Filtro de Kalman. Teoria e Aplicação para Iniciantes. Prof. Dr. Marco Antonio Leonel Caetano. M&V Consultoria e Treinamento

Tamanho: px
Começar a partir da página:

Download "Filtro de Kalman. Teoria e Aplicação para Iniciantes. Prof. Dr. Marco Antonio Leonel Caetano. M&V Consultoria e Treinamento"

Transcrição

1 Filtro de Kalman Teoria e Aplicação para Iniciantes Prof. Dr. Marco Antonio Leonel Caetano M&V Consultoria e Treinamento

2 A História da Filtragem de Sinais Filtro de Wiener (contínuo) Filtro de Kolmogorov (discreto) Filtro de Kalman (linear e estendido)

3 Processos Estocásticos Sinal no tempo Estatística (variável aleatória)

4 O que caracteriza um sinal? Média Desvio Padrão ( volatilidade ) Probabilidade Sinal com baia volatilidade Sinal com alta volatilidade

5 Resolvendo Sistema Linear Observar o seguinte sistema linear: 4 5 Para resolver seguem-se duas maneiras diferentes: () Isolar da primeira equação e substituir na segunda. () Transformar o sistema em matrizes e vetores.

6 Primeira Resolução (a) Isolando na primeira equação: (b) Substituindo na segunda equação: (c) Substituindo em isolado em (a): 3 Solução: 3 3

7 Segunda Resolução 4 5 (a) Transformar o sistema em representação matricial: 4 5 A B (b) Resolve-se agora o sistema : AX = B (c) A solução deve envolver a inversa da matriz A, ou seja, A - B A AX A (d) Como A -.A é matriz identidade a solução será: X = A - B (e) No matlab basta : = inv(a)*b

8 No Matlab B tem que ser transposto! Ou B = [ 4 ; ]

9 Problema com dimensão de matrizes Resolver sistema linear com mesmo número de linhas e colunas é fácil usando matlab. Mas quando se tem MAIS equação que incógnita a inversa da matriz não é possível equações incógnitas (,)????

10 Método dos Mínimos Quadrados A solução para o problema anterior é encontrar o vetor mais próimo possível tal que o sistema AX = B seja o mais verdadeiro possível! Deve-se encontrar o vetor cujo erro do sistema seja o menor possível ao quadrado. Por isso o método se chama MÍNIMOS QUADRADOS. Eemplo: reta de regressão linear Reta que mais se aproima dos pontos amostrados Y a angulo X b=tangente(angulo) Os resíduos dessa diferença são os menores possíveis quando elevados ao quadrado.

11 A Estimativa do Método dos Mínimos Quadrados (MMQ) Seja A B T A A A T B T A A T T T. A A. A A. A B identidade Logo, para encontrar o vetor mais próimo possível da solução: T T A A A B

12 Aplicação dos MMQ à medidas Imaginar que duas variáveis foram acompanhadas por 3 dias e tiveram seus valores relacionados na tabela a seguir: medida medida 0,0 3 0,8 0,8 36 Suponha que eista a seguinte relação entre as medidas: Como estimar? medida medida

13 Solução via MMQ 0,0 0,8 0, Sistema com 3 equações e incógnita Neste caso as matrizes A e B serão: 0,0 3 A 0,8 B 0,8 36 Então, lembrando que o nesse problema é o valor de e: Qual a solução? T T A A A B

14 Solução (a) A T A 0, 0,8 0, 0,8 0,8 0,8 0, 08 (b) A T B 0, 0,8 0, 0,8 0,8 0,8 5, 34 Assim, 5,34 0,08 7

15 A Solução Numérica T T A A A B

16 Estimativa de parâmetros - Ajuste de Função Dada uma tabela de dados 3 3 : : y y y Y X Deseja-se encontrar a melhor função linear que ajuste y aos valores de : c c y 0 Observando que os dados são inseridos na função da seguinte forma: ) ( ) ( 0 i c c i y O sistema a ser resolvido é: n y n y y c c 0. A X B

17 Eercício Fazer um programa para entrar com n valores de e de y e no final o programa deve ajustar a função linear pelo método dos mínimos quadrados. Use como eemplo a tabela a seguir: X Y 4 5 Solução

18 Eercício Modificar o programa anterior para fazer o gráfico dos pontos da Tabela e dos pontos da reta ajustada y(i) = c0 + c* (i)

19 Solução pontos da tabela RETA AJUSTADA

20 Estimação Recursiva Considere o problema da estimativa de uma constante escalar não Aleatória baseada em medidas anteriores, corrompidas por ruído: z v i =,,3,..., i i onde vi é ruído branco gaussiano ( média zero e desvio padrão fio). Qual a melhor estimativa para?

21 A média é a melhor estimativa para! i z i Para uma medida adicional (+) a nova estimativa será i z i

22 Deve-se manipular os termos para deiar a estimativa sempre em função das medidas anteriores: ˆ i i z z i z i z z média i z i z

23 Somando-se e subtraindo z K z ˆ ˆ

24 Estimação recursiva de variáveis. z Ganho do Sistema informação ainda não utilizada

25 Eemplo Estimar a constante a=0 com ruído de medida v (média = 0, desvio=5) para 00 medidas de a.

26 Programando a fórmula do mínimos quadrados recursivo:

27 Resultado

28 Para n simulações

29 Comparando com as medidas

30 Por que usar a distribuição gaussina? Segundo o teorema do limite central, todas convergem para a normal para um número grande de pontos Teorema do Limite Central NORMALIZAÇÃO

31 Para uma única variável Média: Variância: f ( ) e ( )

32 Para duas variáveis Distribuição Espacial f (, y) e ( ) ( y y) ( y y ) ( ) ( y y) Média de : Média de y y Desvio Padrão de : Desvio padrão de y: Covariância de e y: Correlação de e y: y y

33 Mas a Covariância é uma matriz ( P ) y y y y P A função gaussina corrigida para duas variáveis / ) ( ) ( ) ( ) ( ), ( P e y f y y P y y onde P é o determinante da matriz de covariância É necessário uma correção na fórmula pois,

34 Problema E se as variáveis forem vetores de dados com sinais do tipo: n A covariância seria: n n n P Impraticável! Todos os sinais teriam que serem armazenados em gigantescos bancos de dados para o calculo no fim. Solução: Filtro de Kalman

35 Como o filtro de Kalman estima variáveis? f,,, n n n tempo sinal

36 Algoritmo Esquemático Trabalha com dados Equação de Propagação Equação de Atualização Equação de Covariância Satélite dados Bóia Equação de Atualização ˆ Equação de Atualização ˆ Equação de Propagação + ˆ Equação de Propagação ˆ + Equação de Propagação ˆ 3 tempo

37 Algumas Definições Variável de Estado () - Representa a variável de estudo do modelo matemático para a previsão dos dados futuros. E: temperatura, salinidade. - O filtro linear usa modelo linear. - O futuro é o presente com alguma correção e corrompido por ruído w. A C Variável de Medida (z) - Variável que simula a aquisição dos dados de um sensor. - Para o filtro linear o modelo de medida é linear com ruído v do sensor. z H Propagação ( do estado ou da covariância ) - É a simulação do que se espera de dados futuros baseados em dados. - Utiliza um modelo para a previsão. Atualização ( do estado ou da covariância ) - É a correção da previsão usando os novos dados coletados pelo sensor.

38 Assumir. O estado é corrompido por perturbação do tipo ruído branco gaussinano com média zero e covariância Q (matriz para todos os valores propagados e atualizados).. A medida do sensor é supostamente corrompida por ruído branco gaussiano com média zero e covariância R n Q nz z z R

39 Propagações Propagação do Estado (à priori) Qual a melhor estimativa? A média! As barras representam a média. A C A ˆ ˆ é o rúido branco do estado ˆ Propagação da covariância do estado (à priori) T T T T CQC A AP P C A C A P P

40 Atualizações Atualização do estado - A melhor estimativa de quando se tem medida z é aquela que minimiza o termo do epoente da distribuição gaussiana. / ) ( ) ( ) ( ) ( ), ( P e y f y y P y y Isso é desejado! Colocando a medida na distribuição gaussiana: Deseja-se minimizar Ou,

41 Isso leva à seguinte relação Isolando o estado para sua estimativa Usando a mesma idéia do mínimos quadrados recursivos para novas medidas chega-se a seguinte equação de atualização ˆ posteriori ˆ priori P priori R H T z Hˆ priori

42 Atualização da covariância A melhor covariância P quando se tem medida z é aquela que zera o erro entre medida e variável: Cuja medida estatística está na matriz de covariância (a barra significa média): ˆ posteriori A melhor estimativa é conseguida substituindo a relação de atualização do estado na equação acima. A relação linear que surge é: P posteriori P priori P HP priori priori H T H A matriz R é a inversa da matriz de covariância do erro do sensor de medida. T R

43 O Filtro de Kalman Priori = ( - ) Posteriori = ( + ) Equação de Propagação: A. propagação do estado T P A. P. A C. Q. C T propagação da covariância do estado Equação de Atualização: T T K P. H. H. P. H R P P K. H. P K. z H. ganho do filtro atualização da matriz de covariância do estado atualização do estado

44 Quando o Filtro Falha. Modelamento errado do estado - Se a matriz de perturbação Q do estado for mal dimensionada em relação ao problema real o que acontece? Modelo Medida R H HP H P K T T T T CQC A AP P K P Q ˆ ˆ H y K ˆ ˆ ˆ H y AK A ˆ ˆ ˆ

45 y Resultado Sinal estimado Errado! Sinal real

46 . Se o ruído de medida é muito menor que a perturbação no estado, ou seja, se R<<<Q. Significa que o sensor é totalmente confiável, pois: R K O filtro não filtra, acompanha as medidas de perto, pois são confiávies!

47 3. Se o ruído de estado é muito menor que o ruído de medida, ou seja, se Q<<<R. Significa que o sensor não é confiável, pois: Q K O filtro só usa o modelo e filtra tudo. Abandona as Medidas, pois K0!

48 4. Se a matriz de covariância da perturbação do estado inicial P(0) for muito baia. Ela significa a memória do filtro. Se P(0) é baia, o filtro não tem memória e demora a energar acontecimentos futuros. P(0) muito baia demora para aprender P(0) ideal aprende rápido

49 Característica ideal da covariância do estado P P(0) alto tempo

50 Covariânica do erro de localização horizontal (Taemasa, Shozo, 007, pag 3849) ERRO NO MODELO

51 O problema da estimativa da temperatura SIMULAÇÃO Dados de temperaturas na localidade dos sensores (satélites, PCD,etc) Dados com ruído. O que se desejava? - É possível estimar os dados em tempo real? - É possível fazer uma previsão confiável com boa antecedência? Solução: Filtro de Kalman

52 Sensores radiosondas (Taemasa, 00) Modelos observado

53 Modelo Utilizado A C. Fez se uma hipótese que A =.. Fez-se a suposição que C =. 3. O valor de H = pois só tem um sensor de temperatura. 4. A perturbação aleatória no estado (temperatura) foi Q= 0,5 o C. 5. O ruído no sensor foi suposto de 0 o C, ou variância R= A matriz de covariância inicial da perturbação do estado P(0)= Finalmente, foi dito ao filtro que a temperatura inicial foi (0)=0 o C, para obrigar a ter uma alta imprecisão e fazer um aprendizado rápido. 8. O tempo final de simulação para aprendizado e filtragem foi de t = 00.

54 Filtro Equação de Propagação: ˆ ˆ P 0,5 P (0)=0 P(0)=40 Equação de Atualização: K P P K ˆ ˆ P 00 K P. z ˆ

55 Simulando os dados do sensor onde w é ruído branco com média zero e desvio padrão

56 Inicializando o filtro

57 A caia do Filtro de Kalman

58 00 pontos medida estimado

59 A Covariância do estado (temperatura) P() O filtro de Kalman aprendeu com 0 dados!!

60 Cenário : Sensor com mais ruído Sinal mais filtrado erro =,36 o C R=erro = 500 Valoriza o modelo pois medidas menos Confiáveis!

61 Cenário 3: Covariância com maior incerteza P(0) = 400 R = 00 Ajusta mais rápido às medidas. Elas tem mais valor do que o modelo!

62 Cenário 4: Ruído de sensor super-baio P(0) = 40 R = Esquece o modelo pois a melhor estimativa é a medida do sensor

63 BIBLIOGRAFIA

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 04 Prof. Dr. Marco Antonio Leonel Caetano Guia de Estudo para Aula 04 Aplicação de Produto Escalar - Interpretação do produto escalar

Leia mais

RESTAURAÇÃO E RECONSTRUÇÃO DE IMAGENS. Nielsen Castelo Damasceno

RESTAURAÇÃO E RECONSTRUÇÃO DE IMAGENS. Nielsen Castelo Damasceno RESTAURAÇÃO E RECONSTRUÇÃO DE IMAGENS Nielsen Castelo Damasceno Restauração de imagem Procura recuperar uma imagem corrompida com base em um conhecimento a priori do fenômeno de degradação. Restauração

Leia mais

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento

Contabilometria. Aula 9 Regressão Linear Inferências e Grau de Ajustamento Contabilometria Aula 9 Regressão Linear Inferências e Grau de Ajustamento Interpretação do Intercepto e da Inclinação b 0 é o valor estimado da média de Y quando o valor de X é zero b 1 é a mudança estimada

Leia mais

COMPENSAÇÃO E AJUSTAMENTO

COMPENSAÇÃO E AJUSTAMENTO COMPENSAÇÃO E AJUSTAMENTO COMPENSAÇÃO A compensação de um conjunto de medidas é um procedimento para retirar o erro sistemático do processo metrológico. O erro sistemático é determinado pela diferença

Leia mais

Exercícios de programação

Exercícios de programação Exercícios de programação Estes exercícios serão propostos durante as aulas sobre o Mathematica. Caso você use outra linguagem para os exercícios e problemas do curso de estatística, resolva estes problemas,

Leia mais

Análise de séries temporais. Prof. Thaís C O Fonseca DME - UFRJ

Análise de séries temporais. Prof. Thaís C O Fonseca DME - UFRJ Análise de séries temporais Prof. Thaís C O Fonseca DME - UFRJ Conteúdo do curso Parte 1: Problemas e objetivos, conceitos básicos, processos estocásticos, estacionariedade, autocorrelação e correlação

Leia mais

APROXIMAÇÃO DE FUNÇÕES MÉTODO DOS MÍNIMOS QUADRADOS

APROXIMAÇÃO DE FUNÇÕES MÉTODO DOS MÍNIMOS QUADRADOS MÉTODO DOS MÍNIMOS QUADRADOS INTRODUÇÃO Frequentemente é possível estabelecer uma relação linear entre duas grandezas medidas experimentalmente. O método dos mínimos quadrados é uma maneira de se obter

Leia mais

3 Aprendizado por reforço

3 Aprendizado por reforço 3 Aprendizado por reforço Aprendizado por reforço é um ramo estudado em estatística, psicologia, neurociência e ciência da computação. Atraiu o interesse de pesquisadores ligados a aprendizado de máquina

Leia mais

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares

Matemática I. Capítulo 3 Matrizes e sistemas de equações lineares Matemática I Capítulo 3 Matrizes e sistemas de equações lineares Objectivos Matrizes especiais e propriedades do produto de matrizes Matriz em escada de linhas Resolução de sistemas de equações lineares

Leia mais

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 7. SISTEMAS LINEARES 7.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 7. SISTEMAS LINEARES 7.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD )XQGDPHQWRVGHUREDELOLGDGHHHVWDWtVWLFD,QWURGXomR A história da estatística pode ser dividida em três fases. De acordo com PEANHA (00), a estatística inicialmente não mantinha nenhuma relação com a probabilidade,

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores

Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores António M Gonçalves Pinheiro Departamento de Física Covilhã - Portugal pinheiro@ubipt d[n] v[n] x[n] Filtro Estimador d[n] d[n] - Sinal v[n] - Ruído x[n] - Sinal corrompido com ruído ˆd[n] - Sinal Estimado

Leia mais

2 Modelos de sintetização de séries temporais de atenuação por chuva

2 Modelos de sintetização de séries temporais de atenuação por chuva 2 Modelos de sintetização de séries temporais de atenuação por chuva Alguns modelos estocásticos de sintetização de séries temporais de atenuação por chuva são baseados no modelo proposto por Maseng &

Leia mais

AJUSTE DE CURVAS PELO MÉTODO DOS QUADRADOS MÍNIMOS

AJUSTE DE CURVAS PELO MÉTODO DOS QUADRADOS MÍNIMOS AJUSTE DE CURVAS PELO MÉTODO DOS QUADRADOS MÍNIMOS Bruna Larissa Cecco 1 Angelo Fernando Fiori 2 Grazielli Vassoler 3 Resumo: Em muitos ramos da ciência, dados experimentais são utilizados para deduzir

Leia mais

Teoria da Informação

Teoria da Informação Charles Casimiro Cavalcante charles@gtel.ufc.br Grupo de Pesquisa em Telecomunicações Sem Fio GTEL Programa de Pós-Graduação em Engenharia de Teleinformática Universidade Federal do Ceará UFC http://www.gtel.ufc.br/

Leia mais

Módulo 4 Ajuste de Curvas

Módulo 4 Ajuste de Curvas Módulo 4 Ajuste de Curvas 4.1 Intr odução Em matemática e estatística aplicada existem muitas situações onde conhecemos uma tabela de pontos (x; y), com y obtido experimentalmente e deseja se obter uma

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica REDES NEURAIS ARTIFICIAIS AULA 03 Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 INTRODUÇÃO Aprendizagem é um processo pelo qual os parâmetros livres de uma rede neural são adaptados através de um processo

Leia mais

A Metodologia de Box & Jenkins

A Metodologia de Box & Jenkins A Metodologia de Box & Jenins Aula 03 Bueno, 0, Capítulo 3 Enders, 009, Capítulo Morettin e Toloi, 006, Capítulos 6 a 8 A Metodologia Box & Jenins Uma abordagem bastante utilizada para a construção de

Leia mais

Prof. MSc. David Roza José 1/26

Prof. MSc. David Roza José 1/26 1/26 Mínimos Quadrados Geral e Regressão Não Linear Objetivos: Implementar a regressão polinomial; Implementar regressão múltipla linear; Entender a formulação do modelo linear geral de mínimos quadrados;

Leia mais

CAPÍTULO 3 SISTEMA DE EQUAÇÕES LINEARES

CAPÍTULO 3 SISTEMA DE EQUAÇÕES LINEARES CAPÍULO 3 SISEMA DE EQUAÇÕES LINEARES Como vimos é vantajoso usar a álgera matricial para a solução de sistemas de equações. Antes de uscar a solução de tais sistemas pelo caminho matricial é importante

Leia mais

Capítulo 06. Raízes: Métodos Abertos

Capítulo 06. Raízes: Métodos Abertos Capítulo 06 Raízes: Métodos Abertos Objetivos do capítulo Reconhecer a diferença entre os métodos intervalares e os métodos abertos para localização de raízes. Compreender o método de iteração de ponto

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica ENG04037 Sistemas de Controle Digitais 1 Introdução Identificação via Mínimos Quadrados Prof. Walter Fetter

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais

SISTEMAS LINEARES. Solução de um sistema linear: Dizemos que a sequência ou ênupla ordenada de números reais SISTEMAS LINEARES Definições gerais Equação linear: Chamamos de equação linear, nas incógnitas x 1, x 2,..., x n, toda equação do tipo a 11 x 1 + a 12 x 2 + a 13 x 3 +... + a 1n x n = b. Os números a 11,

Leia mais

Resumo. Filtragem Adaptativa. Filtros adaptativos. Tarefas desempenhadas pelos filtros

Resumo. Filtragem Adaptativa. Filtros adaptativos. Tarefas desempenhadas pelos filtros Resumo Filtragem Adaptativa Luís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Sistemas de filtragem adaptativa Conceitos de filtragem adaptativa Filtro de Wiener Algoritmo steepest descent

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS A distribuição dos tempos de permanência dos estudantes nos cursos de graduação de certa universidade é uma distribuição normal com média igual a 6 anos e desvio padrão igual

Leia mais

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,

Leia mais

a) 4x 10 = 0, onde x é a incógnita e 4 é 10 são os coeficientes. b) x + 3 = 4x + 8

a) 4x 10 = 0, onde x é a incógnita e 4 é 10 são os coeficientes. b) x + 3 = 4x + 8 Equação do 1º Grau Introdução Equação é uma sentença matemática aberta epressa por uma igualdade envolvendo epressões matemáticas. Uma equação é composta por incógnitas e coeficientes (esses são conhecidos).

Leia mais

Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação

Capítulo 3. O Modelo de Regressão Linear Simples: Especificação e Estimação Capítulo 3 O Modelo de Regressão Linear Simples: Especificação e Estimação Introdução Teoria Econômica Microeconomia: Estudamos modelos de oferta e demanda (quantidades demandadas e oferecidas dependem

Leia mais

Inferência Estatística:

Inferência Estatística: Inferência Estatística: Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos Estimação É um processo que

Leia mais

Minicurso sobre Deconvolução em Imagens

Minicurso sobre Deconvolução em Imagens Primeiro Encontro VII Encontro de Ciência e Tecnologia FGA/UnB Campus Gama - FGA Universidade de Brasília 18 de Novembro de 2015 Parte I Introdução Motivação Porque diabos estamos aqui para estudar mais

Leia mais

Introdução ao modelo de Regressão Linear

Introdução ao modelo de Regressão Linear Introdução ao modelo de Regressão Linear Prof. Gilberto Rodrigues Liska 8 de Novembro de 2017 Material de Apoio e-mail: gilbertoliska@unipampa.edu.br Local: Sala dos professores (junto ao administrativo)

Leia mais

Restauração de Imagem e redução de ruído

Restauração de Imagem e redução de ruído Restauração de magem e redução de ruído orge Salvador Marques, 7 Aplicações imagem médica recuperação de imagens degradadas super-resolução compressive sensing orge Salvador Marques, 7 Degradação de imagem,

Leia mais

étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos AJUSTE DE FUNÇÕES Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA

Leia mais

UFPB PRG X ENCONTRO DE INICIAÇÃO À DOCÊNCIA

UFPB PRG X ENCONTRO DE INICIAÇÃO À DOCÊNCIA 4CCENDMMT0 MÉTODO DOS MÍNIMOS QUADRADOS Vivyane Coelho Caires (), Hélio Pires de Almeida (3) Centro de Ciências Exatas e da Natureza/Departamento de Matemática/MONITORIA Resumo: Geralmente aplicações de

Leia mais

p.1/48 Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, Belo Horizonte, MG, Brasil

p.1/48 Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, Belo Horizonte, MG, Brasil p1/48 Capítulo 4 - Métodos ão Paramétricos Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av Antônio Carlos 27, elo Horizonte, MG, rasil p2/48 Introdução Os métodos

Leia mais

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012 1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à

Leia mais

Predição do preço médio anual do frango por intermédio de regressão linear

Predição do preço médio anual do frango por intermédio de regressão linear Predição do preço médio anual do frango por intermédio de regressão linear João Flávio A. Silva 1 Tatiane Gomes Araújo 2 Janser Moura Pereira 3 1 Introdução Visando atender de maneira simultânea e harmônica

Leia mais

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A

Pode-se mostrar que da matriz A, pode-se tomar pelo menos uma submatriz quadrada de ordem dois cujo determinante é diferente de zero. Então P(A) = P(A MATEMÁTICA PARA ADMINISTRADORES AULA 03: ÁLGEBRA LINEAR E SISTEMAS DE EQUAÇÕES LINEARES TÓPICO 02: SISTEMA DE EQUAÇÕES LINEARES Considere o sistema linear de m equações e n incógnitas: O sistema S pode

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Observamos no gráfico acima que não passa uma reta por todos os pontos. Com base nisso, podemos fazer as seguintes perguntas:

Observamos no gráfico acima que não passa uma reta por todos os pontos. Com base nisso, podemos fazer as seguintes perguntas: Título : B1 AJUSTE DE CURVAS Conteúdo : Em matemática e estatística aplicada existem muitas situações em que conhecemos uma tabela de pontos (x; y). Nessa tabela os valores de y são obtidos experimentalmente

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

3 Modelos Comparativos: Teoria e Metodologia

3 Modelos Comparativos: Teoria e Metodologia 3 Modelos Comparativos: Teoria e Metodologia Para avaliar o desempenho do modelo STAR-Tree, foram estimados os modelos Naive, ARMAX e Redes Neurais. O ajuste dos modelos ARMAX e das redes neurais foi feito

Leia mais

6 Estudo de Casos: Valor da Opção de Investimento em Informação por Aproximação com Números Fuzzy 6.1. Introdução

6 Estudo de Casos: Valor da Opção de Investimento em Informação por Aproximação com Números Fuzzy 6.1. Introdução 6 Estudo de Casos: Valor da Opção de Investimento em Informação por Aproximação com Números Fuzzy 6.1. Introdução Este capítulo apresenta o segundo estudo de casos, no qual também são empregados números

Leia mais

Tratamento estatístico de observações

Tratamento estatístico de observações Tratamento estatístico de observações Prof. Dr. Carlos Aurélio Nadal OBSERVAÇÃO: é o valor obtido durante um processo de medição. DADO: é o resultado do tratamento de uma observação (por aplicação de uma

Leia mais

Matrizes e Sistemas Lineares

Matrizes e Sistemas Lineares MATEMÁTICA APLICADA Matrizes e Sistemas Lineares MATRIZES E SISTEMAS LINEARES. Matrizes Uma matriz de ordem mxn é uma tabela, com informações dispostas em m linhas e n colunas. Nosso interesse é em matrizes

Leia mais

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Faculdade de Ciências Sociais Aplicadas e Comunicação FCSAC Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) REVISÃO DA 1ª PARTE

Leia mais

Instituto Federal Goiano

Instituto Federal Goiano e simples e Instituto Federal Goiano e Conteúdo simples 1 2 3 4 5 simples 6 e simples Associação entre duas variáveis resposta Exemplos: altura de planta e altura da espiga, teor de fósforo no solo e na

Leia mais

Modelagem do comportamento da variação do índice IBOVESPA através da metodologia de séries temporais

Modelagem do comportamento da variação do índice IBOVESPA através da metodologia de séries temporais Modelagem do comportamento da variação do índice IBOVESPA através da metodologia de séries temporais João Eduardo da Silva Pereira (UFSM) jesp@smail.ufsm.br Tânia Maria Frighetto (UFSM) jesp@smail.ufsm.br

Leia mais

Forecasting e ti O i Otim Oti ização de ã d Carteiras com Matlab AULA 3

Forecasting e ti O i Otim Oti ização de ã d Carteiras com Matlab AULA 3 Forecasting e Otimização i de Carteiras com Matlab AULA 3 Guia de Estudo para Aula 03 Modelos Discretos Exercícios - Formulação de um modelo - Programação de modelos com for - A simulação de um modelo

Leia mais

Método dos Mínimos Quadrados Lineares

Método dos Mínimos Quadrados Lineares Método dos Mínimos Quadrados Lineares Orientando: Alex Rogger Cardoso Ventura alexrogger@hotmailcom Orientador: Max Leandro Nobre Gonçalves maxlng@ufgbr Co-orientador: Ademir Alves Aguiar ademiraguia@gmailcom

Leia mais

Estado estacionário condução + convecção

Estado estacionário condução + convecção Universidade de São Paulo Escola de Engenharia de orena Departamento de Engenharia de Materiais Estado estacionário condução + convecção Prof. uiz T. F. Eleno Escola de Engenharia de orena da Universidade

Leia mais

Exercícios Selecionados de Econometria para Concursos Públicos

Exercícios Selecionados de Econometria para Concursos Públicos 1 Exercícios Selecionados de Econometria para Concursos Públicos 1. Regressão Linear Simples... 2 2. Séries Temporais... 17 GABARITO... 20 2 1. Regressão Linear Simples 01 - (ESAF/Auditor Fiscal da Previdência

Leia mais

Modelos de Regressão Linear Simples - Análise de Resíduos

Modelos de Regressão Linear Simples - Análise de Resíduos Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 1 de Setembro de 2014 3 O modelo de regressão linear é dado por Y i = β 0 + β 1 x i + ɛ i onde ɛ i iid N(0,σ 2 ). O erro

Leia mais

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras.

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras. EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR QUESTÃO 1: Indique as afirmativas verdadeiras. ( ) O número Pi não pode ser representado de forma exata em sistemas numéricos de

Leia mais

aula AJUSTE POR MÍNIMOS QUADRADOS

aula AJUSTE POR MÍNIMOS QUADRADOS AJUSTE POR MÍNIMOS QUADRADOS META Conduzir o aluno a aplicar o método de ajuste por mínimos quadrados, efetuando uma regressão linear e oferecer ao aluno uma oportunidade de praticar a aplicação do método

Leia mais

Ajuste de mínimos quadrados

Ajuste de mínimos quadrados Capítulo 5 Ajuste de mínimos quadrados 5 Ajuste de mínimos quadrados polinomial No capítulo anterior estudamos como encontrar um polinômio de grau m que interpola um conjunto de n pontos {{x i, f i }}

Leia mais

Um sistema linear é um conjunto de n equações lineares do tipo:

Um sistema linear é um conjunto de n equações lineares do tipo: Um sistema linear é um conjunto de n equações lineares do tipo: Este sistema pode ser representado através de uma representação matricial da forma: A.x = b onde: A matriz de coeficientes de ordem x vetor

Leia mais

4) Resolva os sistemas seguintes por substituição, eliminação gaussiana e por eliminação de Gauss-Jordan: a) b)

4) Resolva os sistemas seguintes por substituição, eliminação gaussiana e por eliminação de Gauss-Jordan: a) b) Matemática Aplicada à Economia I Lista 2 Álgebra Linear 1) A economia na ilha Baco produz somente uvas e vinho. A produção de 1 quilo de uvas requer ½ quilo de uvas, 1 trabalhador e nenhum vinho. A produção

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução

Leia mais

Exercícios. Finanças Benjamin M. Tabak

Exercícios. Finanças Benjamin M. Tabak Exercícios Finanças Benjamin M. Tabak ESAF BACEN - 2002 Uma carteira de ações é formada pelos seguintes ativos: Ações Retorno esperado Desvio Padrão Beta A 18% 16% 1,10 B 22% 15% 0,90 Também se sabe que

Leia mais

REGRESSÃO LINEAR SIMPLES E MÚLTIPLA

REGRESSÃO LINEAR SIMPLES E MÚLTIPLA REGRESSÃO LINEAR SIMPLES E MÚLTIPLA Curso: Agronomia Matéria: Metodologia e Estatística Experimental Docente: José Cláudio Faria Discente: Michelle Alcântara e João Nascimento UNIVERSIDADE ESTADUAL DE

Leia mais

REGRESSÃO E CORRELAÇÃO

REGRESSÃO E CORRELAÇÃO Vendas (em R$) Disciplina de Estatística 01/ Professora Ms. Valéria Espíndola Lessa REGRESSÃO E CORRELAÇÃO 1. INTRODUÇÃO A regressão e a correlação são duas técnicas estreitamente relacionadas que envolvem

Leia mais

Álgebra Linear e Geometria Anaĺıtica

Álgebra Linear e Geometria Anaĺıtica Álgebra Linear e Geometria Anaĺıtica 2016/17 MIEI+MIEB+MIEMN Slides da 4 a Semana de aulas Cláudio Fernandes (FCT/UNL) Departamento de Matemática 1 / 27 Programa 1 Matrizes 2 Sistemas de Equações Lineares

Leia mais

Intervalos Estatísticos para uma única Amostra - parte I

Intervalos Estatísticos para uma única Amostra - parte I Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para

Leia mais

Inferência Bayesiana - Aula 1 -

Inferência Bayesiana - Aula 1 - Inferência Bayesiana - Aula 1 - Márcia D Elia Branco Universidade de São Paulo Instituto de Matemática e Estatística www.ime.usp.br/ mbranco - sala 295-A - Paradigmas Bayesiano Introdução Fazer inferência

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 06. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 06 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 06 Aplicação de AutoValores - Usando autovalor para encontrar pontos

Leia mais

AULA 13 Análise de Regressão Múltipla: MQO Assimptótico

AULA 13 Análise de Regressão Múltipla: MQO Assimptótico 1 AULA 13 Análise de Regressão Múltipla: MQO Assimptótico Ernesto F. L. Amaral 15 de abril de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte: Wooldridge, Jeffrey M. Introdução

Leia mais

3. Calcule o determinante das matrizes abaixo.

3. Calcule o determinante das matrizes abaixo. Gabarito - Lista de Exercícios # Professor Pedro Hemsley Calcule o determinante das matrizes x abaixo deta = det = ( ) = detb = det = = 9 detc = det = 9 8 ( ) = 8 detd = det = = 0 0 dete = det = 0 ( 9)

Leia mais

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida

Métodos Numéricos Interpolação / Aproximação. Renato S. Silva, Regina C. Almeida Métodos Numéricos Interpolação / Aproximação Renato S. Silva, Regina C. Almeida Interpolação / Aproximação situação: uma fábrica despeja dejetos no leito de um rio; objetivo: determinar a quantidade de

Leia mais

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA étodos uméricos SISTEMAS DE EQUAÇÕES LINEARES (Continuação) Prof. Erivelton Geraldo Nepomuceno PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UNIVERSIDADE DE JOÃO DEL-REI PRÓ-REITORIA DE PESQUISA CENTRO

Leia mais

Gestão de Riscos e Investimentos

Gestão de Riscos e Investimentos Existem duas abordagens gerais para calcular o VAR 1. Avaliação Local (local valuation) Métodos que vimos até agora São procedimentos em geral analíticos Baseiam-se no valor inicial do instrumento ou carteira

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano

Prof. Dr. Marco Antonio Leonel Caetano Forecasting e Otimização de Carteiras com Matlab Prof. Dr. Marco Antonio Matlab O que é? Como funciona? Fundamentos - Ambiente de programação avançada - Ambiente de execução de programas - Permite utilização

Leia mais

Modelagem de um sistema por cadeias de Markov

Modelagem de um sistema por cadeias de Markov Modelagem de um sistema por cadeias de Markov Sistemas sem memória : somente o estado imediatamente anterior influencia o estado futuro. rocesso estacionário: probabilidades de transição de um estado para

Leia mais

Análise da Regressão. Prof. Dr. Alberto Franke (48)

Análise da Regressão. Prof. Dr. Alberto Franke (48) Análise da Regressão Prof. Dr. Alberto Franke (48) 91471041 O que é Análise da Regressão? Análise da regressão é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativas

Leia mais

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica

UNIVERSIDADE DO ESTADO DE MATO GROSSO - UNEMAT. Faculdade de Ciências Exatas e Tecnológicas FACET / Sinop Curso de Bacharelado em Engenharia Elétrica REDES DE FUNÇÃO DE BASE RADIAL - RBF Prof. Dr. André A. P. Biscaro 1º Semestre de 2017 Funções de Base Global Funções de Base Global são usadas pelas redes BP. Estas funções são definidas como funções

Leia mais

CIÊNCIA DA COMPUTAÇÃO I Excel. Núm1; núm2;... são de 1 a 255 argumentos numéricos cuja média você deseja obter.

CIÊNCIA DA COMPUTAÇÃO I Excel. Núm1; núm2;... são de 1 a 255 argumentos numéricos cuja média você deseja obter. MÉDIA Mostrar tudo Retorna a média aritmética dos argumentos. Sintaxe MÉDIA(núm;núm;...) Núm; núm;... são de a 55 argumentos numéricos cuja média você deseja obter. Comentários Os argumentos podem ser

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Econometria em Finanças e Atuária

Econometria em Finanças e Atuária Ralph S. Silva http://www.im.ufrj.br/ralph/especializacao.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Maio-Junho/2013 Modelos condicionalmente

Leia mais

INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO

INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO INTRODUÇÃO AO PROCESSAMENTO DIGITAL DE IMAGENS SENSORIAMENTO REMOTO PROCESSAMENTO DE IMAGENS Introdução Conceitos básicos Pré-processamento Realce Classificação PROCESSAMENTO DE IMAGENS Extração de Informações

Leia mais

Filho, não é um bicho: chama-se Estatística!

Filho, não é um bicho: chama-se Estatística! Paulo Jorge Silveira Ferreira Filho, não é um bicho: chama-se Estatística! Estatística aplicada uma abordagem prática FICHA TÉCNICA EDIÇÃO: Paulo Ferreira TÍTULO: Filho, não é um bicho: chama-se Estatística!

Leia mais

Sumário. Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1

Sumário. Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1 Sumário Capítulo 1 - Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 - Problemas sobre Correlacionamento... 7 2.1. Problemas Envolvendo Correlação entre Elementos...7 2.2. Considerações Finais sobre

Leia mais

Roteiros e Exercícios - Álgebra Linear v1.0

Roteiros e Exercícios - Álgebra Linear v1.0 Roteiros e Exercícios - Álgebra Linear v1.0 Robinson Alves Lemos 14 de janeiro de 2017 Introdução Este material é um roteiro/apoio para o curso de álgebra linear da engenharia civil na UNEMAT de Tangará

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear UNIFEI - Universidade Federal de Itajubá campus Itabira Geometria Analítica e Álgebra Linear Parte 1 Matrizes 1 Introdução A teoria das equações lineares desempenha papel importante e motivador da álgebra

Leia mais

Revisões de Matemática e Estatística

Revisões de Matemática e Estatística Revisões de Matemática e Estatística Joaquim J.S. Ramalho Contents 1 Operadores matemáticos 2 1.1 Somatório........................................ 2 1.2 Duplo somatório....................................

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32

PROGRAMA ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 ÁLGEBRA LINEAR, MEEC (AL-10) Aula teórica 32 PROGRAMA 1. Sistemas de equações lineares e matrizes 1.1 Sistemas 1.2 Matrizes 1.3 Determinantes 2. Espaços vectoriais (ou espaços lineares) 2.1 Espaços e subespaços

Leia mais

6 Modelo Gamma-Cetuc (GC)

6 Modelo Gamma-Cetuc (GC) 6 Modelo Gamma-Cetuc (GC) Um modelo de sintetização de séries temporais de atenuação por chuva envolve a geração de dados aleatórios que satisfaçam especificações de estatísticas de primeira e de segunda

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 07 Matrizes, Determinantes e Solução de Sistemas Lineares. Conteúdo 7. Matrizes, Determinantes e Solução de Sistemas Lineares...2 7.1. Matrizes...2

Leia mais

3 INTERVALOS DE CONFIANÇA

3 INTERVALOS DE CONFIANÇA 3 INTEVALOS DE CONFIANÇA 3.1 Introdução A estimativa de intervalos de confiança é utilizada para se obter medidas de incerteza dos dados analisados. A análise da incerteza de uma previsão, por exemplo,

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Introdução a Regressão Linear

Introdução a Regressão Linear Introdução a Regressão Linear 1 Duas pedras fundamentais em econometria: 1) Modelo de Regressão Linear 2) OLS método de estimação: Mínimos Quadrados Ordinários técnica algébrica / estatística Modelo de

Leia mais

DESENVOLVIMENTO Segundo Sadosky (1965), dado um conjunto de m equações lineares a seguir: a a x b 11 1n. x b mn n m

DESENVOLVIMENTO Segundo Sadosky (1965), dado um conjunto de m equações lineares a seguir: a a x b 11 1n. x b mn n m MSc Alexandre Estácio Féo Associação Educacional Dom Bosco - Faculdade de Engenharia de Resende Caixa Postal: 81.698/81711 - CEP: 7511-971 - Resende - RJ Brasil Professor e Doutorando de Engenharia aefeo@unifei.edu.br

Leia mais

TRANSFORMAÇÃO POR ANÁLISE DE ERRO. Sérgio Alberto Pires da Silva

TRANSFORMAÇÃO POR ANÁLISE DE ERRO. Sérgio Alberto Pires da Silva TRANSFORMAÇÃO POR ANÁLISE DE ERRO Sérgio Alberto Pires da Silva REGRESSÃO SIMPLES 2 VARIÁVEIS Cálculo de parâmetro da equação por Mínimos Quadrados é aplicável somente para relações Lineares; No mercado

Leia mais

Figura : Monitoria. Monitoria Cálculo Numérico

Figura : Monitoria. Monitoria Cálculo Numérico Monitoria Cálculo Numérico 207-02 NOME Email Dia / Horário Local Ana Sofia Nunez de Abreu nunez.asofia@gmail.com Sex. 0-2h D- Luiz Eduardo Xavier luizeduardosxavier@gmail.com Ter, 5-7h Lab Rafael Mendes

Leia mais

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total. INSTRUÇÕES Para a realização desta prova, você recebeu este Caderno de Questões. 1. Caderno de Questões Verifique se este Caderno de Questões contém a prova de Conhecimentos Específicos referente ao cargo

Leia mais

Restauração de Imagens

Restauração de Imagens Restauração de Imagens Prof. Luiz Otavio Murta Jr. Informática Biomédica Depto. de Computação e Matemática (FFCLRP/USP) 1 2 Objetivos: - Melhorar a imagem em algum aspecto. - Recuperar uma imagem que foi

Leia mais