Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos - 11/1. Sistemas Lineares

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos - 11/1. Sistemas Lineares"

Transcrição

1 Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos - 11/1 Data de entrega: 22/05/11 Sistemas Lineares (Cursos: Física e Matemática) Objetivo Implementar algoritmos de solução de sistemas esparsos de grande porte utilizando métodos iterativos e armazenamento otimizado. Descrição Frequentemente os processos de solução de problemas das mais diversas áreas do conhecimento recaem na necessidade de resolver sistemas lineares. Na maioria das vezes esses sistemas são esparsos e de grande porte. O armazenamento otimizado é crucial na eficiência do método numérico considerado, tanto em ecomomia de memória, quanto em operações de ponto flutuante, que impactam diretamente no tempo de processamento. Neste trabalho vamos considerar: o armazenamento tradicional que armazena a matriz em uma estrutura bidimensional. o armazenamento por indíce que armazena somente os coeficientes não nulos de uma matriz esparsa em um vetor ordenado linha por linha. Além desse vetor, é necessário armazenar informações adicionais das colunas das linhas. o armazenamento CSR (Compress Sparse Row) que armazena somente os coeficientes não nulos de uma matriz esparsa em um vetor ordenado linha por linha. Além desse vetor, é necessário armazenar informações adicionais das colunas e localização dos coeficientes nas linhas. Este trabalho tem por objetivo implementar no Octave e analizar os algoritmos iterativos Jacobi, Seidel e SOR na solução de sistemas lineares esparsos considerando as três formas de armazenamento: densa, indíce e csr. Dado um sistema Ax = b com a matriz dos coeficientes armazenada utilizando as formas de armazenamento densa, indíce e csr: 1. Implemente para cada forma de armazenamento um algoritmo baseado no Método Iterativo Jacobi, tendo como parâmetros de entrada: matriz esparsa A, vetor dos termos independentes b, tolerância ǫ,

2 número máximo de iterações N max. 2. Implemente para cada forma de armazenamnto um algoritmo baseado no Método Iterativo SOR, tendo como parâmetros de entrada: matriz esparsa A, vetor dos termos independentes b, tolerância ǫ, Validação número máximo de iterações N max, fator de relaxção ω. Observe que se ω = 1, tem-se o método Seidel. Para validação dos algoritmos implementados será utilizado o repositório Matrix Market ( 1 ) que disponibiliza uma quantidade considerável de matrizes esparsas oriundas das mais variadas áreas para apoio a estudos comparativos de algoritmos numéricos. Exemplos de matrizes depositadas no Matrix Market podem ser observadas na Fig. 1. A Tab. 1 apresenta algumas características dessas matrizes. Tabela 1: Propriedades das Matrizes Matriz Coleção/Conjunto Área de aplicação n nnz BCSSTK03 Harwell-Boeing/BCSSTRUC1 Engenharia Estrutural HOR131 Harwell-Boeing/NNCENG Conservação de Energia GR3030 Harwell-Boeing/LAPLACE Discretização do Laplaciano ORSIRR1 Harwell-Boeing/OILGEN Simulação de reservatórios PLAT1919 Harwell-Boeing/PLATZ Modelo Oceanográfico SHERMAN5 Harwell-Boeing/SHERMAN Recuperação de Petróleo todas as informações das matrizes podem ser obtidas navegando pelas coleções e referidos conjuntos descritos na Tab. 1. O formato indicado para todas as matrizes é <nome>.mtx. Por exemplo, a matriz BCSSTK03 possui um arquivo tipo mtx como mostrado na Fig. 2. Observe que os coeficientes não nulos estão listados coluna a coluna. Lembramos que os formatos de armazenamento otimizados indíce e CSR, armazenam os coeficientes não nulos linha a linha. Para facilitar, neste trabalho será considerada a matriz transposta (A t ) como matriz dos coeficientes do sistema A t x = b (1) onde: A é a matriz oriunda do arquivo tipo mtx, x é o vetor solução. Seu valor exato é x = ( ) t, 1

3 (a) BCSSTK03, n = 112, nnz = 376 (b) HOR131, n = 434, nnz = 4710 (c) GR3030, n = 900, nnz = 4322 (d) ORSIRR1, n = 1030, nnz = 6858 (e) PLAT1919, n = 1919, nnz = (f) SHERMAN5, n = 3312, nnz= Figura 1: Matrizes do Repositório MatrixMarket - Exemplos das Coleção Harwell- Boeing

4 b = A t x b i = n i=1 a ji. As função densa.m, indice.m e csr.m lêem um arquivo tipo <nome>.mtx, armazenam a matriz A t nos formatos denso, indíce e CSR e geram o vetor dos termos independentes b. Figura 2: Exemplo de arquivo <nome>.mtx das matrizes esparsas do repositório Matrix Market Experimentos Numéricos Observações: Aseguirestãolistadososexperimentosnuméricosobrigatórios. Ébomlembrar que outros experimentos podem ser incorporados ao relatório com o objetivo de enriquecer seu trabalho. Os parâmetros: ǫ, Nmax e ω devem ser escolhidos de acordo com as características do seu teste. Leia os dados de cada matriz no repositório Matrix Market com relação as características de convergência. Se existirem experimentos não convergentes, explicar no relatório as possíveis causas. Para o conjunto das 6 matrizes esparsas listadas na Tab. 1: 1. faça um estudo empírico do ωótimo (0,2) no método SOR considerando ǫ = 10 5 ; 2. encontre a solução dos sistemas pelos métodos Jacobi, Seidel e SOR(ωótimo ) e faça um estudo comparativo com relação ao número de iterações e tempo de processamento para os três métodos iterativos e as três formas de armazenamento. O Octave tem uma forma simples de medir tempo de execução usando os comandos tic e toc.

5 Relatório O relatório deverá ser escrito observando as normas do padrão ABNT. A divisão do relatório deve ser de acordo com as seguintes sessões: Introdução: onde o grupo deverá apresentar a estrutura do trabalho e os objetivos Armazenamentos Otimizados e Métodos Iterativos: onde o grupo sintetizará os conteúdos do trabalho. Implementação: onde serão apresentados a estutura do código e partes significativas do código comentado. Experimentos Numéricos: onde serão apresentados os exemplos testes utilizados pelo grupo, tanto as entradas para os programas bem como tabelas e gráficos, quando for necessário. Conclusão: onde serão discutidos os resultados obtidos. Instruções para entrega Os códigos fonte e o Relatório devem ser enviados por para até às 24:59:59 horas do dia 22/05/11. O assunto do deve ser cn111:trab1: <nome1>:<nome2> e conter, em anexo, um arquivo do tipo trab1.rar. Neste caso <nome1><nome2> deve conter os nomes e últimos sobrenomes dos intregrantes do grupo (por exemplo, cn111:trab1:lucia Catabriga:Maria Silva) A fórmula para desconto por atraso na entrega do trabalho é: 2 d % (2) onde d é o atraso em dias úteis. Note que após 5 dias úteis, o trabalho não poderá ser mais entregue. Se você enviar o seu trabalho múltiplas vezes, apenas a última versão enviada será considerada, inclusive para efeito de desconto por atraso.

Implementar algoritmos de solução de sistemas esparsos de grande porte utilizando métodos iterativos não-estacionários e armazenamento otimizado.

Implementar algoritmos de solução de sistemas esparsos de grande porte utilizando métodos iterativos não-estacionários e armazenamento otimizado. Universidade Federal do Espírito Santo Departamento de Informática 2 o Trabalho de Algoritmos Numéricos II - 11/1 Métodos não-estacionários - Sistemas Lineares Data de entrega: 21/06/11 Objetivo Implementar

Leia mais

Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos I - 14/2 Sistemas Lineares

Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos I - 14/2 Sistemas Lineares Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos I - 14/2 Sistemas Lineares (Cursos: Engenharia de Computação e Ciência da Computação) Data de entrega:

Leia mais

Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos I - 17/2 Sistemas Lineares

Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos I - 17/2 Sistemas Lineares Universidade Federal do Espírito Santo Departamento de Informática 1 o Trabalho de Algoritmos Numéricos I - 17/2 Sistemas Lineares (Cursos: Engenharia Mecânica, Engenharia de Computação e Ciência da Computação)

Leia mais

Universidade Federal do Espírito Santo DI/PPGEM/PPGI 1 o Trabalho de Algoritmos Numéricos II - Computação Científica 17/1

Universidade Federal do Espírito Santo DI/PPGEM/PPGI 1 o Trabalho de Algoritmos Numéricos II - Computação Científica 17/1 Universidade Federal do Espírito Santo DI/PPGEM/PPGI 1 o Trabalho de Algoritmos Numéricos II - Computação Científica 17/1 Métodos Iterativos Não Estacionários para Sistemas Esparsos de Grande Porte 1 Introdução

Leia mais

Um sistema de equações lineares (sistema linear) é um conjunto finito de equações lineares da forma:

Um sistema de equações lineares (sistema linear) é um conjunto finito de equações lineares da forma: Sistemas Lineares Um sistema de equações lineares (sistema linear) é um conjunto finito de equações lineares da forma: s: 2 3 6 a) 5 2 3 7 b) 9 2 3 Resolução de sistemas lineares Metodo da adição 4 100

Leia mais

Gauss-Seidel para Solução de Sistemas com Matrizes Banda Usando Armazenamento Especial

Gauss-Seidel para Solução de Sistemas com Matrizes Banda Usando Armazenamento Especial Universidade Federal do Espírito Santo Departamento de Informática Algoritmos Numéricos 2016/2 Profa. Claudine Badue Trabalho 1 Objetivos Gauss-Seidel para Solução de Sistemas com Matrizes Banda Usando

Leia mais

JinSol, uma interface em Java para solvers lineares.

JinSol, uma interface em Java para solvers lineares. JinSol, uma interface em Java para solvers lineares. Italo C. N. Lima, João Paulo K. Zanardi, Faculdade de Engenharia, PPGEM, UERJ, 20550-900, Rio de Janeiro, RJ E-mail: italonievinski@gmail.com, jpzanardi@gmail.com

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos

Leia mais

Data de entrega: 30 de junho de 2015

Data de entrega: 30 de junho de 2015 Universidade Federal do Espírito Santo DI/PPGEM/PPGI 2 o Trabalho de Algoritmos Numéricos II - 15/1 Estudo Sobre a Influência do Reordenamento e Precondicionamento aplicados a Sistemas Esparsos de Grande

Leia mais

Sistema de equações lineares

Sistema de equações lineares Sistema de equações lineares Sistema de m equações lineares em n incógnitas sobre um corpo ( S) a x + a x + + a x = b a x + a x + + a x = b a x + a x + + a x = b 11 1 12 2 1n n 1 21 1 22 2 2n n 2 m1 1

Leia mais

IMPLEMENTAÇÃO E RESOLUÇÃO DE MODELOS MATEMÁTICOS UTILIZANDO A PLANILHA EXCEL

IMPLEMENTAÇÃO E RESOLUÇÃO DE MODELOS MATEMÁTICOS UTILIZANDO A PLANILHA EXCEL IMPLEMENTAÇÃO E RESOLUÇÃO DE MODELOS MATEMÁTICOS UTILIZANDO A PLANILHA EXCEL 1. INTRODUÇÃO Este tutorial apresenta, passo-a-passo, o processo de implementação e resolução de modelos matemáticos na planilha

Leia mais

Pesquisa Operacional

Pesquisa Operacional Pesquisa Operacional Prof. José Luiz Resolver um problema de Programação Linear significa basicamente resolver sistemas de equações lineares; Esse procedimento, apesar de correto, é bastante trabalhoso,

Leia mais

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.

Métodos Numéricos. A. Ismael F. Vaz. Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho. Métodos Numéricos A. Ismael F. Vaz Departamento de Produção e Sistemas Escola de Engenharia Universidade do Minho aivaz@dps.uminho.pt Mestrado Integrado em Engenharia Mecânica Ano lectivo 2007/2008 A.

Leia mais

a m1 A ou [ A] ou A ou A A = a ij para i = 1 m e j = 1 n A=[ 1 2 3 Os elementos da diagonal principal são: a ij para i = j

a m1 A ou [ A] ou A ou A A = a ij para i = 1 m e j = 1 n A=[ 1 2 3 Os elementos da diagonal principal são: a ij para i = j Cap. 2.- Matrizes e Sistemas Lineares 2.. Definição Matriz é um conjunto organizado de números dispostos em linhas e colunas. Representações Matriz retangular A, m x n (eme por ene) a 2 a n A=[a a 2 a

Leia mais

Introdução à Engenharia ENG1000

Introdução à Engenharia ENG1000 Introdução à Engenharia ENG1000 Aula 14 Vetores, Matrizes e Tabelas 2016.1 Prof. Augusto Baffa Introdução Até agora nós temos usado variáveis simples para armazenar valores usados

Leia mais

Linear Solver Program - Manual do Usuário

Linear Solver Program - Manual do Usuário Linear Solver Program - Manual do Usuário Versão 1.11.0 Traduzido por: Angelo de Oliveira (angelo@unir.br/mrxyztplk@gmail.com) 1 Introdução Linear Program Solver (LiPS) é um pacote de otimização projetado

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Precondicionadores baseados na aproximação da inversa da matriz de coeficientes

Precondicionadores baseados na aproximação da inversa da matriz de coeficientes Precondicionadores baseados na aproximação da inversa da matriz de coeficientes João Paulo K. Zanardi, Italo C. N. Lima, Programa de Pós Graduação em Eneganharia Mecânica, FEN, UERJ 20940-903, Rio de Janeiro,

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

Ajuste de Curvas. Ajuste de Curvas

Ajuste de Curvas. Ajuste de Curvas Ajuste de Curvas 2 AJUSTE DE CURVAS Em matemática e estatística aplicada existem muitas situações em que conhecemos uma tabela de pontos (x; y). Nessa tabela os valores de y são obtidos experimentalmente

Leia mais

LCAD. Método dos Elementos Finitos: Aspectos Computacionais e Aplicações Uma Introdução. LCAD - Laboratório de Computação de Alto Desempenho

LCAD. Método dos Elementos Finitos: Aspectos Computacionais e Aplicações Uma Introdução. LCAD - Laboratório de Computação de Alto Desempenho LCAD - Laboratório de Computação de Alto Desempenho LCAD Método dos Elementos Finitos: Aspectos Computacionais e Aplicações Uma Introdução. Lucia Catabriga PPGI e PPGEM - CT/UFES Processo de Solução Fenômeno

Leia mais

Modelos Variáveis de Estado

Modelos Variáveis de Estado Modelos Variáveis de Estado Introdução; Variáveis de Estados de Sistemas Dinâmicos; Equação Diferencial de Estado; Função de Transferência a partir das Equações de Estados; Resposta no Domínio do Tempo

Leia mais

Roteiro para o Segundo Laboratório de Cálculo Numérico

Roteiro para o Segundo Laboratório de Cálculo Numérico Roteiro para o Segundo Laboratório de Cálculo Numérico Prof. Dr. Waldeck Schützer May 7, 8 Nesta segunda aula de laboratório, vamos aprender a utilizar o MatLab/Octave para resolver sistemas lineares.

Leia mais

PROJETO INTEGRADO PRIMEIRO SEMESTRE

PROJETO INTEGRADO PRIMEIRO SEMESTRE UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ BACHARELADO EM SISTEMAS DE INFORMAÇÃO ANDRÉ MANSUR LUCAS CAMPOS SILVA MARCELO BUTZKE LEOPOLDINO PROJETO INTEGRADO PRIMEIRO SEMESTRE 2009 CURITIBA ANDRE MANSUR

Leia mais

Investigação Operacional

Investigação Operacional Licenciatura em Engenharia de Comunicações Licenciatura em Engenharia Electrónica Industrial e Computadores Investigação Operacional Exercícios de Métodos para Programação Linear Grupo de Optimização e

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

Notas de Aula. Álgebra Linear Numérica

Notas de Aula. Álgebra Linear Numérica Notas de Aula Álgebra Linear Numérica Rodney Josué Biezuner 1 Departamento de Matemática Instituto de Ciências Exatas ICEx) Universidade Federal de Minas Gerais UFMG) Notas de aula da disciplina Álgebra

Leia mais

Método Simplex Especializado para Redes

Método Simplex Especializado para Redes Método Simplex Especializado para Redes Prof. Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia Campus de Guaratinguetá UNESP www.feg.unesp.br/~fmarins fmarins@feg.unesp.br

Leia mais

6. Programação Inteira

6. Programação Inteira Pesquisa Operacional II 6. Programação Inteira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção Programação Inteira São problemas de programação matemática em que a função objetivo, bem

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Capítulo 3 - Sistemas de Equações Lineares

Capítulo 3 - Sistemas de Equações Lineares Capítulo 3 - Sistemas de Equações Lineares Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/

Leia mais

Métodos Numéricos Engenharia Civil, Química e Gestão Industrial

Métodos Numéricos Engenharia Civil, Química e Gestão Industrial Métodos Numéricos Engenharia Civil, Química e Gestão Industrial Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança 2 o Semestre 2007/2008 Carlos Balsa

Leia mais

QUESTÕES DE ESCOLHA MÚLTIPLA

QUESTÕES DE ESCOLHA MÚLTIPLA ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 9/ TÓPICOSDERESOLUÇÃODO o TESTE(DIURNO) QUESTÕES DE ESCOLHA MÚLTIPLA. [,]SejamAeB duas matrizes

Leia mais

Processamento digital de imagens. introdução

Processamento digital de imagens. introdução Processamento digital de imagens introdução Imagem digital Imagem digital pode ser descrita como uma matriz bidimensional de números inteiros que corresponde a medidas discretas da energia eletromagnética

Leia mais

DESENVOLVIMENTO DE RECURSOS COMPUTACIONAIS VISANDO O APRENDIZADO DA PROGRAMAÇÃO LINEAR

DESENVOLVIMENTO DE RECURSOS COMPUTACIONAIS VISANDO O APRENDIZADO DA PROGRAMAÇÃO LINEAR DESENVOLVIMENTO DE RECURSOS COMPUTACIONAIS VISANDO O APRENDIZADO DA PROGRAMAÇÃO LINEAR Patrícia Oliveira de Souza Escola de Engenharia Industrial e Metalúrgica de Volta Redonda da UFF Av. dos Trabalhadores

Leia mais

Gasolina ou Álcool. Série Matemática na Escola

Gasolina ou Álcool. Série Matemática na Escola Gasolina ou Álcool Série Matemática na Escola Objetivos 1. Apresentar aplicações de Sistemas de Equações Lineares no balanceamento de reações químicas. Gasolina ou Álcool Série Matemática na Escola Conteúdos

Leia mais

Especificação do Trabalho Prático

Especificação do Trabalho Prático Especificação do Trabalho Prático O trabalho prático da disciplina consiste em desenvolver um programa utilizando a linguagem de programação C. A seguir, encontram-se a descrição do problema, a forma de

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Interpolação de Curvas de Nível por Difusão de Calor

Interpolação de Curvas de Nível por Difusão de Calor Interpolação de Curvas de Nível por Difusão de Calor ROBERTO DE BEAUCLAIR SEIXAS LUIZ HENRIQUE DE FIGUEIREDO CLAUDIO ANTONIO DA SILVA IMPA Instituto de Matemática Pura e Aplicada VISGRAF Laboratório de

Leia mais

Criando uma Agenda de Reuniões

Criando uma Agenda de Reuniões Criando uma Agenda de Reuniões A Agenda de Reuniões permite ao professor agendar compromissos com seus alunos, especificando os períodos em que estará disponível para ver os alunos e a duração de cada

Leia mais

1 Introdução. 1.1 Motivação da Pesquisa

1 Introdução. 1.1 Motivação da Pesquisa 21 1 Introdução 1.1 Motivação da Pesquisa Como resultado das necessidades inerentes ao crescimento e as exigências dos mercados elétricos, simulações computacionais estão agora envolvendo sistemas elétricos

Leia mais

1 Descrição do Trabalho

1 Descrição do Trabalho Departamento de Informática - UFES 1 o Trabalho Computacional de Algoritmos Numéricos - 13/2 Métodos de Runge-Kutta e Diferenças Finitas Prof. Andréa Maria Pedrosa Valli Data de entrega: Dia 23 de janeiro

Leia mais

Chaves. Chaves. O modelo relacional implementa dois conhecidos conceitos de chaves, como veremos a seguir:

Chaves. Chaves. O modelo relacional implementa dois conhecidos conceitos de chaves, como veremos a seguir: Chaves 1 Chaves CONCEITO DE CHAVE: determina o conceito de item de busca, ou seja, um dado que será empregado nas consultas à base de dados. É um conceito lógico da aplicação (chave primária e chave estrangeira).

Leia mais

Programação Matemática - Otimização Linear

Programação Matemática - Otimização Linear Programação Matemática - Otimização Linear Professora: Maristela Oliveira dos Santos Auxilio 2009: Victor C.B. Camargo Auxilio 2010 - PAE: Marcos Mansano Furlan Instituto de Ciências Matemáticas e de Computação

Leia mais

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2 FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO Projeto e Análise de Algoritmos II Lista de Exercícios 2 Prof. Osvaldo. 1. Desenvolva algoritmos para as operações abaixo e calcule a complexidade

Leia mais

Pesquisa em Memória Primária. Prof. Jonas Potros

Pesquisa em Memória Primária. Prof. Jonas Potros Pesquisa em Memória Primária Prof. Jonas Potros Pesquisa em Memoria Primária Estudo de como recuperar informação a partir de uma grande massa de informação previamente armazenada. A informação é dividida

Leia mais

Planeamento de uma Linha Eléctrica

Planeamento de uma Linha Eléctrica Introdução aos Computadores e à Programação 006/007, º Semestre 1º Trabalho de OCTAVE Planeamento de uma Linha Eléctrica Introdução Pretende-se instalar uma linha eléctrica entre as localidades de Aldeia

Leia mais

Projeção e Anaglifos

Projeção e Anaglifos Projeção e Anaglifos Renato Paes Leme Nosso problema básico é o seguinte: temos uma coleção de pontos (x i, y i, z i ) em um conjunto de vértices, e um conjunto de polígonos. Queremos representar esses

Leia mais

Estudo sobre a aplicação da Computação Paralela na resolução de sistemas lineares

Estudo sobre a aplicação da Computação Paralela na resolução de sistemas lineares Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Informática Pós-Graduação em Ciência da Computação Estudo sobre a aplicação da Computação Paralela na resolução de sistemas lineares Aluno:

Leia mais

Processamento Digital de Sinais Aula 05 Professor Marcio Eisencraft fevereiro 2012

Processamento Digital de Sinais Aula 05 Professor Marcio Eisencraft fevereiro 2012 Aula 05 - Sistemas de tempo discreto Classificação Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Sinais e Sistemas, 2a edição, Pearson, 2010. ISBN 9788576055044. Páginas 25-36. HAYKIN, S. S.; VAN VEEN,

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

ESTUDOS SOBRE A IMPLEMENTAÇÃO ONLINE DE UMA TÉCNICA DE ESTIMAÇÃO DE ENERGIA NO CALORÍMETRO HADRÔNICO DO ATLAS

ESTUDOS SOBRE A IMPLEMENTAÇÃO ONLINE DE UMA TÉCNICA DE ESTIMAÇÃO DE ENERGIA NO CALORÍMETRO HADRÔNICO DO ATLAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA ESTUDOS SOBRE A IMPLEMENTAÇÃO ONLINE DE UMA TÉCNICA DE ESTIMAÇÃO DE ENERGIA NO CALORÍMETRO HADRÔNICO DO ATLAS EM CENÁRIOS DE ALTA LUMINOSIDADE ALUNO: MARCOS VINÍCIUS

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 02 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 02 Comandos de Repetição - O Comando FOR - O comando IF com o comando

Leia mais

Filas: conceitos e implementações

Filas: conceitos e implementações Estrutura de Dados I Filas: conceitos e implementações Cesar Rocha cesar@pontoweb.com.br 1 Objetivos Explorar os conceitos fundamentais acerca do uso de filas utilizando a linguagem C Organização e implementação,

Leia mais

OBS.: Qualquer variável utilizada num subprograma que não for parâmetro deve ser considerada como variável local.

OBS.: Qualquer variável utilizada num subprograma que não for parâmetro deve ser considerada como variável local. 1 LINGUAGEM ALGORITMICA Instituto Luterano de Ensino Superior de Ji-Paraná Curso Bacharelado em Informática Prof.: José Luiz A. Duizith Variáveis : Toda em maiúscula : CONSTANTE Iniciando em Maiúscula

Leia mais

4 Sistemas de Equações Lineares

4 Sistemas de Equações Lineares Nova School of Business and Economics Apontamentos Álgebra Linear 4 Sistemas de Equações Lineares 1 Definição Rank ou característica de uma matriz ( ) Número máximo de linhas de que formam um conjunto

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

5 - Vetores e Matrizes Linguagem C CAPÍTULO 5 VETORES E MATRIZES

5 - Vetores e Matrizes Linguagem C CAPÍTULO 5 VETORES E MATRIZES CAPÍTULO 5 5 VETORES E MATRIZES 5.1 Vetores Um vetor armazena uma determinada quantidade de dados de mesmo tipo. Vamos supor o problema de encontrar a média de idade de 4 pessoas. O programa poderia ser:

Leia mais

Divisão e Conquista. Túlio Toffolo www.toffolo.com.br Marco Antônio Carvalho marco.opt@gmail.com. BCC402 Aula 08 Algoritmos e Programação Avançada

Divisão e Conquista. Túlio Toffolo www.toffolo.com.br Marco Antônio Carvalho marco.opt@gmail.com. BCC402 Aula 08 Algoritmos e Programação Avançada Divisão e Conquista Túlio Toffolo www.toffolo.com.br Marco Antônio Carvalho marco.opt@gmail.com BCC402 Aula 08 Algoritmos e Programação Avançada Motivação É preciso revolver um problema com uma entrada

Leia mais

Introdução sobre Scilab

Introdução sobre Scilab Ivanovitch Medeiros Dantas da Silva Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação DCA0399 - Métodos Computacionais para Engenharia Civil Natal, 14 de

Leia mais

Google PageRank: matemática básica e métodos numéricos. Paulo Vasconcelos - CMUP

Google PageRank: matemática básica e métodos numéricos. Paulo Vasconcelos - CMUP Google PageRank: matemática básica e métodos numéricos O PageRank tem entrado progressivamente no nosso dia-a-dia através do motor de busca mais usado actualmente: o Google. Mas, O que significa? É baseado

Leia mais

ATIVIDADES PRÁTICAS SUPERVISIONADAS

ATIVIDADES PRÁTICAS SUPERVISIONADAS ATIVIDADES PRÁTICAS SUPERVISIONADAS 10ª Série Automação Industrial Engenharia Elétrica A atividade prática supervisionada (ATPS) é um procedimento metodológico de ensino-aprendizagem desenvolvido por meio

Leia mais

Redes Neurais Artificiais: Funções de Base Radial

Redes Neurais Artificiais: Funções de Base Radial Treinamento COELCE CEFET UFC MÓDULO II 2008.1 Redes Neurais Artificiais: Funções de Base Radial Prof. Dr. Guilherme de Alencar Barreto Depto. Engenharia de Teleinformática (DETI/UFC) URL: www.deti.ufc.br/~guilherme

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA SÉRIE DE EXERCÍCIO #A22 (1) O circuito a seguir amplifica a diferença de

Leia mais

ASSUNTO DA APOSTILA: SISTEMAS DE INFORMAÇÃO E AS DECISÕES GERENCIAIS NA ERA DA INTERNET

ASSUNTO DA APOSTILA: SISTEMAS DE INFORMAÇÃO E AS DECISÕES GERENCIAIS NA ERA DA INTERNET AULA 01 ASSUNTO DA APOSTILA: SISTEMAS DE INFORMAÇÃO E AS DECISÕES GERENCIAIS NA ERA DA INTERNET JAMES A. O BRIEN CAPÍTULO 01 Páginas 03 à 25 1 A mistura de tecnologias da Internet e preocupações empresariais

Leia mais

Banco de Dados I 2007. Módulo V: Indexação em Banco de Dados. (Aulas 1, 2 e 3) Clodis Boscarioli

Banco de Dados I 2007. Módulo V: Indexação em Banco de Dados. (Aulas 1, 2 e 3) Clodis Boscarioli Banco de Dados I 2007 Módulo V: Indexação em Banco de Dados (Aulas 1, 2 e 3) Clodis Boscarioli Agenda: Estruturas de Índices; Conceitos; Tipos de Índices: Primários; Secundários; Clustering; Multiníveis;

Leia mais

DAS5102 Fundamentos da Estrutura da Informação

DAS5102 Fundamentos da Estrutura da Informação Árvores Existe uma ampla variedade de dados que são comumente organizados sob a forma de árvores hierárquicas utilizadas recorrentemente em nosso dia a dia. Exemplos são a organização administrativa de

Leia mais

ANDERSON REIS DA SILVA ESTUDO DO MÉTODO DE SOBRE RELAXAÇÃO SUCESSIVA NA RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES

ANDERSON REIS DA SILVA ESTUDO DO MÉTODO DE SOBRE RELAXAÇÃO SUCESSIVA NA RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES UNIVERSIDADE FEDERAL RURAL DO SEMIÁRIDO - UFERSA DEPARTAMENTO DE CIÊNCIAS EXATAS, TECNOLÓGICAS E HUMANAS - DCETH CAMPUS ANGICOS BACHARELADO EM CIÊNCIA E TECNOLOGIA ANDERSON REIS DA SILVA ESTUDO DO MÉTODO

Leia mais

Projetos. Universidade Federal do Espírito Santo - UFES. Mestrado em Informática 2004/1. O Projeto. 1. Introdução. 2.

Projetos. Universidade Federal do Espírito Santo - UFES. Mestrado em Informática 2004/1. O Projeto. 1. Introdução. 2. Pg. 1 Universidade Federal do Espírito Santo - UFES Mestrado em Informática 2004/1 Projetos O Projeto O projeto tem um peso maior na sua nota final pois exigirá de você a utilização de diversas informações

Leia mais

Método Simplex - Exemplos. Iteração 1 - variáveis básicas: y 1, y 2, y 3. Exemplo 1. Facom - UFMS. Exemplo. Edna A. Hoshino.

Método Simplex - Exemplos. Iteração 1 - variáveis básicas: y 1, y 2, y 3. Exemplo 1. Facom - UFMS. Exemplo. Edna A. Hoshino. Tópicos Método Simplex - s Edna A. Hoshino 1 Facom - UFMS março de 2010 E. Hoshino (Facom-UFMS) Simplex março de 2010 1 / 21 E. Hoshino (Facom-UFMS) Simplex março de 2010 2 / 21 1 Iteração 1 - variáveis

Leia mais

3. Fase de Planejamento dos Ciclos de Construção do Software

3. Fase de Planejamento dos Ciclos de Construção do Software 3. Fase de Planejamento dos Ciclos de Construção do Software A tarefa de planejar os ciclos de construção do software pode partir de diretrizes básicas. Estas diretrizes visam orientar que os ciclos de

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

Discussão de Sistemas Teorema de Rouché Capelli

Discussão de Sistemas Teorema de Rouché Capelli Material by: Caio Guimarães (Equipe Rumoaoita.com) Discussão de Sistemas Teorema de Rouché Capelli Introdução: Apresentamos esse artigo para mostrar como utilizar a técnica desenvolvida a partir do Teorema

Leia mais

O MÉTODO HÚNGARO PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO

O MÉTODO HÚNGARO PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO O MÉTODO HÚNGARO PARA RESOLUÇÃO DE PROBLEMAS DE OTIMIZAÇÃO João Cesar Guirado Universidade Estadual de Maringá E-mail: jcguirado@gmail.com Márcio Roberto da Rocha Universidade Estadual de Maringá E-mail:

Leia mais

A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0)

A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0) MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Sistemas Lineares : Utilizando o método de eliminação de Gauss, calcule o determinante e a seguir a inversa da matriz abaixo. Efetue todos os

Leia mais

Linguagens de Programação

Linguagens de Programação Linguagens de Programação Prof. Miguel Elias Mitre Campista http://www.gta.ufrj.br/~miguel Parte IV Introdução à Programação em C++ (Continuação) Relembrando da Última Aula... Funções Classes de armazenamento

Leia mais

CAPÍTULO 2. Grafos e Redes

CAPÍTULO 2. Grafos e Redes CAPÍTULO 2 1. Introdução Um grafo é uma representação visual de um determinado conjunto de dados e da ligação existente entre alguns dos elementos desse conjunto. Desta forma, em muitos dos problemas que

Leia mais

4 Aplicativo para Análise de Agrupamentos

4 Aplicativo para Análise de Agrupamentos 65 4 Aplicativo para Análise de Agrupamentos Este capítulo apresenta a modelagem de um aplicativo, denominado Cluster Analysis, dedicado à formação e análise de grupos em bases de dados. O aplicativo desenvolvido

Leia mais

agility made possible

agility made possible RESUMO DA SOLUÇÃO Utilitário ConfigXpress no CA IdentityMinder a minha solução de gerenciamento de identidades pode se adaptar rapidamente aos requisitos e processos de negócio em constante mudança? agility

Leia mais

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca

Leia mais

Computação Adaptativa

Computação Adaptativa Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia Universidade de Coimbra 2007/08 Computação Adaptativa TP2 OCR Optical Character Recognition Pedro Carvalho de Oliveira (MEI) Nº

Leia mais

2 Texturas com Relevo e Equações de Pré Warping

2 Texturas com Relevo e Equações de Pré Warping 2 Texturas com Relevo e Equações de Pré Warping A noção de warping de imagens é fundamental para o entendimento da técnica abordada nesta dissertação. Este capítulo apresenta definições formais para vários

Leia mais

MATLAB Avançado. Melissa Weber Mendonça 1 2011.2. 1 Universidade Federal de Santa Catarina. M. Weber Mendonça (UFSC) MATLAB Avançado 2011.

MATLAB Avançado. Melissa Weber Mendonça 1 2011.2. 1 Universidade Federal de Santa Catarina. M. Weber Mendonça (UFSC) MATLAB Avançado 2011. MATLAB Avançado Melissa Weber Mendonça 1 1 Universidade Federal de Santa Catarina 2011.2 M. Weber Mendonça (UFSC) MATLAB Avançado 2011.2 1 / 46 Exemplo >> x = -3:0.1:3; >> [x,y] = meshgrid(x); >> z = x.^2+3*y-x.*y.^2

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Passo a Passo do Cadastro Funcionários no SIGLA Digital

Passo a Passo do Cadastro Funcionários no SIGLA Digital Passo a Passo do Cadastro Funcionários no SIGLA Digital Funcionários Página 1 de 12 O cadastro de funcionários permite cadastrar o usuário que vai utilizar o SIGLA Digital e também seus dados pessoais.

Leia mais

Análise no Domínio do Tempo de Sistemas em Tempo Discreto

Análise no Domínio do Tempo de Sistemas em Tempo Discreto Análise no Domínio do Tempo de Sistemas em Tempo Discreto Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

LCAD. LNCC - Programa de Verão 2008. Minicurso M16 Estrutura de Dados e Solvers. Lucia Catabriga. Departamento de Informática - CT/UFES

LCAD. LNCC - Programa de Verão 2008. Minicurso M16 Estrutura de Dados e Solvers. Lucia Catabriga. Departamento de Informática - CT/UFES LNCC - Programa de Verão 2008 Minicurso M16 Estrutura de Dados e Solvers Lucia Catabriga LCAD - Laboratório de Computação de Alto Desempenho Departamento de Informática - CT/UFES LCAD Ementa do Curso Introdução

Leia mais

Indicações para a elaboração do trabalho a realizar em horário extra lectivo

Indicações para a elaboração do trabalho a realizar em horário extra lectivo Instituto Politécnico de Viseu Escola Superior de Tecnologia Curso: Eng a Mecânica e G. I. Ano: 1 o Semestre: 2 o Ano Lectivo: 2005/2006 Indicações para a elaboração do trabalho a realizar em horário extra

Leia mais

ESTABILIZADOR DE TENSÃO ALTERNADA PARA CARGAS NÃO-LINEARES

ESTABILIZADOR DE TENSÃO ALTERNADA PARA CARGAS NÃO-LINEARES ESTABILIZADOR DE TENSÃO ALTERNADA PARA CARGAS NÃOLINEARES Clóvis Antônio Petry, João Carlos dos Santos Fagundes e Ivo Barbi Universidade Federal de Santa Catarina, Departamento de Engenharia Elétrica Instituto

Leia mais

Este trabalho tem como objetivo praticar o uso de tipos abstratos de dados e estruturas do tipo Lista.

Este trabalho tem como objetivo praticar o uso de tipos abstratos de dados e estruturas do tipo Lista. Universidade Federal do Espírito Santo Departamento de Informática Estruturas de Dados (INF09292) 1 o Trabalho Prático Período: 2011/1 Prof a Patrícia Dockhorn Costa Email: pdcosta@inf.ufes.br Data de

Leia mais

INTRODUÇÃO AO MAXIMA - PARTE 1

INTRODUÇÃO AO MAXIMA - PARTE 1 INTRODUÇÃO AO MAXIMA - PARTE 1 Caro colega, Como temos destacado, precisamos de um motivo que justifique o uso do computador no ensino e aprendizagem, principalmente de conteúdos matemáticos, pois a utilização

Leia mais

Manual para acesso às disciplinas na modalidade EAD

Manual para acesso às disciplinas na modalidade EAD Manual para acesso às disciplinas na modalidade EAD Para acessar sua senha: 1. Entrar no portal Metodista online Acesse o site www.bennett.br. No lado superior direito aparecerá a janela da área de login,

Leia mais

Resolução de Sistemas de

Resolução de Sistemas de Capítulo 4 Resolução de Sistemas de Equações Lineares 4. Introdução Aresolução de sistemas de equações lineares é um dos problemas numéricos mais comuns em aplicações científicas. Tais sistemas surgem,

Leia mais

Um algoritmo espectral para redução do envelope de matrizes esparsas

Um algoritmo espectral para redução do envelope de matrizes esparsas Um algoritmo espectral para redução do envelope de matrizes esparsas Universidade Federal do Espírito Santo Mestrado em Informática Maio de 2009 Seja dada A R n n definida positiva (note que A é simétrica

Leia mais

Sumário 1 Folhas de Cálculo... 15 2 Gráficos... 33 3 Funções... 61

Sumário 1 Folhas de Cálculo... 15 2 Gráficos... 33 3 Funções... 61 Sumário 1 Folhas de Cálculo... 15 1.1 Planilha de Cálculo...15 1.2 História...15 1.3 Conhecendo uma Folha de Cálculo...17 1.4 Tela Inicial...18 1.5 Planilhas e Arquivos...19 1.6 Copiar, Colar e Colar Especial...21

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação

Leia mais