MP-208: Filtragem Ótima com Aplicações Aeroespaciais

Tamanho: px
Começar a partir da página:

Download "MP-208: Filtragem Ótima com Aplicações Aeroespaciais"

Transcrição

1 MP-208: Filtragem Ótima com Aplicações Aeroespaciais Capítulo 5: Aspectos Computacionais do Filtro de Kalman Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica São José dos Campos, Brasil Setembro de / 18

2 Sumário 1 Motivação 2 Filtro Informação 3 Filtro com Atualização Sequencial 4 Filtro Raiz Quadrada 2 / 18

3 Motivação Dificultades Numétricas do Filtro de Kalman Convencional: 1 Predição: A fórmula de predição da covariância condicional P k+1 k = A k P k k A T k + G k Q k G T k pode resultar numa matriz, embora positiva, não simétrica. Essa dificuldade pode ser remediada por adequada implementação dos produtos de três matrizes ou por uma formulação raiz quadrada. 3 / 18

4 Motivação 2 Atualização: A fórmula de atualização da covariância condicional P k+1 k+1 = P k+1 k K k+1 C k+1 P k+1 k pode resultar numa matriz não simétrica e/ou indefinida. Essa dificuldade pode ser remediada pelo uso da fórmula de Joseph: P k+1 k+1 = (I K k+1 C k+1 )P k+1 k (I K k+1 C k+1 ) T +K k+1 R k+1 K T k+1 ou por uma formulação raiz quadrada. 4 / 18

5 Motivação 3 Ganho de Kalman: A fórmula do ganho de Kalman K k+1 = P k+1 k C T k+1 (C k+1 P k+1 k C T k+1 + R k+1 ) 1 tem elevado custo computacional, devido à inversão de matriz, quando a dimensão do vetor de medidas é grande. Essa dificuldade pode ser remediada pelo uso do filtro informação, pelo uso do filtro raiz quadrada, ou por atualização sequencial de medidas escalares. 5 / 18

6 Filtro Informação Definições Preliminares: Defina, respectivamente, a matriz informação atualizada e a matriz informação predita: L k k (P k k ) 1 (1) L k+1 k (P k+1 k ) 1 (2) Defina também as estimativas transformadas atualizada e predita, respectivamente: ẑ k k L k kˆx k k (3) ẑ k+1 k L k+1 kˆx k+1 k (4) 6 / 18

7 Filtro Informação Predição: Dados L k k e ẑ k k, pode-se calcular L k+1 k e ẑ k+1 k por: ẑ k+1 k = Π k = A T k L k k A 1 k (5) ( ) 1 K k = Π k G k G T k Π k G k + Q 1 (6) ( ) I K kg T k L k+1 k = ( k ẑ k k + I K kg T k ( I K kg T k A T k ) Π k B k u k (7) ) Π k (8) 7 / 18

8 Filtro Informação Atualização: Dados L k+1 k e ẑ k+1 k, pode-se calcular L k+1 k+1 e ẑ k+1 k+1 por: ẑ k+1 k+1 = ẑ k+1 k + C T k+1r 1 k+1 y k+1 (9) L k+1 k+1 = L k+1 k + C T k+1r 1 k+1 C k+1 (10) Quando necessário, pode-se recuperar a estimativa filtrada e a correspondente covariância por: P k+1 k+1 = L 1 k+1 k+1 ˆx k+1 k+1 = P k+1 k+1 ẑ k+1 k+1 8 / 18

9 Filtro com Atualização Sequencial Definição do Problema: Deseja-se agora atualizar a estimativa a priori ˆx k+1 k R n assimilando os componentes escalares de y k+1 R m, um a um sequencialmente. y k+1 [ y k+1,1 y k+1,2... y k+1,m ] T 9 / 18

10 Filtro com Atualização Sequencial Solução do Problema (Ruídos de Medida Descorrelacionados): Inicialmente, note que a VA referente à i-ésima medida escalar Y k+1,i do instante k + 1 pode, como no capítulo 3, ser modelada por: Y k+1,i = C k+1,i X k+1 + V k+1,i (11) onde C k+1,i R 1 n é uma matriz conhecida, X k+1 R n é o vetor de estados, com distribuição a priori dadas as medidas Y 1:k, Y k+1,1,..., Y k+1,i 1 X k+1 Y 1:k, Y k+1,1,..., Y k+1,i 1 N (ˆx k+1 k+1,i 1, P k+1 k+1,i 1 ) (12) V k+1,i R é o ruído de medida, com distribuição V k+1,i N (0, R k+1,i ), R k+1,i R conhecido e o conjunto { X k+1, V k+1,1,..., V k+1,i } é descorrelacionado. 10 / 18

11 Filtro com Atualização Sequencial...Solução do Problema: A assimilação MMSE da realização y k+1,i de Y k+1,i à estimativa a priori ˆx k+1 k+1,i 1 é dada por ) K k+1,i = P k+1 k+1,i 1 C T k+1,i/ (C k+1,i P k+1 k+1,i 1 C T k+1,i + R k+1,i ˆx k+1 k+1,i = ˆx k+1 k+1,i 1 + K k+1,i ( y k+1,i C k+1,iˆx k+1 k+1,i 1 ) (13) (14) P k+1 k+1,i = P k+1 k+1,i 1 K k+1,i C k+1,i P k+1 k+1,i 1 (15) 11 / 18

12 Filtro com Atualização Sequencial Início do Loop: Quando i = 1 a informação a priori da equação (12) fica e, portanto, Fim do Loop: X k+1 Y 1:k N (ˆx k+1 k, P k+1 k ) (16) ˆx k+1 k+1,0 = ˆx k+1 k (17) P k+1 k+1,0 = P k+1 k (18) Após a assimilação da m-ésima medida escalar, obtém-se a estimativa filtrada e a correspondente covariância condicional como sendo: ˆx k+1 k+1 = ˆx k+1 k+1,m (19) P k+1 k+1 = P k+1 k+1,m (20) 12 / 18

13 Filtro com Atualização Sequencial Ruídos de Medida Descorrelacionados: Considere agora que a covariância R k+1 R m m do ruído de medida vetorial V k+1 R m contenha elementos não nulos fora da diagonal principal. Represente o fator de Cholesky de R k+1 por R 1/2 k+1. Pode-se obter um modelo de medida vetorial transformado: Ȳ k+1 = C k+1 X k+1 + V k+1 (21) com Ȳ k+1 = R 1/2 k+1 Y k+1, C k+1 = R 1/2 k+1 C k+1 e V k+1 = R 1/2 k+1 V k+1, tal que: R k+1 E ( V k+1 V k+1) T = I m (22) Neste caso, utiliza-se os componentes do vetor de medidas transformado Ȳ k+1 nas iterações (13)-(15) da atualização sequencial. 13 / 18

14 Filtro Raiz Quadrada Definições Preliminares: Sejam as decomposições de Cholesky de P k+1 k e P k+1 k+1 : P k+1 k = S k+1 k S T k+1 k (23) P k+1 k+1 = S k+1 k+1 S T k+1 k+1 (24) em que os fatores de Cholesky S k+1 k R n n e S k+1 k+1 R n n são matrizes triangulares inferiores. Denote ainda aos fatores de Cholesky de Q k e R k por Q 1/2 k e R 1/2 k, respectivamente. 14 / 18

15 Filtro Raiz Quadrada Predição: Seja a fórmula de propagação temporal da covariância condicional do estado: P k+1 k = A k P k k A T k + G k Q k G T k (25) Usando as definições do slide 14, pode-se imediatamente reescrever (25) na forma S k+1 k S T k+1 k = MMT (26) [ ] M A k S k k G k Q 1/2 k (27) Pode-se então obter S k+1 k = R T, onde R é a matriz triangular superior obtida da decomposição QR de M T. 15 / 18

16 Filtro Raiz Quadrada Atualização: Seja a fórmula de Joseph para atualização da covariância condicional do estado: P k+1 k+1 = (I K k+1 C k+1 )P k+1 k (I K k+1 C k+1 ) T + K k+1 R k+1 K T k+1 (28) Usando as definições do slide 14, pode-se imediatamente reescrever (28) na forma S k+1 k+1 S T k+1 k+1 = M M T (29) M [ ] (I K k+1 C k+1 )S k+1 k K k+1 R 1/2 k+1 (30) Pode-se então obter S k+1 k+1 = R T, onde R é a matriz triangular superior obtida da decomposição QR de M T. 16 / 18

17 Filtro Raiz Quadrada Ganho de Kalman: Seja a fórmula do ganho de Kalman: onde K k+1 = P XY k+1 k ( P Y k+1 k) 1 (31) P Y k+1 k = C k+1p k+1 k C T k+1 + R k+1 P XY k+1 k = P k+1 kc T k+1 Seja a decomposição de Cholesky de P Y k+1 k = MMT. Pode-se obter K k+1 resolvendo-se o sistema de equações K k+1 MM T = P XY k+1 k (32) por back- e forward-substitution, respectivamente. 17 / 18

18 Referências Bar-Shalom, Y., Li, R. X., Kirubarajan, T. Estimation with Applications to Tracking and Navigation. New Jersey: Jonh Wiley & Sons, Anderson, B. D. O., Moore, J. B. Optimal Filtering. New York: Dover, Bierman, G. J. Factorization Methods for Discrete Sequential Estimation. New York: Academic Press, / 18

MP-208: Filtragem Ótima com Aplicações Aeroespaciais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais MP-208: Filtragem Ótima com Aplicações Aeroespaciais Capítulo 7: Filtro de Kalman Estendido Discreto Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica davists@ita.br

Leia mais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais MP-208: Filtragem Ótima com Aplicações Aeroespaciais Capítulo 1: Introdução Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica davists@ita.br São José dos Campos,

Leia mais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais MP-208: Filtragem Ótima com Aplicações Aeroespaciais Seção 2.1: Álgebra Linear e Matrizes Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica davists@ita.br São José

Leia mais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais MP-208: Filtragem Ótima com Aplicações Aeroespaciais Seção 2.6: Vetores Aleatórios Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica davists@ita.br São José dos Campos,

Leia mais

INSTITUTO TECNOLÓGICO DE AERONÁUTICA

INSTITUTO TECNOLÓGICO DE AERONÁUTICA INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA MP-272: CONTROLE E NAVEGAÇÃO DE MULTICÓPTEROS VI. NAVEGAÇÃO Prof. Davi Antônio dos Santos (davists@ita.br) Departamento de Mecatrônica

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

INSTITUTO TECNOLÓGICO DE AERONÁUTICA

INSTITUTO TECNOLÓGICO DE AERONÁUTICA INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA MP-272: CONTROLE E NAVEGAÇÃO DE MULTICÓPTEROS IV. ESTIMAÇÃO ÓTIMA Prof. Davi Antônio dos Santos (davists@ita.br) Departamento de Mecatrônica

Leia mais

APRESENTAÇÃO DA DISCIPLINA

APRESENTAÇÃO DA DISCIPLINA INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA MP-272: CONTROLE E NAVEGAÇÃO DE MULTICÓPTEROS APRESENTAÇÃO DA DISCIPLINA Prof. Davi Antônio dos Santos (davists@ita.br) Departamento

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Introdução Solução de equações não lineares

Leia mais

Algebra Linear. 1. Ortonormalização. 2. Sistema de Equações Lineares. pag.1 Teoria de Sistemas Lineares Aula 6. c Reinaldo M.

Algebra Linear. 1. Ortonormalização. 2. Sistema de Equações Lineares. pag.1 Teoria de Sistemas Lineares Aula 6. c Reinaldo M. Algebra Linear 1. Ortonormalização 2. Sistema de Equações Lineares pag.1 Teoria de Sistemas Lineares Aula 6 Ortonormalização Um vetor x é dito estar normalizado se sua norma Euclidiana é igual a 1, ie,

Leia mais

EES-20: Sistemas de Controle II. 20 Novembro 2017

EES-20: Sistemas de Controle II. 20 Novembro 2017 EES-20: Sistemas de Controle II 20 Novembro 2017 1 / 57 Recapitulando: Filtro de Kalman para sistema de 1a ordem Foi considerado o caso de estado x[k] escalar, com G = 1 e C = 1, por simplicidade: Equação

Leia mais

Sistemas de Equações Lineares Algébricas

Sistemas de Equações Lineares Algébricas Sistemas de Equações Lineares Algébricas A 11 x 1 + A 12 x 2 +... + A 1n x n = b 1 A 21 x 1 + A 22 x 2 +... + A 2n x n = b 2............... A n1 x1 + A n2 x 2 +... + A nn x n = b n A 11 A 12... A 1n x

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Aula Anterior 2 3 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Decomposição LU A matriz de coeficientes é decomposta em L e U L é uma matriz

Leia mais

Este capítulo descreve os testes realizados para validar a teoria proposta pela presente dissertação.

Este capítulo descreve os testes realizados para validar a teoria proposta pela presente dissertação. 6 Simulações Este capítulo descreve os testes realizados para validar a teoria proposta pela presente dissertação. 6.1. Descrição da Simulação Visando validar o equacionamento desenvolvido no Capítulo

Leia mais

3 Filtro de Kalman Discreto

3 Filtro de Kalman Discreto 3 Filtro de Kalman Discreto As medidas realizadas por sensores estão sujeitas a erros, como pode ser visto no Capítulo 2. Os filtros são aplicados aos sinais medidos pelos sensores para reduzir os erros,

Leia mais

5 Equacionamento do Filtro de Kalman

5 Equacionamento do Filtro de Kalman 5 Equacionamento do Filtro de Kalman As implementações do filtro de Kalman para a fusão do GPS com o sensor inercial são classificadas na literatura principalmente como: acopladas, utilizando como informação

Leia mais

Filtro de Kalman. Teoria e Aplicação para Iniciantes. Prof. Dr. Marco Antonio Leonel Caetano. M&V Consultoria e Treinamento

Filtro de Kalman. Teoria e Aplicação para Iniciantes. Prof. Dr. Marco Antonio Leonel Caetano. M&V Consultoria e Treinamento Filtro de Kalman Teoria e Aplicação para Iniciantes Prof. Dr. Marco Antonio Leonel Caetano M&V Consultoria e Treinamento www.mudancasabruptas.com.br A História da Filtragem de Sinais 930 940 960 Filtro

Leia mais

Cálculo Numérico BCC760

Cálculo Numérico BCC760 Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita

Leia mais

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 1 Preliminares MAP3121 - Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 A decomposição de Cholesky aplicada a Finanças O exercício-programa

Leia mais

2 Animação com Harmônicos de Variedade

2 Animação com Harmônicos de Variedade 2 Animação com Harmônicos de Variedade Hoje em dia, podemos encontrar vários métodos de visualização de música, porém muito poucos relacionam a música à deformações (ou até movimentos rígidos) de modelos

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Aula Anterior 2 Decomposição LU 3 Decomposição LU com Pivotamento 4 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Eliminação de Gauss Transforma

Leia mais

Estimação de Estados em Sistemas de Potência

Estimação de Estados em Sistemas de Potência Estimação de Estados em Sistemas de Potência Antonio Simões Costa LABSPOT A. Simões Costa (LABSPOT) EESP 1 / 16 Estimação de Estados em Sistemas de Potência (I) Objetivo: A partir de telemedidas redundantes

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

Análise multivariada

Análise multivariada UNIFAL-MG, campus Varginha 11 de Setembro de 2018 Dada uma matriz A (p p), podemos obter um escalar λ e um vetor v (p 1) de modo que seja satisfeita? Av = λv (1) Dada uma matriz A (p p), podemos obter

Leia mais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais

Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Teorema da Triangularização de Schur e Diagonalização de Matrizes Normais Reginaldo J Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 16 de novembro

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos

Leia mais

Controle Ótimo - Aula 8 Equação de Hamilton-Jacobi

Controle Ótimo - Aula 8 Equação de Hamilton-Jacobi Controle Ótimo - Aula 8 Equação de Hamilton-Jacobi Adriano A. G. Siqueira e Marco H. Terra Departamento de Engenharia Elétrica Universidade de São Paulo - São Carlos O problema de controle ótimo Considere

Leia mais

Algoritmo Array Rápido para Filtragem de Sistemas Lineares Sujeitos a Saltos Markovianos com Variação Estruturada dos Parâmetros no Tempo

Algoritmo Array Rápido para Filtragem de Sistemas Lineares Sujeitos a Saltos Markovianos com Variação Estruturada dos Parâmetros no Tempo Trabalho apresentado no XXXVII CNMAC, SJ dos Campos - SP, 2017 Proceeding Series of the Brazilian Society of Computational and Applied Mathematics Algoritmo Array Rápido para Filtragem de Sistemas Lineares

Leia mais

G4 de Álgebra Linear I

G4 de Álgebra Linear I G4 de Álgebra Linear I 27.1 Gabarito 1) Considere a base η de R 3 η = {(1, 1, 1); (1,, 1); (2, 1, )} (1.a) Determine a matriz de mudança de coordenadas da base canônica para a base η. (1.b) Considere o

Leia mais

X. MÉTODOS DE ESPAÇO DE ESTADOS

X. MÉTODOS DE ESPAÇO DE ESTADOS INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE X. MÉTODOS DE ESPAÇO DE ESTADOS Prof. Davi Antônio dos Santos (davists@ita.br) Departamento de

Leia mais

Processamento de Imagens CPS755

Processamento de Imagens CPS755 Processamento de Imagens CPS755 aula 04 - sistemas lineares Antonio Oliveira Ricardo Marroquim 1 / 32 laboratório de processamento de imagens tópicos decomposições (álgebra linear) decomposição QR decomposição

Leia mais

Descomposição de Cholesky

Descomposição de Cholesky Frederico Almeida & Guilherme Aguilar Universidade Federal de Minas Gerais 20 de Novembro de 2018 Frederico A. & Guilherme A. (ICEX - UFMG) 20 de Novembro de 2018 1 / 29 Motivação Métodos de otimização

Leia mais

FILTRAGEM ESTOCÁSTICA APLICADA A SISTEMAS MAX-PLUS LINEARES

FILTRAGEM ESTOCÁSTICA APLICADA A SISTEMAS MAX-PLUS LINEARES FILTRAGEM ESTOCÁSTICA APLICADA A SISTEMAS MAX-PLUS LINEARES DIEGO FIGUEIRÊDO E SILVA, RAFAEL SANTOS MENDES, LAURENT HARDOUIN, CARLOS ANDREY MAIA, BERTRAND COTTENCEAU Faculdade de Engenharia Elétrica e

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Algoritmos Numéricos II / Computação Científica Autovalores e Autovetores Lucia Catabriga 1 1 DI/UFES - Brazil Junho 2016 Introdução Ideia Básica Se multiplicarmos a matriz por um autovetor encontramos

Leia mais

a mnx n = b m

a mnx n = b m MTRIZES s matrizes são ferramentas básicas da Álgebra Linear, pois além de fornecerem meios para resolução dos sistemas de equações lineares, elas também representarão as transformações lineares entre

Leia mais

5 Filtro de Kalman Aplicado ao Modelo de Schwartz e Smith (2000)

5 Filtro de Kalman Aplicado ao Modelo de Schwartz e Smith (2000) 5 Filtro de Kalman Aplicado ao Modelo de Schwartz e Smith (2000) A primeira parte deste capítulo, referente à passagem dos modelos estocásticos para as equações do Filtro de Kalman, já foi previamente

Leia mais

II. MODELAGEM MATEMÁTICA (cont.)

II. MODELAGEM MATEMÁTICA (cont.) INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA MECÂNICA MP-272: CONTROLE E NAVEGAÇÃO DE MULTICÓPTEROS II. MODELAGEM MATEMÁTICA (cont.) Prof. Davi Antônio dos Santos (davists@ita.br) Departamento

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução

Leia mais

MAP Exercício programa GPS e o Método de Newton

MAP Exercício programa GPS e o Método de Newton MAP3121 - Exercício programa 1-2018 GPS e o Método de Newton O Sistema de Posicionamento Global O Sistema de Posicionamento Global (GPS, sigla do nome em inglês) é um sistema de navegação formado por uma

Leia mais

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho

Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho Álgebra Linear - 2 a lista de exercícios Prof. - Juliana Coelho 1 - Verifique que os conjuntos V abaixo com as operações dadas não são espaços vetoriais explicitando a falha em alguma das propriedades.

Leia mais

Rafael Santos Coelho. 15 de abril de 2009

Rafael Santos Coelho. 15 de abril de 2009 Otimização, derivadas e coloração Rafael Santos Coelho UFES 15 de abril de 2009 Rafael Santos Coelho (UFES) Otimização, derivadas e coloração 15 de abril de 2009 1 / 25 Sumário 1 Introdução e motivação

Leia mais

Sistemas de Equações Lineares Algébricas

Sistemas de Equações Lineares Algébricas Sistemas de Equações Lineares Algébricas A x + A x +... + A n x n b A x + A x +... + A n x n b............... A n x + A n x +... + A nn x n b n A A... A n x b A A... A n x b.................. A n A n...

Leia mais

2 Modelos em Espaço de Estado Lineares: Formulação Geral

2 Modelos em Espaço de Estado Lineares: Formulação Geral 2 Modelos em Espaço de Estado Lineares: Formulação Geral 2.1 Definição Geral de um Modelo Linear Apresenta-se uma definição de modelos em EE lineares que seja a mais geral e flexível possível, e que segue

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 1 de Janeiro de 1 - Parte I (1h3m) 1. Considere

Leia mais

Matrizes. Lino Marcos da Silva

Matrizes. Lino Marcos da Silva Matrizes Lino Marcos da Silva lino.silva@univasf.edu.br Introdução Chamamos de matriz a uma tabela de elementos dispostos em linhas e colunas. Por exemplo, ao recolhermos os dados população, área e distância

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

Instituto de Física Universidade Federal do Rio de Janeiro. Cap. 1 - Vetores. Prof. Elvis Soares - Física I

Instituto de Física Universidade Federal do Rio de Janeiro. Cap. 1 - Vetores. Prof. Elvis Soares - Física I Instituto de Física Universidade Federal do Rio de Janeiro Cap. 1 - Vetores Prof. Elvis Soares - Física I 2014.1 Vetores são descrições matemáticas de quantidades que possuem intensidade, direção e sentido.

Leia mais

SME0300 Cálculo Numérico Aula 11

SME0300 Cálculo Numérico Aula 11 SME0300 Cálculo Numérico Aula 11 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 21 de setembro de 2015 Tópico Anterior Sistemas Lineares: Métodos Exatos:

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de agosto de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes

Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes Álgebra Linear - Prof. a Cecilia Chirenti Lista 3 - Matrizes. Sejam A = C = 0 3 4 3 0 5 4 0 0 3 4 0 3, B = 3, D = 3,. Encontre: a A+B, A+C, 3A 4B. b AB, AC, AD, BC, BD, CD c A t, A t C, D t A t, B t A,

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

IDENTIFICAÇÃO DA DINÂMICA LONGITUDINAL DE UMA AEROVAVE FLEXÍVEL VIA FILTRO DE KALMAN ESTENDIDO

IDENTIFICAÇÃO DA DINÂMICA LONGITUDINAL DE UMA AEROVAVE FLEXÍVEL VIA FILTRO DE KALMAN ESTENDIDO 9 Brazilian Symposium on Aerospace Eng. & Applications 3 rd CTA-DLR Workshop on Data Analysis & Flight Control Copyright 9 by AAB September 4-6, 9, S. J. Campos, SP, Brazil IDENTIFICAÇÃO DA DINÂMICA LONGITUDINAL

Leia mais

Comparação entre dois métodos de GPS diferencial implementados através do filtro de Kalman

Comparação entre dois métodos de GPS diferencial implementados através do filtro de Kalman Resumo Comparação entre dois métodos de GPS diferencial implementados através do filtro de Kalman Leandro Baroni Hélio Koiti Kuga, Divisão de Mecânica Espacial e Controle, Instituto Nacional de Pesquisas

Leia mais

Afiliação. Professor Titular do Departamento de Estatística Faculdade de Matemática da PUCRS

Afiliação. Professor Titular do Departamento de Estatística Faculdade de Matemática da PUCRS Lorí Viali Licenciatura Plena em Matemática UFRGS Bacharelado em Matemática UFRGS Especialização em Formação de Pesquisadores PUCRS Mestrado em Engenharia de Produção (PO) UFSC Doutorado Sanduíche na USF

Leia mais

Processos estocásticos

Processos estocásticos 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Processos estocásticos Geovany A. Borges gaborges@ene.unb.br

Leia mais

7 Conclusões e desenvolvimentos futuros

7 Conclusões e desenvolvimentos futuros 7 Conclusões e desenvolvimentos futuros 7.1 Conclusões Este trabalho apresentou novas soluções para a determinação da posição de terminais de comunicações móveis com base em medidas de ToA. Nos métodos

Leia mais

4 O Filtro de Kalman

4 O Filtro de Kalman 4 O Filtro de Kalman O filtro de Kalman se caracteriza como uma ferramenta estatística eficiente de estimação, pois minimiza o erro quadrático. Sua aplicação é feita quando o modelo está descrito na forma

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

Matemática Computacional - 2 o ano LEMat e MEQ

Matemática Computacional - 2 o ano LEMat e MEQ Instituto Superior Técnico Departamento de Matemática Secção de Matemática Aplicada e Análise Numérica Matemática Computacional - o ano LEMat e MEQ Exame/Teste - 5 de Fevereiro de - Parte I (h3m). Considere

Leia mais

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.

(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R. INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas

Leia mais

Matemática Computacional - Exercícios

Matemática Computacional - Exercícios Matemática Computacional - Exercícios o semestre de 009/00 - LEMat e MEQ Resolução de sistemas lineares. Inuência dos erros de arredondmento. Consideremos o sistema linear A x = b, onde 0 6 0 A = 0 6,

Leia mais

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação

Pré-requisitos Algebra Linear. Lorí Viali. Afiliação Lorí Viali Licenciatura Plena em Matemática UFRGS Bacharelado em Matemática UFRGS Especialização em Formação de Pesquisadores PUCRS Mestrado em Engenharia de Produção (PO) UFSC Doutorado Sanduíche na USF

Leia mais

Matemática Computacional

Matemática Computacional Matemática Computacional Ed. v1.0 i Copyright 2013 UAB Você tem a liberdade de: Compartilhar copiar, distribuir e transmitir a obra. Remixar criar obras derivadas. Sob as seguintes condições: Atribuição

Leia mais

PGF Mecânica Clássica Prof. Iberê L. Caldas

PGF Mecânica Clássica Prof. Iberê L. Caldas PGF 5005 - Mecânica Clássica Prof Iberê L Caldas Quarto Estudo Dirigido o semestre de 08 Os estudos dirigidos podem ser realizados em duplas Apenas os exercícios marcados com asteriscos precisam ser entregues

Leia mais

SME Gustavo C. Buscaglia / Roberto F. Ausas

SME Gustavo C. Buscaglia / Roberto F. Ausas SME0305-2016 Gustavo C. Buscaglia / Roberto F. Ausas ICMC - Ramal 738176, gustavo.buscaglia@gmail.com ICMC - Ramal 736628, rfausas@gmail.com Sistemas lineares sobredeterminados Matrizes não quadradas Onde

Leia mais

Lista 8 de Álgebra Linear /01 Produto Interno

Lista 8 de Álgebra Linear /01 Produto Interno Lista 8 de Álgebra Linear - / Produto Interno. Sejam u = (x x e v = (y y. Mostre que temos um produto interno em R nos seguintes casos: (a u v = x y + x y. (b u v = x y x y x y + x y.. Sejam u = (x y z

Leia mais

SME Gustavo C. Buscaglia

SME Gustavo C. Buscaglia SME0602-2017 Gustavo C. Buscaglia ICMC - Ramal 738176, gustavo.buscaglia@gmail.com Sistemas lineares sobredeterminados Matrizes não quadradas Onde aparecem, no dia a dia de um engenheiro, matrizes não

Leia mais

Filtros de Média Movente

Filtros de Média Movente Processamento Digital de Sinais Filtros de Média Movente Prof. Dr. Carlos Alberto Ynoguti Características É o filtro ótimo para a tarefa de remover ruído aleatório de um sinal, e manter uma resposta a

Leia mais

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução

Leia mais

Modelos Espaço-Temporais

Modelos Espaço-Temporais p. Modelos Espaço-Temporais para Dados de Área Marco A. R. Ferreira (marco@im.ufrj.br) Universidade Federal do Rio de Janeiro http://www.dme.ufrj.br/marco Colaboração com Juan C. Vivar-Rojas p. Organização

Leia mais

CC-226 Aula 05 - Teoria da Decisão Bayesiana

CC-226 Aula 05 - Teoria da Decisão Bayesiana CC-226 Aula 05 - Teoria da Decisão Bayesiana Carlos Henrique Q. Forster - Instituto Tecnológico de Aeronáutica 2008 Classificador Bayesiano Considerando M classes C 1... C M. N observações x j. L atributos

Leia mais

Processamento de Imagem. Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres

Processamento de Imagem. Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres Processamento de Imagem Convolução Filtragem no Domínio da Frequência (Fourier) Professora Sheila Cáceres Lembrando Filtragem Correlação A correlação e a convolução sãos dois conceitos relacionados a filtragem.

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Introdução ao Processamento Estatístico de Sinais

Introdução ao Processamento Estatístico de Sinais Charles Casimiro Cavalcante charles@gtel.ufc.br Grupo de Pesquisa em Telecomunicações Sem Fio GTEL Departamento de Engenharia de Teleinformática Universidade Federal do Ceará UFC http://www.gtel.ufc.br/

Leia mais

Resolução do exame de matemática computacional

Resolução do exame de matemática computacional Resolução do exame de matemática computacional 0 de Janeiro de 00 GRUPO I f x_ : x^ x 1 g1 x_ : x^ 1 x^ g x_ : x 1 g x_ x^ 1 1 1 x Plot f x, x,, - -1 1 - -4 Graphics 1 Método de Newton Quando se procura

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade 1) Analise as alternativas abaixo e marque V para verdadeiro e F para falso. No segundo caso, explique como as tornaria verdadeiras: ( ) O método das secantes é utilizado para solucionar um problema de

Leia mais

Aula 14. Aula de hoje. Aula passada

Aula 14. Aula de hoje. Aula passada Aula 14 Aula passada Autovalores, autovetores, decomposição Convergência para estacionaridade Tempo de mistura Spectral gap Tempo de mistura de passeios aleatórios Aula de hoje Caminho amostral Teorema

Leia mais

SME Cálculo Numérico. Lista de Exercícios: Gabarito

SME Cálculo Numérico. Lista de Exercícios: Gabarito Exercícios de prova SME0300 - Cálculo Numérico Segundo semestre de 2012 Lista de Exercícios: Gabarito 1. Dentre os métodos que você estudou no curso para resolver sistemas lineares, qual é o mais adequado

Leia mais

Introdução aos Sistemas Lineares

Introdução aos Sistemas Lineares Introdução aos Sistemas Lineares Profa Cynthia de O Laga Ferreira Métodos Numéricos e Computacionais I - SME005 Frequentemente, em todas as áres científicas, precisamos resolver problemas na forma Ax =

Leia mais

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R:

5. Considere os seguintes subconjuntos do espaço vetorial F(R) das funções de R em R: MAT3457 ÁLGEBRA LINEAR I 3 a Lista de Exercícios 1 o semestre de 2018 1. Verique se V = {(x, y) : x, y R} é um espaço vetorial sobre R com as operações de adição e de multiplicação por escalar dadas por:

Leia mais

Problema 5a by

Problema 5a by Problema 5a by fernandopaim@paim.pro.br Resolva o sistema linear por escalonamento S = x y z=1 x y z= 1 2x y 3z=2 Resolução Utilizaremos quatro métodos para ilustrar a resolução do sistema linear acima.

Leia mais

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4. MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A

Leia mais

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A

Instituto Superior Técnico Departamento de Matemática Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualização: 18/Nov/2003 ÁLGEBRA LINEAR A REVISÃO DA PARTE III Parte III - (a) Ortogonalidade Conceitos: produto

Leia mais

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia

Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia Álgebra Linear Computacional Geovan Tavares, Hélio Lopes e Sinésio Pesco PUC-Rio Departamento de Matemática Laboratório Matmidia http://www.matmidia.mat.puc-rio.br 1 Álgebra Linear Computacional - Parte

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física. Física I IGM1 2014/1. Cap. 1 - Vetores. Prof. Elvis Soares

Universidade Federal do Rio de Janeiro Instituto de Física. Física I IGM1 2014/1. Cap. 1 - Vetores. Prof. Elvis Soares Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 1 - Vetores Prof. Elvis Soares Vetores são descrições matemáticas de quantidades que possuem intensidade, direção e

Leia mais

Ferramentas Matemáticas para Sistemas Lineares: Álgebra Linear

Ferramentas Matemáticas para Sistemas Lineares: Álgebra Linear Ferramentas Matemáticas para Sistemas Lineares: Álgebra Linear Samir Angelo Milani Martins 1 1 UFSJ-MG / Campus Santo Antônio, MG Brasil Mestrado em Engenharia Elétrica UFSJ/CEFET-MG S. A. M. Martins (UFSJ

Leia mais

Lorí Viali. Afiliação

Lorí Viali. Afiliação Lorí Viali Licenciatura Plena em Matemática UFRGS Bacharelado em Matemática UFRGS Especialização em Formação de Pesquisadores PUCRS Mestrado em Engenharia de Produção (PO) UFSC Doutorado Sanduíche na USF

Leia mais

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017

Álgebra Linear. Professor Alessandro Monteiro. 1º Sábado - Matrizes - 11/03/2017 º Sábado - Matrizes - //7. Plano e Programa de Ensino. Definição de Matrizes. Exemplos. Definição de Ordem de Uma Matriz. Exemplos. Representação Matriz Genérica m x n 8. Matriz Linha 9. Exemplos. Matriz

Leia mais

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0

1. Conhecendo-se somente os produtos AB e AC, calcule A = X 2 = 2X. 3. Mostre que se A e B são matrizes que comutam com a matriz M = 1 0 Lista de exercícios. AL. 1 sem. 2015 Prof. Fabiano Borges da Silva 1 Matrizes Notações: 0 para matriz nula; I para matriz identidade; 1. Conhecendo-se somente os produtos AB e AC calcule A(B + C) B t A

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística f : A B, significa que f é definida no conjunto A (domínio - domain) e assume valores em B (contradomínio range). R é o conjunto dos reais; R n é o conjunto dos vetores n-dimensionais reais; Os vetores

Leia mais

EN3604 FILTRAGEM ADAPTATIVA

EN3604 FILTRAGEM ADAPTATIVA EN3604 FILTRAGEM ADAPTATIVA Introdução Filtros adaptativos, os quais têm como meta transformar os sinais portadores de informação em versões limpas ou melhoradas, ajustam suas características de acordo

Leia mais

Análise Modal no Domínio do Tempo. SSI Stochastic Subspace Identification

Análise Modal no Domínio do Tempo. SSI Stochastic Subspace Identification Análise Modal no Domínio do Tempo SSI Stochastic Subspace Identification Stochastic Subspace Identification VAN OVERSCHEE, P., 1995, Subspace Identification: Theory, Implementation, Application, PhD thesis,

Leia mais

Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes:

Exercício 1: Encontre o ângulo emtre os vetores v e w em cada um dos seguintes: Universidade Federal do Paraná 2 semestre 2016. Algebra Linear Olivier Brahic Lista de exercícios 1 Ortogonalidade Exercícios da Seção 5.1 Exercício 1: Encontre o ângulo emtre os vetores v e w em cada

Leia mais

Álgebra Linear e Geometria Anaĺıtica

Álgebra Linear e Geometria Anaĺıtica Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares

Leia mais

Determinantes. det A = a 11. Se A = a11 a 12 a 21 a 22. é uma matriz 2 2, então. det A = a 11 a 22 a 12 a 21. Exemplo 1. det 3 4. = 1; det 3 4 = 0.

Determinantes. det A = a 11. Se A = a11 a 12 a 21 a 22. é uma matriz 2 2, então. det A = a 11 a 22 a 12 a 21. Exemplo 1. det 3 4. = 1; det 3 4 = 0. Determinantes Definição Definição Se A = [a 11 é uma matriz 1 1, então Se é uma matriz, então Exemplo 1 [ 1 3 4 A = A = a 11 [ a11 a 1 a 1 a A = a 11 a a 1 a 1 [ 1 0 = ; 0 1 [ 6 8 = 1; 3 4 = 0 Para definir

Leia mais

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente

Sabendo que f(x) é um polinômio de grau 2, utilize a formula do trapézio e calcule exatamente MÉTODOS NUMÉRICOS E COMPUTACIONAIS II EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES EXERCICIOS RESOLVIDOS - INTEGRACAO-NUMERICA - EDO. Considere a seguinte tabela de valores de uma função f x i..5.7..5 f(x

Leia mais

MÉTODOS GEOESTATÍSTICOS BASEADOS EM MODELOS, APLICADOS A DADOS COMPOSICIONAIS NA CLASSIFICAÇÃO DE SOLOS

MÉTODOS GEOESTATÍSTICOS BASEADOS EM MODELOS, APLICADOS A DADOS COMPOSICIONAIS NA CLASSIFICAÇÃO DE SOLOS MÉTODOS GEOESTATÍSTICOS BASEADOS EM MODELOS, APLICADOS A DADOS COMPOSICIONAIS NA CLASSIFICAÇÃO DE SOLOS Orientador: Prof. PhD Paulo Justiniano Ribeiro Junior. 8 de outubro de 2008 Roteiro de Apresentação

Leia mais