com uma velocidade V 0 = 200 m/s incrustando-se nele. Qual é a máxima deformação que a mola experimenta? (a) 25 cm; (b) 50 cm; (c) 5,0 cm; (d) 1,6 m; (e) n.r.a.

32 COLISÕES MECÂNICAS O conceito de colisão é muito importante no curso de física, além dos choques mais simples que iremos tratar, existem colisões extremamente complexas como as estudadas por centros de pesquisa como a NASA, colisões entre partículas. Neste estudo existe a preocupação de materiais capazes a resistir a colisões no espaço. Portanto fiquemos atentos aos detalhes desta discussão. Choques mecânicos ou colisões mecânicas são resultados de interação entre corpos. Podemos dividir essas interações em duas partes: Deformação: Onde a energia cinética é convertida em energia potencial. Restituição: A energia potencial é transformada em energia cinética. Essa transformação pode ser total, parcial ou não existir. É exatamente a forma como a energia potencial é restituída em energia cinética que define os tipos de colisões e é isso que estudaremos agora. TIPOS DE COLISÃO COLISÃO ELÁSTICA Neste tipo de colisão a energia cinética antes da colisão é igual a energia cinética após a colisão, portanto não existe dissipação de energia. Como não houve dissipação podemos concluir que a velocidade após a colisão é trocada, ou seja a velocidade de um corpo passa para outro e vice-versa. Esquematicamente temos: COLISÃO PARCIALMENTE ELÁSTICA Na Colisão Parcialmente Elástica temos a energia cinética antes da colisão maior que a energia cinética após a colisão, portanto existe dissipação da energia. Por causa da dissipação da energia a velocidade do conjunto no fim diminui e a velocidade de A e B são diferentes. Fica ainda uma pergunta: Para onde foi a energia dissipada? A energia foi transformada em Calor, por causa do atrito existente na colisão. Esquematicamente temos:

33 COLISÃO INELÁSTICA A Colisão Inelástica possui energia cinética antes da colisão maior do que no final da colisão. Aqui a dissipação de energia é máxima, portanto no final as velocidades de A e B serão iguais, ou seja eles continuaram juntos. Esquematicamente temos: COEFICIENTE DE RESTITUIÇÃO Para se fazer a medição e caracterização matemática de uma colisão utilizamos o coeficiente de restituição. O coeficiente mostra a taxa de energia cinética que é restituída após a colisão, logo na colisão elástica esta taxa é máxima e na colisão inelástica ela será mínima. Como calcular o coeficiente? Anotações:

34 EXERCÍCIOS 01. Uma partícula de massa m desloca-se num plano horizontal, sem atrito, com velocidade V A = 12 m/s. Sabe-se ainda que ela colide com uma Segunda partícula B de massa m, inicialmente em repouso. Sendo o choque unidimensional e elástico, determine suas velocidades após o choque (faça o desenvolvimento matemático). 02. Um corpo A de massa m A = 2 kg, desloca-se com velocidade V A = 30 m/s e colide frontalmente com uma Segunda partícula B, de massa m B = 1 kg, que se desloca com velocidade V B = 10 m/s, em sentido oposto ao de A. Se o coeficiente de restituição desse choque vale 0,5, quais são as velocidades das partículas após a colisão? 03. Seja um choque perfeitamente elástico de dois corpos A e B. A velocidade de cada corpo está indicada na figura e suas massas são ma = 2 kg e mb = 10 kg. Determine as velocidades de A e B após o choque.

35 04. Dois carrinhos iguais, com 1 kg de massa cada um, estão unidos por um barbante e caminham com velocidade de 3 m/s. Entre os carrinhos há uma mola comprimida, cuja massa pode ser desprezada. Num determinado instante o barbante se rompe, a mola se desprende e um dos carrinhos pára imediatamente. (a) Qual a quantidade de movimento inicial do conjunto? (c) Qual a velocidade do carrinho que continua em movimento? 05. Dois corpos se movem com movimento retilíneo uniforme num plano horizontal onde as forças de atrito são desprezíveis. Suponha que os dois corpos, cada com energia cinética de 5 J, colidam frontalmente, fiquem grudados e parem imediatamente, devido à colisão. (a) Qual foi a quantidade de energia mecânica que não se conservou na colisão? (b) Qual era a quantidade de movimento linear do sistema, formado pelos dois corpos, antes da colisão? HIDROSTÁTICA Densidade: Se tivermos um corpo de massa m e volume v, definimos sua densidade através da relação: m v A unidade de densidade no Sistema Internacional de unidades é o kg/m 3. No entanto, usualmente são utilizados o g/cm 3 e o kg/l, que são unidades equivalentes. Por exemplo, a densidade da água vale: d = kg/m 3 = 1 kg/l = 1 g/cm 3. Pressão: Considere a ação de polimento de um automóvel. Suponha que neste trabalho esteja sendo aplicada uma força F constante, esfregando-se a palma da mão sobre a superfície do carro. (Figura 1) Imagine, agora, que se deseja eliminar uma mancha bastante pequena existente no veículo. Nesta ação esfregam-se apenas as pontas dos dedos na região da mancha, a fim de aumentar o poder de remoção da mancha.(figura 2)

36 Figura B Figura A Nos dois casos, a força aplicada F foi a mesma, porém os resultados obtidos no trabalho foram diferentes. Isto acontece por que o efeito do polimento depende não apenas da força que a mão exerce sobre o carro, mas também da área de aplicação. A grandeza que relaciona a força F aplicada com a área A de aplicação denomina-se pressão. Pressão de uma força sobre uma superfície é o quociente entre a intensidade da força normal à superfície e a área dessa superfície. F n F F n = F cos p Fn A A pressão é uma grandeza escalar. No S.I. a unidade de pressão é o Newton por metro quadrado (N/m 2 ) denominado pascal (Pa). Outras unidades usadas com freqüência são: centímetro de mercúrio: cm Hg milímetro de mercúrio: mm Hg atmosfera: atm milibar: mbar Pressão de uma coluna de líquido ou pressão hidrostática: Pressão hidrostática ou pressão efetiva (P ef ) num ponto de um fluido em equilíbrio é a pressão que o fluido exerce no ponto em questão. Considere-se um copo cilíndrico com um líquido até a altura h e um ponto B no fundo; sendo A a área do fundo, o líquido exerce uma pressão no ponto B, dada por: P m. g. V. g. A. h. g p b. g. h A A A A B h P ef =. g. h

37 Atenção: A pressão efetiva depende somente da densidade do fluido, da altura do fluido acima do ponto e da aceleração gravitacional, e independe do formato e do tamanho do recipiente. Levando-se em conta a pressão atmosférica (p 0 ), que veremos no tópico 10.7, a pressão absoluta (p abs ) no fundo do copo é calculada por: p abs = p 0 + p ef ou P abs = p 0 +. g. h Princípio de Pascal: O princípio de Pascal diz que quando um ponto de um líquido em equilíbrio sofre uma variação de pressão, todos os outros pontos também sofrem a mesma variação. Uma aplicação importante desse princípio é a prensa hidráulica, que consiste em dois vasos comunicantes, com êmbolos de áreas diferentes (A 1 e A 2 ) sobre as superfícies livres do líquido contido nos vasos. Aplicando-se uma força F 1 sobre o êmbolo de área A 1, a pressão exercida é propagada pelo líquido até o êmbolo de área A 2. Portanto teremos que: F 1 p 1 = p 2 A 1 A 2 F 2 A prensa hidráulica é um dispositivo que multiplica a intensidade de forças. obs. Apesar da verificação do aumento ou da diminuição na intensidade de forças, a prensa hidráulica não pode modificar a quantidade de energia envolvida, pois deve obedecer ao princípio da conservação de energia. Empuxo: Quando mergulhamos um corpo num líquido, seu peso aparente diminui, chegando às vezes a parecer totalmente anulado (quando o corpo flutua). Esse fato se deve à existência de uma força vertical de baixo para cima, exercida no corpo pelo líquido, a qual recebe o nome de empuxo. O empuxo se deve à diferença das pressões exercidas pelo fluido nas superfícies inferior e superior do corpo. Sendo as forças aplicadas pelo fluido à parte inferior maiores que as exercidas na parte superior, a resultante dessas forças fornece uma força vertical de baixo para cima, que é o empuxo. Princípio de Arquimedes:

38 Todo corpo imerso, total ou parcialmente, num fluido em equilíbrio, dentro de um campo gravitacional, fica sob a ação de uma força vertical, com sentido ascendente, aplicada pelo fluido. Esta força é denominada empuxo ( E pelo corpo. ), cuja intensidade é igual ao peso do líquido deslocado E = P fd E = m fd. g E = fd. V des. g E =. V. g onde é a densidade do fluido e V é o volume do fluido deslocado. obs. O valor do empuxo não depende da densidade do corpo imerso no fluido; a densidade do corpo (d c ) é importante para se saber se o corpo afunda ou não no fluido. c < f O corpo pode flutuar na superfície do fluido (no caso de líquido). c = f O corpo fica em equilíbrio no interior do fluido (com o corpo totalmente imerso). c > f O corpo afunda no fluido. Testes: 01. A existência do empuxo é um fenômeno que se verifica: a) apenas na água. b) apenas no ar. c) apenas nos líquidos. d) apenas nos gases. e) nos gases e líquidos. 02. Assinale a opção que explica corretamente por que um balão de São João sobe. a) A pressão dos gases no interior do balão é menor que a pressão atmosférica externa. b) A pressão atmosférica cresce com a altitude. c) O peso do balão é menor que o peso do ar que ele desloca. d) O valor da aceleração da gravidade decresce com a altitude. e) O volume do balão diminui a medida que ele sobe. 03. Assinale a opção que explica corretamente por que um balão de São João sobe. a) A pressão dos gases no interior do balão é menor que a pressão atmosférica externa. b) A pressão atmosférica cresce com a altitude. c) O peso do balão é menor que o peso do ar que ele desloca. d) O valor da aceleração da gravidade decresce com a altitude. e) O volume do balão diminui a medida que ele sobe. 04. Eva possui duas bolsas A e B, idênticas, nas quais coloca sempre os mesmos objetos. Com o uso das bolsas, ela percebeu que a bolsa A marcava o seu ombro. Curiosa, verificou que a largura da alça da bolsa A era menor do que a da B. Então, Eva concluiu que:

39 a) o peso da bolsa B era maior. b) a pressão exercida pela bolsa B no seu ombro era menor. c) a pressão exercida pela bolsa B no seu ombro era maior. d) o peso da bolsa A era maior. e) as pressões exercidas pelas bolsas são iguais, mas os pesos são diferentes. 05. Coloque V de verdadeiro ou F de falso: ( ) A densidade da gasolina é menor que a densidade do gelo. Sendo assim ao colocarmos uma pedra de gelo na gasolina, o gelo irá flutuar normalmente. ( ) Um bloco de madeira cujo volume é 500 cm 3, tem massa igual a 0,3 Kg. Sendo assim a densidade dessa madeira equivale a 0,6 g/cm Coloque V de verdadeiro ou F de falso: ( ) Dois vasos de líquido idênticos contêm a mesma altura, um deles num local onde a aceleração da gravidade tem um valor g 1, e um outro num local onde a aceleração da gravidade tem um valor g 2 g 1. As pressões suportadas pelas bases dos recipientes são iguais. ( ) Forças iguais produzem sempre pressões iguais. ( ) A pressão exercida por um líquido no fundo do recipiente que o contém depende do volume do líquido. ( ) Nos vasos comunicantes, as superfícies livres de um líquido estão situadas no mesmo plano horizontal. ( ) Um corpo flutua no mercúrio, então sua massa específica é igual à do mercúrio. 07. Assinale com X a alternativa correta: Um corpo completamente imerso num líquido em equilíbrio recebe deste um empuxo sempre igual: a) ao seu próprio peso; b) à sua própria massa; c) ao seu peso aparente; d) ao peso do volume de líquido deslocado; e) n.r.a. 08. Um bloco de 2 Kg de massa mergulhado num líquido está em equilíbrio quando: a) a densidade do corpo é menor que a densidade do líquido; b) a densidade do corpo é igual à densidade do líquido; c) a densidade do corpo é maior que a densidade do líquido; d) a massa do corpo é igual à massa do líquido contido no recipiente; e) a pressão do líquido sobre o corpo é maior que a do corpo sobre o líquido. 09 Cobre-se com papel a boca de um copo cheio de água. Virando-se o copo cuidadosamente de boca para baixo, a água não cai: a) porque a água é muito volátil, isto é, evapora-se rapidamente;

40 b) porque o papel absorve a água; c) em virtude da pressão atmosférica que se exerce na superfície externa do papel; d) devido à grande força de adesão entre as moléculas do papel; e) devido à grande força de coesão entre as moléculas de água. 10. Foram feitas várias medidas de pressão atmosférica através da realização da experiência de Torricelli. O maior valor para a altura da coluna de mercúrio foi encontrado: a) no 7º andar de um prédio em construção na cidade de Juiz de Fora; b) no alto de uma montanha a metros de altura; c) numa bonita casa de veraneio em Ubatuba, no litoral paulista; d) em uma aconchegante moradia na cidade de Campos do Jordão, situada na Serra da Mantiqueira; e) no alto do Pico do Evereste, o ponto culminante da Terra. 11. Uma pedra mergulhada em um rio vai ao fundo. Isso ocorre porque: a) o Teorema de Arquimedes só é válido para corpos de densidade menor que a da água; b) a massa da pedra é muito grande; c) a densidade da pedra é maior que a densidade da água; d) a aceleração da gravidade é maior no interior da água; e) logo depois de mergulhada, a pressão atuante na pedra é maior na parte superior do que na inferior. 12. Uma esfera metálica está em equilíbrio, totalmente imersa em um líquido e sem tocar o fundo do recipiente. É correto afirmar que: a) a esfera é necessariamente oca; b) a densidade da esfera é igual a densidade do líquido; c) o volume do líquido deslocado, é numericamente, igual ao peso da esfera; d) o peso do líquido deslocado é, numericamente, igual ao volume da esfera; e) a esfera é necessariamente maciça. 13. Os três recipientes mostrados na figura estão cheios de água até o nível h acima de sua base e são apresentados na ordem crescente de volumes (V 1 < V 2 < V 3 ). As massas (m) em cada recipiente e as pressões (p) na base de cada um deles satisfazem: a) m 1 > m 2 > m 3 ; p 1 = p 2 = p 3 b) m 1 > m 2 > m 3 ; p 1 > p 2 > p 3 c) m 1 < m 2 < m 3 ; p 1 < p 2 < p 3 h (1) (2) (3) d) m 1 < m 2 < m 3 ; p 1 > p 2 > p 3 e) m 1 < m 2 < m 3 ; p 1 = p 2 = p A diferença de pressão entre dois pontos situados a 2m e 5m de profundidade num líquido de densidade de 800 Kg/m 3, sendo g = 10 m/s 2, é, em Pa, de: a) zero d) b) e) c)

41 15. Em uma prensa hidráulica, os êmbolos aplicados em cada um dos seus ramos são tais que a área do êmbolo maior é o dobro da área do êmbolo menor. Se no êmbolo menor for exercida uma pressão de 200 N/m 2, a pressão exercida no êmbolo maior será: a) zero; d) 400 N/m 2 b) 100 N/m 2 e) 50 N/m 2 c) 200 N/m Duas esferas maciças x e y, de massas iguais, flutuam em equilíbrio na água. Sabendo-se que o volume de x é maior que o de y, é correto afirmar que: a) x desloca mais líquido do que y; b) x desloca menos líquido do que y; c) x e y possuem pesos diferentes; d) x e y possuem massas específicas iguais; e) x e y sofrem forças de empuxos iguais. 17. Coloque V de verdadeiro ou F de falso: ( ) Se um corpo flutua em um líquido, então o peso do corpo é necessariamente igual ao empuxo. ( ) Um corpo imerso num líquido sofre a ação de um empuxo que é tanto maior quanto mais profundo estiver o corpo. ( ) Os peixes que vivem nas profundezas do mar não podem vir à tona, senão explodem. ( ) A rigor, o peso de um corpo, determinado no seio do ar, é diferente do peso real desse corpo. ( ) Forças iguais produzem sempre pressões iguais. 18. Pressão é: a) sinônimo de força; b) força x superfície; c) força x unidade de área; d) força : unidade de área; e) força x volume. 19. Você tem um recipiente cilíndrico, cujo diâmetro da base é D, contendo um líquido de densidade d até uma altura h. Variando-se apenas a medida de uma destas grandezas de cada vez, como podemos aumentar a pressão hidrostática em P que está no fundo do recipiente? a) aumentado D; b) diminuindo D; c) aumentando h; d) diminuindo h; e) diminuindo d. 20. O empuxo exercido por um líquido sobre um corpo nele mergulhado depende: a) da profundidade a que o corpo se encontra; b) do material de que é feito o corpo; c) do peso do corpo; d) de o corpo ser oco ou maciço; e) n.r.a.

42 21. Um bloco de ferro maciço flutua em mercúrio, parcialmente imerso, porque: a) o volume de mercúrio deslocado é maior que o volume do bloco de ferro; b) o peso total do mercúrio é maior que o peso do bloco de ferro; c) o ferro está numa temperatura mais alta; d) o mercúrio tem densidade menor que o ferro; e) o mercúrio tem densidade maior que o ferro. 22. Os dois vasos da figura contêm água à mesma altura, onde a superfície livre está sob a ação da pressão atmosférica somente. C D A Com respeito às pressões nos quatro pontos, A, B, C e D, pode-se afirmar que: a) P A < P B e P C > P D b) P A = P B e P D > P C c) P C > P A e P D > P B d) P C = P D e P A > P B e) P C < P D e P A > P B 23. Uma esfera X está presa, por um fio, ao fundo de um recipiente cheio de água. O peso da esfera é P, e o empuxo que a água exerce sobre ela é E. Qual é o módulo da força de tração do fio? E T P a) P b) E c) E + P d) E - P e) (E + P) / Um elevador hidráulico que equilibra um carro de 8 000N de peso. Qual é a força que deve ser aplicada sobre o êmbolo menor de área 100 cm 2 sabendo-se que a área do êmbolo maior é de cm 2. a) 4N b) 6N c) 8N d) 10N e) 12N

43 TERMOLOGIA Temperatura O que é temperatura? Quando tocamos um corpo qualquer, podemos dizer se ele está "frio", "quente" ou "morno". O tato nos permite ter essa percepção. Mas em que um corpo "frio" difere de um corpo "quente" ou "morno"? As moléculas dos corpos estão em constante movimento, em constante vibração. A energia de movimento que elas possuem é chamada energia térmica. Se pudéssemos enxergar as moléculas de um corpo, iríamos verificar que naquele que está "frio" elas vibram menos do que naquele que está "quente". Podemos afirmar que: Temperatura é a grandeza física que mede o estado de agitação térmica dos corpos. Normalmente, confundimos temperatura com calor; Calor é a energia transferida de um corpo de maior temperatura (quente) para um de menor temperatura (frio), um corpo não tem calor e sim energia interna, calor é o processo de transferência; a próxima aula iremos nos aprofundar mais neste assunto. RELAÇÃO ENTRE ESCALAS Supondo que a grandeza termométrica seja a mesma, podemos relacionar as temperaturas assinaladas pelas escalas termométricas da seguinte forma. C K F C 100 K F C 5 K F 32 9 Obs.: Quando um sistema sofre uma variação de temperatura, esta variação pode ser medida com os termômetros conhecidos, existindo uma relação entre as escalas termométricas, está relação está representada abaixo: T 5 C Testes: T 5 K T 9 F 01. Transforme 40 C em Fahrenheit. 02. Quando um termômetro sofre uma variação de 20 C quanto valerá em Kelvins? Com objetivo de recalibrar um velho termômetro com escala totalmente apagada, um estudante o coloca em equilíbrio térmico, primeiro com gelo fundente e, depois, com água em ebulição sob pressão atmosférica normal. Em cada caso, ele anota a altura atingida pela coluna de mercúrio: 10,0 cm e 30,0 cm,

44 respectivamente. A seguir, ele espera que o termômetro entre em equilíbrio térmico com o laboratório e verifica que, nessa situação, a altura da coluna de mercúrio é de 18,0 cm. Qual a temperatura do laboratório na escala Celsius desse termômetro? V? G ) 10ºC 02) 20ºC 04) 30ºC 08) 40ºC 16) 50ºC 32) outro valor. 0 G V 04. Assinale a( s ) alternativa( s ) correta( s ): 01 - o calor é uma forma de energia capaz de modificar o estado de agitação das partículas de um corpo. Esta forma de energia também passa de um corpo de menor estado vibracional ( maior temperatura ) para outro de maior estado vibracional ( menor temperatura ) A medida do grau de agitação das partículas de um corpo é denominada de temperatura A escala Kelvin não mede valores inferiores a -300ºC,pois esta temperatura não pode ser atingida o zero absoluto corresponde a uma temperatura na qual o movimento das partículas que constituem o corpo teria cessado por completo Nas escalas Celsius e Fahrenheit existe apenas um valor comum. Este valor corresponde a temperatura de - 40º Nas escalas Celsius e Kelvin existe apenas um valor comum. Este valor corresponde a temperatura de 273 DILATAÇÃO TÉRMICA Você já observou os trilhos de uma estrada de ferro? Entre dois pedaços consecutivos de trilho, há um espaço. As pontes de concreto, quando muito extensas, não são construídas em um único bloco. São formados por vários blocos de concreto, construídos um ao lado do outro. E, entre dois blocos vizinhos, também há um espaço. Esses espaços são calculados pelos construtores de linhas férreas ou de pontes porque, sob a ação do calor, o aço e o concreto aumentam de tamanho. A maioria dos materiais dilata-se quando aquecida e contrai-se, quando resfriada. Por estarem relacionados com o aumento ou a diminuição da temperatura dos corpos, esses fatos são conhecidos, como dilatação e contração térmica.

45 Se uma linha férrea fosse construída com os trilhos se tocando, a dilatação que ocorreria quando os trilhos se aquecessem provocaria o entortamento da linha. Com as pontes aconteceria coisa semelhante. Se uma ponte de concreto fosse construída em um único bloco, a dilatação do concreto, quando a temperatura aumentasse, causaria rachaduras na ponte. DILATAÇÃO LINEAR L=.L 0. T Onde no S.I.: L : variação do comprimento(m) L 0 : comprimento inicial (m) T : variação da temperatura (ºC ou K) : coeficiente de dilatação linear (ºC -1 ) DILATAÇÃO SUPERFICIAL Da mesma maneira como vimos para a dilatação de uma barra, podemos concluir que a dilatação para uma chapa, uma placa, ou qualquer outro objeto que tenha duas medidas preponderantes (comprimento e largura) a dilatação de sua superfície será dada pela fórmula: S=.S o. T onde no S.I.: S e S o referem-se à variação da área e área inicial (m 2 ) T: variação da temperatura(ºc ou K) : coeficiente de dilatação superficial(ºc -1 )

46 DILATAÇÃO VOLUMÉTRICA V =.V o. T onde no S.I.: V e V o referem-se à variação do volume e vol. Inicial(m 3 ) T: variação da temperatura(ºc ou K) : coeficiente de dilatação volumétrica(ºc -1 ) RELAÇÃO ENTRE OS COEFICIENTES DE DILATAÇÃO Testes: 01. Quando aquecemos uma barra metálica, a variação de seu comprimento é: a) inversamente proporcional ao quadrado da variação de temperatura b) diretamente proporcional ao quadrado da variação de temperatura c) inversamente proporcional à sua temperatura absoluta d) inversamente proporcional à variação de temperatura e) diretamente proporcional à variação de temperatura. 02. Um recipiente termicamente isolado contém 500 g de água na qual se mergulha uma barra metálica homogênea de 250 g. A temperatura inicial da água é 25,0 C e a da barra 80,0 C. Considere o calor específico da água igual a 1,00 cal/g. C, o do metal igual a 0,200 cal/g. C e despreze a capacidade térmica do recipiente. Com base nesses dados, é correto afirmar que: (01) A temperatura final de equilíbrio térmico é de 52,5 C. (02) O comprimento da barra permanece constante durante o processo de troca de calor. (04) A temperatura inicial da barra, na escala kelvin, é de 353 K.

47 (08) A quantidade de calor recebida pela água é igual à cedida pela barra. (16) A energia interna final da água, no equilíbrio térmico, é menor que sua energia interna inicial. 03. (Cesgranrio 98) Misturando-se convenientemente água e álcool, é possível fazer com que uma gota de óleo fique imersa, em repouso, no interior dessa mistura, como exemplifica o desenho a seguir. Os coeficientes de dilatação térmica da mistura e do óleo valem, respectivamente, 2,0.10-4/ C e 5,0.10-4/ C Esfriando-se o conjunto e supondo-se que o álcool não evapore, o volume da gota: a) diminuirá e ela tenderá a descer. b) diminuirá e ela tenderá a subir. c) diminuirá e ela permanecerá em repouso. d) aumentará e ela tenderá a subir. e) aumentará e ela tenderá a descer. 04. (Cesgranrio 92) Uma rampa para saltos de asa-delta é construída de acordo com o esquema que se segue. A pilastra de sustentação II tem, a 0 C, comprimento três vezes maior do que a I. Os coeficientes de dilatação de I e II são, respectivamente, α 1 e α 2. Para que a rampa mantenha a mesma inclinação a qualquer temperatura, é necessário que a relação entre α 1 e α 2 seja: a) α 1 = α 2 b) α 1 = 2α 2 c) α 1 = 3α 2 d) α 2 = 3α 1 e) α 2 = 2α (Cesgranrio 95) Uma régua de metal mede corretamente os comprimentos de uma barra de alumínio e de uma de cobre, na temperatura ambiente de 20 C, sendo os coeficientes de dilatação linear térmica do metal, do alumínio e do cobre, respectivamente iguais a 2,0.10-5/ C, 2,4.10-5/ C e 1,6.10-5/ C, então é correto afirmar que, a 60 C, as medidas fornecidas pela régua para os comprimentos das barras de alumínio e de cobre, relativamente aos seus comprimentos reais nessa temperatura, serão, respectivamente: a) menor e menor. b) menor e maior. c) maior e menor. d) maior e maior. e) igual e igual. 06. Duas barras, sendo uma de ferro e outra de alumínio, de mesmo comprimento l = 1m a 20 C, são unidas e aquecidas até 320 C. Sabe-se que o coeficiente de dilatação linear do ferro é de C-1 e do alumínio é C-1. Qual é o comprimento final após o aquecimento? a) 2,0108 m b) 2,0202 m

48 c) 2,0360 m d) 2,0120 m e) 2,0102 m 07. Uma bobina contendo 2000 m de fio de cobre medido num dia em que a temperatura era de 35 C, foi utilizada e o fio medido de novo a 10 C. Esta nova medição indicou: a) 1,0 m a menos b) 1,0 m a mais c) 2000 m d) 20 m a menos e) 20 mm a mais 08. Você é convidado a projetar uma ponte metálica, cujo comprimento será de 2,0 km. Considerando os efeitos de contração e expansão térmica para temperaturas no intervalo de - 40 F a 110 F e que o coeficiente de dilatação linear do metal é de C -1, qual a máxima variação esperada no comprimento da ponte? (O coeficiente de dilatação linear é constante no intervalo de temperatura considerado). a) 9,3 m b) 2,0 m c) 3,0 m d) 0,93 m e) 6,5 m 09. Se duas barras, uma de alumínio com comprimento L1 e coeficiente de dilatação térmica α1 = 2, C -1 e outra de aço com comprimento L2 > L1 e coeficiente de dilatação térmica α 2 = 1, C -1, apresentam uma diferença em seus comprimentos a 0 C, de 1000 mm e essa diferença se mantém constante com a variação da temperatura, podemos concluir que os comprimentos L1 e L2 são a 0 C: a) L1 = 91,7 mm; L2 = 1091,7 mm b) L1 = 67,6 mm; L2 = 1067,6 mm c) L1 = 917 mm; L2 = 1917 mm d) L1 = 676 mm; L2 = 1676 mm e) L1 = 323 mm; L2 = 1323 mm 10. Num laboratório situado na orla marítima paulista, uma haste de ferro de 50cm de comprimento está envolta em gelo fundente. Para a realização de um ensaio técnico, esta barra é colocada num recipiente contendo água em ebulição, até atingir o equilíbrio térmico. A variação de comprimento sofrida pela haste foi de: (Dado: (Fe) = 1, C-1) a) 12 mm b) 6,0 mm c) 1,2 mm d) 0,60 mm e) 0, 12 mm 11. A figura a seguir representa o comprimento de uma barra metálica em função de sua temperatura. A análise dos dados permite concluir que o coeficiente de dilatação linear do metal constituinte da barra é, em C-1, a) b) c) d) e) Três barras retas de chumbo são interligadas de modo a formarem um triângulo isósceles de base 8cm e altura 10cm.

49 Elevando-se a temperatura do sistema: a) a base e os lados se dilatam igualmente b) os ângulos se mantêm c) a área se conserva d) o ângulo do vértice varia mais que os ângulos da base 13. Uma barra de metal tem comprimento igual a 10,000 m a uma temperatura de 10,0 C e comprimento igual a 10,006 m a uma temperatura de 40 C. O coeficiente de dilatação linear do metal é a) 1, C-1 b) 6, C-1 c) 2, C-1 d) 2, C-1 e) 3, C Duas lâminas de metais diferentes, M e N, são unidas rigidamente. Ao se aquecer o conjunto até uma certa temperatura, esse se deforma, conforme mostra a figura a seguir. Com base na deformação observada, pode-se concluir que a) a capacidade térmica do metal M é maior do que a capacidade térmica do metal N. b) a condutividade térmica do metal M é maior do que a condutividade térmica do metal N. c) a quantidade de calor absorvida pelo metal M é maior do que a quantidade de calor absorvida pelo metal N. d) o calor específico do metal M é maior do que o calor específico do metal N. e) o coeficiente de dilatação linear do metal M é maior do que o coeficiente de dilatação linear do metal N. 15. A figura a seguir representa uma lâmina bimetálica. O coeficiente de dilatação linear do metal A é a metade do coeficiente de dilatação linear do metal B. À temperatura ambiente, a lâmina está na vertical. Se a temperatura for aumentada em 200 C, a lâmina: a) continuará na vertical. b) curvará para a frente. c) curvará para trás. d) curvará para a direita. e) curvará para a esquerda. 16. Um quadrado foi montado com três hastes de alumínio (α Al = C -1 ) e uma haste de aço (α Aço = C -1 ), todas inicialmente à mesma temperatura. O sistema é, então, submetido a um processo de aquecimento, de forma que a variação de temperatura é a mesma em todas as hastes.

50 Podemos afirmar que, ao final do processo de aquecimento, a figura formada pelas hastes estará mais próxima de um: a) quadrado. b) retângulo. c) losango. d) trapézio retângulo. e) trapézio isósceles. 17. Uma placa de alumínio tem um grande orifício circular no qual foi colocado um pino, também de alumínio, com grande folga. O pino e a placa são aquecidos de 500 C, simultaneamente. Podemos afirmar que a folga irá aumentar, pois o pino ao ser aquecido irá contrair-se. b) a folga diminuirá, pois ao aquecermos a chapa a área do orifício diminui. c) a folga diminuirá, pois o pino se dilata muito mais que o orifício. d) a folga irá aumentar, pois o diâmetro do orifício aumenta mais que o diâmetro do pino. e) a folga diminuirá, pois o pino se dilata, e a área do orifício não se altera. 18. Uma chapa quadrada, feita de um material encontrado no planeta Marte, tem área A = 100,0 cm 2 a uma temperatura de 100 C. A uma temperatura de 0,0 C, qual será a área da chapa em cm 2? Considere que o coeficiente de expansão linear do material é α = 2, C -1. a) 74,0 b) 64,0 c) 54,0 d) 44,0 e) 34,0 19. Uma chapa de zinco, cujo coeficiente de dilatação linear é C -1, sofre elevação de 10 C na sua temperatura. Verifica-se que a área da chapa aumenta de 2,0 cm2. Nessas condições, a área inicial da chapa mede, em cm2, a) 2,0.102 b) 8,0.102 c) 4,0.103 d) 2,0.104 e) 8, A figura abaixo mostra dois frascos de vidro (1 e 2), vazios, ambos com tampas de um mesmo material indeformável, que é diferente do vidro. As duas tampas estão plenamente ajustadas aos frascos, uma internamente e outra externamente. No que respeita à dilatabilidade desses materiais, e considerando αv que é o coeficiente de expansão dos dois vidros e que αt é o coeficiente de expansão das duas tampas, assinale o que for correto. 01) Sendo αt menor que αv, se elevarmos a temperatura dos dois conjuntos, o vidro 1 se romperá. 02) Sendo αt maior que αv, se elevarmos a temperatura dos dois conjuntos, o vidro 2 se romperá. 04) Sendo αt menor que αv, se elevarmos a temperatura dos dois conjuntos, ambos se romperão. 08) Sendo αt maior que αv, se diminuirmos a temperatura dos dois conjuntos, o vidro 1 se romperá. 16) Qualquer que seja a variação a que submetermos os dois conjuntos, nada ocorrerá com os frascos e com as tampas.

51 21. Numa experiência de laboratório, sobre dilatação superficial, foram feitas várias medidas das dimensões de uma superfície S de uma lâmina circular de vidro em função da temperatura T. Os resultados das medidas estão representados no gráfico a seguir. Com base nos dados experimentais fornecidos no gráfico, pode-se afirmar, corretamente, que o valor numérico do coeficiente de dilatação linear do vidro é: a) 24 x10-6 C -1. b) 18 x10-6 C -1. c) 12 x10-6 C -1. d) 9 x10-6 C -1. e) 6 x10-6 C -1. Termodinâmica 01. Um gás perfeito está contido em um recipiente que não dilata. A temperatura do gás passa de 27ºC para 627ºC. Identifique para estas condições quantas vezes a pressão aumentou. 02. Um gás perfeito sofre uma transformação descrita pelo gráfico que se segue. Identifique o trabalho que foi realizado durante a transformação gasosa mostrada no gráfico da questão. 03. Considere as informações que se seguem sobre a situação de 8 mols de gás ideal. 04. Observe a tabela mostrada contendo as variáveis de estado do gás em dois momentos. CONDIÇÕES INICIAIS Pressão = 17 atmosferas Volume = 20 litros Temperatura = 77ºC CONDIÇÕES FINAIS Pressão = 28 atmosferas Volume = Temperatura = 300 K

52 Determine o volume final do gás. 05. O gráfico mostra o comportamento de um gás perfeito, que se encontra incialmente em um estado B e passa para os estados A e C respectivamente. Identifique as variáveis de estado para os três estados A, B e C.Observe que Variáveis de Estado são: pressão, volume e temperatura. 06. Calcule o trabalho realizado pelo gás na transformação B A, do gráfico mostrado na questão anterior. ÓPTICA GEOMÉTRICA Leis da reflexão 1ª Lei: O raio de luz incidente, o raio de luz refletido e a reta normal à superfície pelo ponto de incidência da luz estão num mesmo plano (coplanares). 2ª Lei: O ângulo de incidência é igual ao ângulo de reflexão. iˆ rˆ Espelho plano Espelho plano é a superfície plana polida onde ocorre predominantemente a reflexão da luz.

53 Formação de imagens nos espelhos planos Observemos um ponto objeto luminoso P diante de um espelho plano enviando luz em todas as direções, conforme indica a figura. Repare que a parte de trás do espelho (á direita neste exemplo) é marcada pelas hachuras. A imagem encontrada é fruto do prolongamento dos raios refletidos, isso caracteriza uma imagem virtual. Espelhos esféricos Na calota da roda de um automóvel, na bola que enfeita uma árvore de natal e em uma colher de sopa, podemos ver nossa imagem refletida. Percebemos que essas imagens são diferentes daquelas formadas nos espelhos planos, podem fornecer imagens aumentadas, ou diminuídas, maiores ou menores do que o objeto. Os espelhos esféricos são superfícies refletoras que tem forma de calota esférica: C Centro de Curvatura ou Raio da esfera;

54 V Vértice do espelho. Temos dois tipos de espelho esférico: Côncavo: a superfície refletora é interna. Convexo: a superfície refletora é externa. Esquematicamente: TEMOS: C Raio de Curvatura ou Centro de Curvatura; f Foco do Espelho (ponto médio do eixo principal no trecho entre o Vértice e o Centro); V Vértice; A reta que passa por C e V é o eixo óptico principal R f 2 DETERMINAÇÃO ANALÍTICA DA IMAGEM Agora procuraremos expressar de forma matemática algumas expressões que nos permita determinar a posição e o tamanho da imagem. Equação Conjugada de Gauss f p p' Temos que a distância focal dada por: f R 2 Aumento Linear Transversal Por definição, o aumento linear transversal A é a razão entre a altura da imagem i e a altura do objeto o. i p' A o p Convenção de Sinais

CENTRO UNIVERSITÁRIO DE MARINGÁ CESUMAR PROGRAMA DE NIVELAMENTO FÍSICA

CENTRO UNIVERSITÁRIO DE MARINGÁ CESUMAR PROGRAMA DE NIVELAMENTO FÍSICA CENTRO UNIVERSITÁRIO DE MARINGÁ CESUMAR PROGRAMA DE NIVELAMENTO FÍSICA MARINGÁ 009 Parte 01 MECÂNICA Iniciaremos o nosso curso com algumas transformações de unidades úteis para o curso de física. 01 Transformação

Leia mais

UNIGRANRIO www.exerciciosdevestibulares.com.br. 2) (UNIGRANRIO) O sistema abaixo encontra-se em equilíbrio sobre ação de três forças

UNIGRANRIO www.exerciciosdevestibulares.com.br. 2) (UNIGRANRIO) O sistema abaixo encontra-se em equilíbrio sobre ação de três forças 1) (UNIGRANRIO) Um veículo de massa 1200kg se desloca sobre uma superfície plana e horizontal. Em um determinado instante passa a ser acelerado uniformemente, sofrendo uma variação de velocidade representada

Leia mais

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA DEPARTAMENTO DE ENGENHARIA F Í S I C A II - DINÂMICA ALUNO: RA: 1 - OS PRINCÍPIOS FUNDAMENTAIS DINÂMICA A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam.

Leia mais

Exercícios 6 Aplicações das Leis de Newton

Exercícios 6 Aplicações das Leis de Newton Exercícios 6 plicações das Leis de Newton Primeira Lei de Newton: Partículas em Equilíbrio 1. Determine a intensidade e o sentido de F de modo que o ponto material esteja em equilíbrio. Resp: = 31,8 0,

Leia mais

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa DINÂMICA FORÇA: LEIS DE NEWTON A partir de agora passaremos a estudar a Dinâmica, parte

Leia mais

2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE NOTA: DATA: / / 2011 PROFESSOR:

2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE NOTA: DATA: / / 2011 PROFESSOR: 2 LISTA DE FÍSICA SÉRIE: 1º ANO TURMA: 2º BIMESTRE DATA: / / 2011 PROFESSOR: ALUNO(A): Nº: NOTA: Questão 1 - A cidade de São Paulo tem cerca de 23 km de raio. Numa certa madrugada, parte-se de carro, inicialmente

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

CENTRO EDUCACIONAL CHARLES DARWIN NOME: TURMA: PROFESSOR: G:\2014\Pedagógico\Documentos\Exercicios\Est_Comp_Rec_Parcial\1ª Série\Física.

CENTRO EDUCACIONAL CHARLES DARWIN NOME: TURMA: PROFESSOR: G:\2014\Pedagógico\Documentos\Exercicios\Est_Comp_Rec_Parcial\1ª Série\Física. NOME: TURMA: PROFESSOR: 1 INTRODUÇÃO AO ESTUDO DOS MOVIMENTOS Movimento: Um corpo está em movimento quando a posição entre este corpo e um referencial varia com o tempo. Este é um conceito relativo, pois

Leia mais

Física Experimental I. Impulso e quantidade de. movimento

Física Experimental I. Impulso e quantidade de. movimento Física xperimental I Impulso e quantidade de movimento SSUNTOS BORDDOS Impulso Quantidade de Movimento Teorema do Impulso Sistema Isolado de Forças Princípio da Conservação da Quantidade de Movimento Colisões

Leia mais

SÉRIE DE EXERCÍCIOS DE FÍSICA CURSO DE ENSAIOS EM VOO (CEV)

SÉRIE DE EXERCÍCIOS DE FÍSICA CURSO DE ENSAIOS EM VOO (CEV) SÉRIE DE EXERCÍCIOS DE FÍSICA CURSO DE ENSAIOS EM VOO (CEV) 1) As vezes, um fator de conversão pode ser deduzido mediante o conhecimento de uma constante em dois sistemas diferentes. O peso de um pé cúbico

Leia mais

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27 1 FÍSICA Dado: Aceleração da gravidade: 10 m/s 01. Considere que cerca de 70% da massa do corpo humano é constituída de água. Seja 10 N, a ordem de grandeza do número de moléculas de água no corpo de um

Leia mais

Professor : Vinicius Jacques Data: 03/08/2010 EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON

Professor : Vinicius Jacques Data: 03/08/2010 EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON Aluno (a): N Série: 1º Professor : Vinicius Jacques Data: 03/08/2010 Disciplina: FÍSICA EXERCÍCIOS COMPLEMENTARES / LEIS DE NEWTON 01. Explique a função do cinto de segurança de um carro, utilizando o

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

Você acha que o rapaz da figura abaixo está fazendo força?

Você acha que o rapaz da figura abaixo está fazendo força? Aula 04: Leis de Newton e Gravitação Tópico 02: Segunda Lei de Newton Como você acaba de ver no Tópico 1, a Primeira Lei de Newton ou Princípio da Inércia diz que todo corpo livre da ação de forças ou

Leia mais

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos:

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos: CINEMÁTICA ESCALAR A Física objetiva o estudo dos fenômenos físicos por meio de observação, medição e experimentação, permite aos cientistas identificar os princípios e leis que regem estes fenômenos e

Leia mais

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / /

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / / NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO Professor: Rodrigo Lins ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1) Na situação esquematizada na f igura, a mesa é plana, horizontal e perfeitamente polida. A

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão III 1. Um atleta salta por cima do obstáculo na figura e seu centro de gravidade atinge a altura de 2,2 m. Atrás

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

1 a QUESTÃO Valor 1,0

1 a QUESTÃO Valor 1,0 1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

Centro Educacional Juscelino Kubitschek. Roteiro e Lista de Recuperação de Física

Centro Educacional Juscelino Kubitschek. Roteiro e Lista de Recuperação de Física Centro Educacional Juscelino Kubitschek ALUNO: N.º: DATA: / / ENSINO: ( ) Fundamental (x ) Médio SÉRIE: 1º TURMA: TURNO: DISCIPLINA: FÍSICA PROFESSOR: Equipe de Física Roteiro e Lista de Recuperação de

Leia mais

GABARITO DO SIMULADO DISCURSIVO

GABARITO DO SIMULADO DISCURSIVO GABARITO DO SIMULADO DISCURSIVO 1. (Unifesp 013) O atleta húngaro Krisztian Pars conquistou medalha de ouro na olimpíada de Londres no lançamento de martelo. Após girar sobre si próprio, o atleta lança

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades dos móveis variam com o decurso do tempo, introduz-se o conceito de uma grandeza

Leia mais

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA Leis de Newton INTRODUÇÃO Isaac Newton foi um revolucionário na ciência. Teve grandes contribuições na Física, Astronomia, Matemática, Cálculo etc. Mas com certeza, uma das suas maiores contribuições são

Leia mais

Física Fácil prof. Erval Oliveira. Aluno:

Física Fácil prof. Erval Oliveira. Aluno: Física Fácil prof. Erval Oliveira Aluno: O termo trabalho utilizado na Física difere em significado do mesmo termo usado no cotidiano. Fisicamente, um trabalho só é realizado por forças aplicadas em corpos

Leia mais

Revisão de Física Vestibular ITA 2011

Revisão de Física Vestibular ITA 2011 Vestibular ITA 011 Questão 1 Um cilindro oco, feito de material isolante, é fechado em uma das extremidades por uma placa metálica fixa e na outra por um pistão metálico bem ajustado livre para se mover.

Leia mais

Unidade VIII: Estática e Equilíbrio de um corpo rígido

Unidade VIII: Estática e Equilíbrio de um corpo rígido Página 1 de 10 Unidade VIII: Estática e Equilíbrio de um corpo rígido 8.1 - Equilíbrio: Um corpo pode estar em equilíbrio das seguintes formas: a) Equilíbrio estático - É aquele no qual o corpo está em

Leia mais

Lista de Exercícios de Física

Lista de Exercícios de Física Lista de Exercícios de Física Assunto: Dinâmica do Movimento Circular, Trabalho e Potência Prof. Allan 1- Um estudante, indo para a faculdade, em seu carro, desloca-se num plano horizontal, no qual descreve

Leia mais

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo.

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo. Colégio Militar de Juiz de Fora Lista de Exercícios C PREP Mil Prof.: Dr. Carlos Alessandro A. Silva Cinemática: Vetores, Cinemática Vetorial, Movimento Circular e Lançamento de Projéteis. Nível I 1] Dois

Leia mais

Resolução O período de oscilação do sistema proposto é dado por: m T = 2π k Sendo m = 250 g = 0,25 kg e k = 100 N/m, vem:

Resolução O período de oscilação do sistema proposto é dado por: m T = 2π k Sendo m = 250 g = 0,25 kg e k = 100 N/m, vem: 46 c FÍSICA Um corpo de 250 g de massa encontra-se em equilíbrio, preso a uma mola helicoidal de massa desprezível e constante elástica k igual a 100 N/m, como mostra a figura abaixo. O atrito entre as

Leia mais

1) Calcular, em m/s, a velocidade de um móvel que percorre 14,4Km em 3min. a) ( ) 70m/s b) ( ) 80 m/s c) ( ) 90m/s d) ( ) 60m/s

1) Calcular, em m/s, a velocidade de um móvel que percorre 14,4Km em 3min. a) ( ) 70m/s b) ( ) 80 m/s c) ( ) 90m/s d) ( ) 60m/s SIMULADO DE FÍSICA ENSINO MÉDIO 1) Calcular, em m/s, a velocidade de um móvel que percorre 14,4Km em 3min. a) ( ) 70m/s b) ( ) 80 m/s c) ( ) 90m/s d) ( ) 60m/s 2) Um avião voa com velocidade constante

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações As leis de Newton e suas aplicações Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o conceito de força

Leia mais

Vamos relatar alguns fatos do dia -a- dia para entendermos a primeira lei de Newton.

Vamos relatar alguns fatos do dia -a- dia para entendermos a primeira lei de Newton. CAPÍTULO 8 As Leis de Newton Introdução Ao estudarmos queda livre no capítulo cinco do livro 1, fizemos isto sem nos preocuparmos com o agente Físico responsável que provocava a aceleração dos corpos em

Leia mais

Capítulo 3 A Mecânica Clássica

Capítulo 3 A Mecânica Clássica Capítulo 3 A Mecânica Clássica AMecânica Clássica é formalmente descrita pelo físico, matemático e filósofo Isaac Newton no século XVII. Segundo ele, todos os eventos no universo são resultados de forças.

Leia mais

Programa de Retomada de Conteúdo - 3º Bimestre

Programa de Retomada de Conteúdo - 3º Bimestre Educação Infantil, Ensino Fundamental e Ensino Médio Regular. Rua Cantagalo 313, 325, 337 e 339 Tatuapé Fones: 2293-9393 e 2293-9166 Diretoria de Ensino Região LESTE 5 Programa de Retomada de Conteúdo

Leia mais

Unidade VIII: Estática e Equilíbrio de um corpo rígido

Unidade VIII: Estática e Equilíbrio de um corpo rígido 132Colégio Santa Catarina Unidade VIII: Estática e Equilíbrio de um corpo rígido 132 Unidade VIII: Estática e Equilíbrio de um corpo rígido 8.1 - Equilíbrio: Um corpo pode estar em equilíbrio das seguintes

Leia mais

Plano Inclinado com e sem atrito

Plano Inclinado com e sem atrito Plano Inclinado com e sem atrito 1. (Uerj 2013) Um bloco de madeira encontra-se em equilíbrio sobre um plano inclinado de 45º em relação ao solo. A intensidade da força que o bloco exerce perpendicularmente

Leia mais

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE

ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE ROTEIRO DE RECUPERAÇÃO ANUAL DE FÍSICA 2 a SÉRIE Nome: Nº Série: 2º EM Data: / /2015 Professores Gladstone e Gromov Assuntos a serem estudados - Movimento Uniforme. Movimento Uniformemente Variado. Leis

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE:

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: 01. As pirâmides do Egito estão entre as construções mais conhecidas em todo o mundo, entre outras coisas pela incrível capacidade de engenharia

Leia mais

Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de

Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s ; para a massa específica

Leia mais

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2 OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s 2 ; para a massa específica

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2011 1 a QUESTÃO Valor: 1,00 Um varal de roupas foi construído utilizando uma haste rígida DB de massa desprezível, com

Leia mais

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F. Exercícios - Aula 6 8) (UFMG) Considere as seguintes situações: I) Um carro, subindo uma rua de forte declive, em movimento retilíneo uniforme. II) Um carro, percorrendo uma praça circular, com movimento

Leia mais

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física PROF.: MIRANDA 2ª Lista de Exercícios DINÂMICA Física Aplicada Física 01. Uma mola possui constante elástica de 500 N/m. Ao aplicarmos sobre esta uma força de 125 Newtons, qual será a deformação da mola?

Leia mais

UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli

UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli 1. A figura abaixo mostra o mapa de uma cidade em que as ruas retilíneas se cruzam perpendicularmente e cada quarteirão

Leia mais

Questão 46. Questão 48. Questão 47. alternativa A. alternativa E. alternativa B. Tássia, estudando o movimento retilíneo uniformemente

Questão 46. Questão 48. Questão 47. alternativa A. alternativa E. alternativa B. Tássia, estudando o movimento retilíneo uniformemente Questão 46 Tássia, estudando o movimento retilíneo uniformemente variado, deseja determinar a posição de um móvel no instante em que ele muda o sentido de seu movimento. Sendo a função horária da posição

Leia mais

QUESTÃO 01. a) Qual a temperatura do forno? b) Qual a variação de energia interna do bloco do latão. QUESTÃO 02

QUESTÃO 01. a) Qual a temperatura do forno? b) Qual a variação de energia interna do bloco do latão. QUESTÃO 02 Quando necessário considere: g = 10 m/s 2, densidade da água = 1 g/cm 3, 1 atm = 10 5 N/m 2, c água = 1 cal/g. 0 C, R = 8,31 J/mol.K, velocidade do som no ar = 340 m/s e na água = 1500 m/s, calor específico

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

Resolução Comentada CEFET/MG - 2 semestre 2014

Resolução Comentada CEFET/MG - 2 semestre 2014 Resolução Comentada CEFET/MG - 2 semestre 2014 01 - A figura mostra um sistema massa-mola que pode oscilar livremente, sem atrito, sobre a superfície horizontal e com resistência do ar desprezível. Nesse

Leia mais

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima Física Geral Série de problemas Unidade II Mecânica Aplicada Departamento Engenharia Marítima 2009/2010 Módulo I As Leis de movimento. I.1 Uma esfera com uma massa de 2,8 10 4 kg está pendurada no tecto

Leia mais

SELEÇÃO DE TUTORES PRESENCIAIS POLO: Página 1 de 6 CANDIDATO: DATA: 28/06/2010

SELEÇÃO DE TUTORES PRESENCIAIS POLO: Página 1 de 6 CANDIDATO: DATA: 28/06/2010 GOVERNO DO ESTADO DE MATO GROSSO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO UNIVERSIDADE ABERTA DO BRASIL UAB COORDENAÇÃO UAB/UNEMAT SELEÇÃO DE TUTORES PRESENCIAIS

Leia mais

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará.

-----> V = 73,3V. Portanto: V2 = 73,3V e V1 = 146,6V, com isso somente L1 brilhará acima do normal e provavelmente queimará. TC 3 UECE 01 FASE POF.: Célio Normando Conteúdo: Lâmpadas Incandescentes 1. A lâmpada incandescente é um dispositivo elétrico que transforma energia elétrica em energia luminosa e energia térmica. Uma

Leia mais

1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol:

1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol: 1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol: Nesse esquema, estão assinalados quatro pontos P, Q, R ou S da órbita do cometa. a) Indique em qual dos

Leia mais

joranulfo@hotmail.com http://ranulfofisica.blogspot.com/

joranulfo@hotmail.com http://ranulfofisica.blogspot.com/ 04. (UFPE 2006/Fís. 3) Dois blocos A e B, de massas m A = 0,2 kg e m B = 0,8 kg, respectivamente, estão presos por um fio, com uma mola ideal comprimida entre eles. A mola comprimida armazena 32 J de energia

Leia mais

ATENÇÃO ESTE CADERNO CONTÉM 10 (DEZ) QUESTÕES E RESPECTIVOS ESPAÇOS PARA RESPOSTAS. DURAÇÃO DA PROVA: 3 (TRÊS) HORAS

ATENÇÃO ESTE CADERNO CONTÉM 10 (DEZ) QUESTÕES E RESPECTIVOS ESPAÇOS PARA RESPOSTAS. DURAÇÃO DA PROVA: 3 (TRÊS) HORAS ATENÇÃO ESTE CADERNO CONTÉM 10 (DEZ) QUESTÕES E RESPECTIVOS ESPAÇOS PARA RESPOSTAS. DURAÇÃO DA PROVA: 3 (TRÊS) HORAS A correção de cada questão será restrita somente ao que estiver registrado no espaço

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

(1) FÍSICA (2) (3) PROVA A 1

(1) FÍSICA (2) (3) PROVA A 1 FÍSICA 0 - O gráfico ao lado apresenta a superposição de três gráficos de uma grandeza (z) em função do tempo (t). A grandeza (z) pode representar: (0) no caso (), o espaço em um movimento uniforme. (0)

Leia mais

Exemplos de aceleração Constante 1 D

Exemplos de aceleração Constante 1 D Exemplos de aceleração Constante 1 D 1) Dada a equação de movimento de uma partícula em movimento retilíneo, s=-t 3 +3t 2 +2 obtenha: a) A velocidade média entre 1 e 4 segundos; e) A velocidade máxima;

Leia mais

F-128 Física Geral I 2 o Semestre 2012 LISTA DO CAPÍTULO 9

F-128 Física Geral I 2 o Semestre 2012 LISTA DO CAPÍTULO 9 Questão 1: a) Ache as coordenadas do centro de massa (CM) da placa homogênea OABCD indicada na figura, dividindo-a em três triângulos iguais; b) Mostre que se obtém o mesmo resultado calculando o CM do

Leia mais

5) A bola da figura é solta em A (topo de uma rampa). Como se comporta a velocidade da bola no trecho inclinado e no trecho horizontal? Por quê?

5) A bola da figura é solta em A (topo de uma rampa). Como se comporta a velocidade da bola no trecho inclinado e no trecho horizontal? Por quê? COLÉGIO PEDRO II UNIDADE ESCOLAR SÃO CRISTÓVÃO III Lista de Exercícios (Leis de Newton) SÉRIE: 1ª COORDENADOR: Eduardo Gama PROFESSOR(A): Sandro Fernandes ALUNO(A): 1) Imagine uma superfície horizontal

Leia mais

Atividade extra. Fascículo 3 Física Unidade 6. Questão 1. Ciências da Natureza e suas Tecnologias Física

Atividade extra. Fascículo 3 Física Unidade 6. Questão 1. Ciências da Natureza e suas Tecnologias Física Atividade extra Fascículo 3 Física Unidade 6 Questão 1 Do ponto mais alto de uma rampa, um garoto solta sua bola de gude. Durante a descida, sua energia: a. cinética diminui; b. cinética aumenta; c. cinética

Leia mais

18 a QUESTÃO Valor: 0,25

18 a QUESTÃO Valor: 0,25 6 a A 0 a QUESTÃO FÍSICA 8 a QUESTÃO Valor: 0,25 6 a QUESTÃO Valor: 0,25 Entre as grandezas abaixo, a única conservada nas colisões elásticas, mas não nas inelásticas é o(a): 2Ω 2 V 8Ω 8Ω 2 Ω S R 0 V energia

Leia mais

FÍSICA - 1 o ANO MÓDULO 11 EQUILÍBRIO: DO PONTO MATERIAL E CORPO EXTENSO REVISÃO

FÍSICA - 1 o ANO MÓDULO 11 EQUILÍBRIO: DO PONTO MATERIAL E CORPO EXTENSO REVISÃO FÍSICA - 1 o ANO MÓDULO 11 EQUILÍBRIO: DO PONTO MATERIAL E CORPO EXTENSO REVISÃO Fixação F 1) (CESGRANRIO) A figura a seguir mostra uma peça de madeira, no formato de uma forca, 2 utilizada para suspender

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

HIDROSTÁTICA PRESSÃO DENSIDADE RELATIVA. MASSA ESPECÍFICA (densidade absoluta) TEOREMA FUNDAMENTAL DA HIDROSTÁTICA (Teorema de Stevin)

HIDROSTÁTICA PRESSÃO DENSIDADE RELATIVA. MASSA ESPECÍFICA (densidade absoluta) TEOREMA FUNDAMENTAL DA HIDROSTÁTICA (Teorema de Stevin) Física Aula 05 Prof. Oromar UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS DO

Leia mais

Lista de Exercícios CINEMÁTICA PROF.: MIRANDA

Lista de Exercícios CINEMÁTICA PROF.: MIRANDA Lista de Exercícios CINEMÁTICA PROF.: MIRANDA I Unidade 1 ANO 01. Um carro com uma velocidade de 80 Km/h passa pelo Km 240 de uma rodovia às 7h e 30 mim. A que horas este carro chegará à próxima cidade,

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS Considerando a interdependência das várias áreas de conhecimento dentro da Física, julgue os itens a seguir. 61 A temperatura de um cubo de gelo a 0 ºC, ao ser colocado em um

Leia mais

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Um pequeno refrigerador para estocar vacinas está inicialmente desconectado da rede elétrica e o ar em seu interior encontra-se

Leia mais

1) d = V t. d = 60. (km) = 4km 60 2) Movimento relativo: s V rel 80 60 = t = (h) = h = 12min

1) d = V t. d = 60. (km) = 4km 60 2) Movimento relativo: s V rel 80 60 = t = (h) = h = 12min OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor de 10 m/s 2 ; para a massa específica

Leia mais

Problemas de termologia e termodinâmica vestibular UA (1984)

Problemas de termologia e termodinâmica vestibular UA (1984) Problemas de termologia e termodinâmica vestibular UA (1984) 1 - Um corpo humano está a 69 0 numa escala X. Nessa mesma escala o ponto do gelo corresponde a 50 graus e o ponto a vapor 100 0. Este corpo:

Leia mais

Questão 46. Questão 47. Questão 48. alternativa E. alternativa C

Questão 46. Questão 47. Questão 48. alternativa E. alternativa C Questão 46 O movimento de uma partícula é caracterizado por ter vetor velocidade e vetor aceleração não nulo de mesma direção. Nessas condições, podemos afirmar que esse movimento é a) uniforme. b) uniformemente

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

Questão 46. Questão 47. Questão 48. Questão 49. alternativa C. alternativa A. alternativa B

Questão 46. Questão 47. Questão 48. Questão 49. alternativa C. alternativa A. alternativa B Questão 46 Um ferreiro golpeia, com a marreta, uma lâmina de ferro, em ritmo uniforme, a cada 0,9 s. Um observador afastado desse ferreiro vê, com um binóculo, a marreta atingir o ferro e ouve o som das

Leia mais

c = c = c =4,20 kj kg 1 o C 1

c = c = c =4,20 kj kg 1 o C 1 PROPOSTA DE RESOLUÇÃO DO TESTE INTERMÉDIO - 2014 (VERSÃO 1) GRUPO I 1. H vap (H 2O) = 420 4 H vap (H 2O) = 1,69 10 3 H vap (H 2O) = 1,7 10 3 kj kg 1 Tendo em consideração a informação dada no texto o calor

Leia mais

1 Introdução a Cinemática

1 Introdução a Cinemática 1 Introdução a Cinemática A cinemática é a parte da mecânica que estuda e descreve os movimentos, sem se preocupar com as suas causas. Seu objetivo é descrever apenas como se movem os corpos. A parte da

Leia mais

Cinemática Unidimensional

Cinemática Unidimensional Cinemática Unidimensional 1 INTRODUÇÃO Na Cinemática Unidimensional vamos estudar o movimento de corpos e partículas, analisando termos como deslocamento, velocidade, aceleração e tempo.os assuntos que

Leia mais

Questão 46. o diagrama horário da velocidade escalar, cuja ilustração correta para esse movimento. a) d)

Questão 46. o diagrama horário da velocidade escalar, cuja ilustração correta para esse movimento. a) d) Questão 46 b) Sobre um trilho reto, uma pequena esfera descreve um movimento uniformemente variado. Um estudante resolveu analisar esse movimento e construiu o gráfico do espaço percorrido (S) em função

Leia mais

Resolução de Provas 2009

Resolução de Provas 2009 Resolução de Provas 2009 01.No bebedouro doméstico representado na figura, a água do garrafão virado para baixo, de boca aberta, não vaza para o recipiente onde ele se apóia, devido à pressão atmosférica.

Leia mais

UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo:

UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo: UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo: Estudo das forças: aplicação da leis de Newton. Habilidades: Utilizar as leis de Newton para resolver situações problemas. REVISÃO

Leia mais

1) Aplicações das Leis de Newton

1) Aplicações das Leis de Newton 1 Fonte: SEARS E ZEMANSKY Física I Mecânica 10 a edição. São Paulo: Addison Wesley, 2003. Capítulo 5: Aplicações das Leis de Newton 1) Aplicações das Leis de Newton Estratégia para solução de problemas

Leia mais

PROVA UPE 2012 TRADICIONAL(RESOLVIDA)

PROVA UPE 2012 TRADICIONAL(RESOLVIDA) PROVA UPE 2012 TRADICIONAL(RESOLVIDA) 33 - Sete bilhões de habitantes, aproximadamente, é a população da Terra hoje. Assim considere a Terra uma esfera carregada positivamente, em que cada habitante seja

Leia mais

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples. Eercícios Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período, em unidades

Leia mais

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO A prova de física exigiu um bom conhecimento dos alunos. Há questões relacionadas principalmente com a investigação e compreensão dos

Leia mais

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR TC 3 UECE - 03 FASE MEICINA e EGULA SEMANA 0 a 5 de dezembro POF.: Célio Normando. A figura a seguir mostra um escorregador na forma de um semicírculo de raio = 5,0 m. Um garoto escorrega do topo (ponto

Leia mais

LISTA UERJ 2014 LEIS DE NEWTON

LISTA UERJ 2014 LEIS DE NEWTON 1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão II 1. Um carro está viajando numa estrada retilínea com velocidade de 72 km/h. Vendo adiante um congestionamento

Leia mais

Centro de Massa. Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia

Centro de Massa. Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia Centro de Massa O centro de massa de um sistema de partículas é o ponto que se move

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais

Mecânica dos Fluidos PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com

Mecânica dos Fluidos PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com Mecânica dos Fluidos PROF. BENFICA benfica@anhanguera.com www.marcosbenfica.com LISTA 2 Hidrostática 1) Um adestrador quer saber o peso de um elefante. Utilizando uma prensa hidráulica, consegue equilibrar

Leia mais

Questões do capítulo oito que nenhum aluno pode ficar sem fazer

Questões do capítulo oito que nenhum aluno pode ficar sem fazer Questões do capítulo oito que nenhum aluno pode ficar sem fazer 1) A bola de 2,0 kg é arremessada de A com velocidade inicial de 10 m/s, subindo pelo plano inclinado. Determine a distância do ponto D até

Leia mais

a) os módulos das velocidades angulares ωr NOTE E ADOTE

a) os módulos das velocidades angulares ωr NOTE E ADOTE 1. Um anel condutor de raio a e resistência R é colocado em um campo magnético homogêneo no espaço e no tempo. A direção do campo de módulo B é perpendicular à superfície gerada pelo anel e o sentido está

Leia mais

LISTA DE RECUPERAÇÃO 3º ANO PARA 07/12

LISTA DE RECUPERAÇÃO 3º ANO PARA 07/12 LISTA DE RECUPERAÇÃO 3º ANO PARA 07/12 Questão 01) Quando uma pessoa se aproxima de um espelho plano ao longo da direção perpendicular a este e com uma velocidade de módulo 1 m/s, é correto afirmar que

Leia mais

Física setor F 01 unidade 01

Física setor F 01 unidade 01 Vale relembrar três casos particulares: ) a r e b r tem mesma direção e mesmo sentido: a b s = a+ b s ) a r e b r têm mesma direção e sentidos opostos: a s = a b s b a r e b r têm direções perpendiculares

Leia mais

a) Estime o intervalo de tempo t 1 , em segundos, que a bola levou para ir do ponto A ao ponto B. b) Estime o intervalo de tempo t 2

a) Estime o intervalo de tempo t 1 , em segundos, que a bola levou para ir do ponto A ao ponto B. b) Estime o intervalo de tempo t 2 1 FÍSICA Durante um jogo de futebol, um chute forte, a partir do chão, lança a bola contra uma parede próxima. Com auxílio de uma câmera digital, foi possível reconstituir a trajetória da bola, desde o

Leia mais

4. Princípios matemáticos da dinâmica

4. Princípios matemáticos da dinâmica 4. Princípios matemáticos da dinâmica Aos 23 anos Isaac Newton teve uma ideia inovadora que foi a inspiração para a sua teoria da gravitação e da mecânica em geral. Newton pensou que assim como uma maçã

Leia mais