CC-226 Aula 05 - Teoria da Decisão Bayesiana

Tamanho: px
Começar a partir da página:

Download "CC-226 Aula 05 - Teoria da Decisão Bayesiana"

Transcrição

1 CC-226 Aula 05 - Teoria da Decisão Bayesiana Carlos Henrique Q. Forster - Instituto Tecnológico de Aeronáutica 2008 Classificador Bayesiano Considerando M classes C 1... C M. N observações x j. L atributos x j = (x 1j,..., x kj,..., x Lj ). Considere um padrão representado pelo vetor de características x. M probabilidades condicionais P (C i x), i = 1... M (probabilidades posteriores). Escolhemos para um dado x a classe C i mais provável. O problema agora é estimar as funções de densidade de probabilidades (dado um conjunto de observações). Caso para 2 classes Supor P (C 1 ) e P (C 2 ) as probabilidades a priori conhecidas de duas classes. É fácil de estimar a partir de observações: Se C 1 C 2 = N, C 1 = N 1 e C 2 = N 2, estima-se P (C 1 ) = N 1 N P (C 2 ) = N 2 N Supor conhecida a pdf p(x C i ), i = 1, 2 Esta é a função de verossimilhança de C i com respeito a x. Aplicando a regra de Bayes: P (C i x) = p(x C i)p (C i ) p(x) = p(x C i )P (C i ) p(x C 1 )P (C 1 ) + p(x C 2 )P (C 2 ) Regra de classificação de Bayes: Se P (C 1 x) > P (C 2 x), x é classificado como C 1. Se P (C 1 x) < P (C 2 x), x é classificado como C 2. No caso de igualdade, o resultado é arbitrado. É equivalente à comparação de p(x C 1 )P (C 1 ) < / > p(x C 2 )P (C 2 ). Ou então, se P (C 1 ) = P (C 2 ), p(x C 1 ) < / > p(x C 2 ) (razão de verossimilhanças). 1

2 Visualizando a classificação em 1D 2

3 No caso de uma única feição x: x 0 é um limiar particionando o espaço de características em duas regiões R 1 e R 2. A regra de decisão de Bayes decide C 1 para x 1 R 1 e C 2 para x 2 R 2. Há probabilidade de decidir incorretamente (área hachurada). P e = p(x C 2 )dx + R 1 p(x C 1 )dx R 2 Teorema O classificador bayesiano é ótimo com respeito a minimizar a probabilidade de erro de classificação. P e = P (x R 2, C 1 ) + P (x R 1, C 2 ) P e = P (x R 2 C 1 )P (C 1 ) + P (x R 1 C 2 )P (C 2 ) Pela regra de Bayes: P e = P (C 1 x)p(x)dx + R 2 P (C 2 x)p(x)dx R 1 Escolhemos por hipótese R 1 e R 2 tais que R 1 : P (C 1 x) > P (C 2 x) R 2 : P (C 2 x) > P (C 1 x) P (C 1 ) = P (C 1 x)p(x)dx + R 1 P (C 1 x)p(x) R 2 3

4 porque R 1 R 2 cobre todo o espaço R 1 R 2 =. Substituindo no P e : P e = P (C 1 ) (P (C 1 x) P (C 2 x))p(x)dx R 1 É mínima se R 1 é tal que P (C 1 x) > P (C 2 x). Conversamente, a afirmação é válida para R 2. A extensão para múltiplas classes é trivial. Minimização do risco médio Riscos diferentes para falsos-positivos e falsos-negativos: Diagnóstico classifica uma pessoa sã como necessitando de intervenção cirúrgica versus classificar pessoa doente como sã. Fornecer empréstimo para uma pessoa com grande risco de estar aplicando um golpe versus deixar de fornecer empréstimo a uma pessoa idônea. Permitir acesso a um impostor versus impedir acesso de uma pessoa cadastrada. Colocar "corbinas" nas latas de salmão versus colocar salmão nas latas de corbina. Classificador com R j, j = 1... M regiões correpondentes a decisões pelas classes C j. Se x C k, mas está na região R i, i k (misclassification), a perda será λ ki (era para ser k, mas classifiquei como i). Com os valores de perda, montamos uma matriz de perda L. Risco ou perda associado à classe C k : r k = M λ ki p(x C k )dx R i i=1 Risco médio M = i=1 R i k=1 M r = r k P (C k ) k=1 ( m ) λ ki p(x C k )P (C k ) dx 4

5 Minimizar o risco médio corresponde a escolher regiões R i particionando o espaço de forma que x R i se l i = M λ ki p(x C k )P (C k ) < l j, j i k=1 A matriz L que contém zeros na diagonal principal e uns nas demais células corresponde a minimizar a probabilidade de erro da classificação. No caso de duas classes. l 1 = λ 11 p(x C 1 )P (C 1 ) + λ 21 p(x C 2 )P (C 2 ) l 2 = λ 12 p(x C 1 )P (C 1 ) + λ 22 p(x C 2 )P (C 2 ) Associamos x a C 1 se l 1 < l 2, ou seja, (λ 21 λ 22 )p(x C 2 )P (C 2 ) < (λ 12 λ 11 )p(x C 1 )P (C 1 ) Naturalmente, de forma geral, A regra de decisão fica da forma: λ ij > λ ii x C 1 se l 12 p(x C 1) p(x C 2 ) > P (C 2) λ 21 λ 22 P (C 1 ) λ 12 λ 11 l 12 é uma razão de verossimilhanças. No caso que [ ] 0 λ12 L = λ 21 0 Associar a C 2 se p(x C 2 ) > p(x C 1 ) λ12 λ 21 supondo P (C 1 ) = P (C 2 ). Exemplo (2.1 Theodoridis) Única feição x com pdfs gaussianas com σ 2 = 1/2 e médias 0 e 1 respectivamente. p(x C 1 ) = 1 π exp ( x 2 ) p(x C 2 ) = 1 π exp ( (x 1) 2 ) Se P (C 1 ) = P (C 2 ) = 1/2, calcular o limiar x 0 para a a) probabilidade de erro mínima b) risco mínimo para matriz de perda [ ] 0 0, 5 L = 1 0 5

6 Solução a) exp( x 2 ) = exp( (x 1) 2 ) x 2 = (x 1) 2 b) x 0 = 1/2 exp( x 2 ) = 2exp( (x 1) 2 ) x 0 = 1 ln 2 2 Superfícies de Decisão Se duas regiões R i e R j de um problema de lcassificação são vizinhas, são separadas pela superfície definida pela equação P (C i x) P (C j x) = 0 (no caso de minimização do erro de classificação) De um lado da superfície, o valor é positivo. Do outro, é negativo. Definimos g i (x) = f(p (C i x)), onde f é monotonicamente crescente, g i (x) é função discriminante e seu teste de decisão decorrente é: Classificar x C i se g i (x) > g j (x), j i Superfícies de decisão para regiões contíguas são descritas por g ij (x) = g i (x) g j (x) = 0 com i, j = 1... M, i j Desvantagens da classificação Bayesiana Torna-se difícil no caso de pdfs complicadas com estimação difícil. Função de discriminação complica com a quantidade de classes. No caso de dependência, o custo computacional é elevado para muitos atributos. 6

7 Classificação Bayesiana para Distribuições Normais Caso particular de distribuições normais permite tratabilidade computacional. Modelos complexos em que uma variável aleatória corresponde à soma de várias variáveis aleatórias podem ser modelados por uma distribuição normal. ( 1 p(x C i ) = exp 1 ) (2π) 1/2 2 (x µ i) T Σ 1 i (x µ i ) onde i = 1... M µ i = E[x] é o valor médio de x da classe C i e Σ é a matriz covariância. Σ é seu determinante. Σ i = E[(x µ i )(x µ i ) T ] g i (x) = ln (p(x C i )P (C i )) = ln p(x C i ) + ln P (C i ) g i (x) = 1 2 (x µ i) T Σ 1 i (x µ i ) + ln P (C i ) + K i Obtemos a forma quadrática da superfície de decisão g i (x) = 1 2 xt Σ 1 i Exemplo x xt Σ 1 µ i 1 2 µt i Σ 1 µ i µt i Σ 1 x + ln P (C i ) + K i i i i e l = 2 [ σ 2 Σ i = i 0 0 σi 2 ] g i (X) = 1 2σi 2 (x x 2 2 ) + 1 σi 2 (µ i1 x 1 + µ i2 x 2 ) 1 2σi 2 (µ 2 i1 + µ 2 i2) + ln P (C i ) + K i Logo g i (x) g j (x) = 0 são superfícies de separação que são quádricas: elipsóides, parábolas, hipérboles, pares de linhas. Para l > 2, são hiperquádricas. 7

8 Gráficos para diferentes Σ Hiperplanos decisórios Supondo que todas as matrizes de covariância são iguais Σ i = Σ O termo quadrático se cancela em comparações. g i (x) = wi T x + w i0 Onde e w i = Σ 1 µ i w i0 = ln P (C i ) 1 2 µt i Σ 1 µ i g i (x) g j (x) = 0 define um hiperplano de separação. Caso da matriz de covariância diagonal ou E[(x i µ i )(x j µ j )] = σ 2 δ ij Σ = σ 2 I Os atributos são icorrelatos mutuamente e de mesma variância g i (x) = 1 σ 2 µt i x + w i0 com w = µ i µ j e g ij (x) = g i (x) g j (x) = w T (x x 0 ) = 0 x 0 = 1 2 (µ i + µ j ) σ 2 ln ( ) P (Ci ) µi µ j P (C j ) µ i µ j 2 onde x = x 12 + x x l2 é a norma euclidiana de x Hiperplano passando por x 0 8

9 Caso da matriz de covariância não-diagonal onde w = Σ 1 (µ i µ j ) e onde g ij (x) = w T (x x 0 ) = 0 x 0 = 1 2 (µ i + µ j ) ln ( ) P (Ci ) µi µ j P (C j ) µ i µ j 2 Σ 1 x Σ 1 (x T Σ 1 x) 1/2 é a norma Σ 1 de x. O plano não é mais ortogonal a µ i µ j, mas a Σ 1 (µ i µ j ). Classificadores de mínima distância Supomos classes equiprováveis com mesma matriz de covariância g i (x) = 1 2 (x µ i) T Σ 1 (x µ i ) Foram desconsideradas as constantes desnecessárias à comparação das funções discriminantes. Para Σ = σ 2 I, máximo g i (x) implica mínima distância euclidiana d E = x µ i As superfícies de nível são circunferências ou cascas hiper-esféricas. Para Σ não-diagonal, minimização da norma Σ 1 para maximizar g i (x) minimizase a distância de Mahalanobis d m = ( (x µ i ) T Σ 1 (x µ i ) ) 1/2 Propriedade: A matriz de covariância é simétrica. Decomposição em auto-valores: onde Σ = ΦΛΦ T Φ T = Φ 1 ou seja, Φ é matriz ortogonal, e Λ é uma matriz diagonal cujos elementos são autovalores λ i de Σ e, se Φ = [v 1 _v 2... v l ] então os vetores v i são autovalores correspondentes a λ i. λ λ Λ = λ l 9

10 Substituindo na expressão da distância de Mahalanobis: Fazendo que Temos (x µ i ) T ΦΛ 1 Φ T (x µ i ) = c 2 x = v k T x, k = 1... l (x 1 µ i1 )2 λ (x l µ il )2 λ l = c 2 Assim, as superfícies de nível formadas são hiper-elipsóides. Exemplo 2.2 Theodoridis Classificação 2 classes e 2 dimensões (atributos) Dadas distribuições normais com a mesma matriz de covariância [ ] 1, 1 0, 3 Σ = 0, 3 1, 9 e os vetores média são µ 1 = [00] T e µ 2 = [33] T respectivamente. a) classificar o vetor [1, 02, 2] T de acordo com o classificador Bayesiano. b) computar os eixos principais da elipse centrada em [00] T que corresponde à distância de Mahalanobis constante d m = 2, 952 ao centro. Solução a) Basta computar a distância de Mahalanobis a [1, 02, 2] T aos vetores de média d m 2 (µ 1, x) = (x µ 1 ) T Σ 1 (x µ 1 ) [ 0, 95 0, 15 = [1, 02, 2] 0, 15 0, 55 ] [ 1, 0 2, 2 d m 2 (µ 2, x) = (x µ 2 ) T Σ 1 (x µ 2 ) [ 0, 95 0, 15 = [ 2, 0 0, 8] 0, 15 0, 55 ] [ 2, 0 0, 8 ] = 2, 952 ] = 3, 672 Assim, associa-se o ponto dado à classe C 1 correspondente à menor distância de Mahalanobis. b) Obter os autovalores de Σ ([ ]) 1, 1 λ 0, 3 det = λ 2 3λ + 2 = 0 0, 3 1, 9 λ λ 1 = 1 e λ 2 = 2 10

11 Substituindo em (Σ λi)v = 0 Encontrado o espaço nulo, isto é, determinar vetores normalizados que formam uma base para a solução da equação. v 1 = [ ] v 1 = [ ] Os eixos principais são paralelos a v 1 e v 2 respectivamente com comprimentos 3,436 e 4,

12 12

13 13

14 14

15 15

16 16

17 17

18 18

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Francisco A. Rodrigues Departamento de Matemática Aplicada e Estatística - SME Objetivo Dada M classes ω 1, ω 2,..., ω M e um

Leia mais

CC-226 Aula 07 - Estimação de Parâmetros

CC-226 Aula 07 - Estimação de Parâmetros CC-226 Aula 07 - Estimação de Parâmetros Carlos Henrique Q. Forster - Instituto Tecnológico de Aeronáutica 2008 Estimação de Parâmetros Para construir o classificador bayesiano, assumimos as distribuições

Leia mais

Reconhecimento de Padrões. Reconhecimento de Padrões

Reconhecimento de Padrões. Reconhecimento de Padrões Reconhecimento de Padrões 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Escola Superior de Tecnologia Engenharia Informática Reconhecimento de Padrões Prof. João Ascenso e Prof.

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 03 / Detecção de Sinais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 03 / Detecção de Sinais Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 03 / Detecção de Sinais Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade Federal

Leia mais

Funções Discriminantes Lineares

Funções Discriminantes Lineares Funções Discriminantes Lineares Revisão Cap. 2 Classificação Bayesiana: Fdp s conhecidas, w ) P e x w ) ( i p. ( i Cap. 3 Formas das fdp s conhecidas, idem No. de parâmetros. a) Máxima verossimilhança:

Leia mais

Rafael Izbicki 1 / 38

Rafael Izbicki 1 / 38 Mineração de Dados Aula 7: Classificação Rafael Izbicki 1 / 38 Revisão Um problema de classificação é um problema de predição em que Y é qualitativo. Em um problema de classificação, é comum se usar R(g)

Leia mais

Processamento digital de imagens

Processamento digital de imagens Processamento digital de imagens Agostinho Brito Departamento de Engenharia da Computação e Automação Universidade Federal do Rio Grande do Norte 27 de maio de 2016 Reconhecimento de objetos Padrão: arranjo

Leia mais

CC-226 Introdução à Análise de Padrões

CC-226 Introdução à Análise de Padrões CC-226 Introdução à Análise de Padrões Estimação Não-Paramétrica e Aprendizado por Instâncias Carlos Henrique Q. Forster 1 1 Divisão de Ciência da Computação Instituto Tecnológico de Aeronáutica 16 de

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 05 / Detecção Binária Baseada em

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 05 / Detecção Binária Baseada em Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 05 / Detecção Binária Baseada em Múltiplas Observações e Detecção com Múltiplas Hipóteses Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa

Leia mais

Comunicaçõ. ções Digitais II. Texto original por Prof. Dr. Ivan Roberto Santana Casella

Comunicaçõ. ções Digitais II. Texto original por Prof. Dr. Ivan Roberto Santana Casella PTC-43 Comunicaçõ ções Digitais II Texto original por Prof. Dr. Ivan Roberto Santana Casella Representaçã ção o Geométrica de Sinais A modulação digital envolve a escolha de um sinal específico s i (t)

Leia mais

CLASSIFICADORES BAEYSIANOS

CLASSIFICADORES BAEYSIANOS CLASSIFICADORES BAEYSIANOS Teorema de Bayes 2 Frequentemente, uma informação é apresentada na forma de probabilidade condicional Probabilidade de um evento ocorrer dada uma condição Probabilidade de um

Leia mais

Agrupamento de dados. Critério 1: grupos são concentrações de dados k-means Critério 2: grupos são conjuntos de elementos próximos entre si espectral

Agrupamento de dados. Critério 1: grupos são concentrações de dados k-means Critério 2: grupos são conjuntos de elementos próximos entre si espectral Agrupamento de dados Critério 1: grupos são concentrações de dados k-means Critério 2: grupos são conjuntos de elementos próximos entre si espectral Dados e grafos Se temos dados x i, i 0... n, criamos

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma

Leia mais

Algoritmos de Aprendizado

Algoritmos de Aprendizado Algoritmos de Aprendizado Regra de Hebb Perceptron Delta Rule (Least Mean Square) Back Propagation Radial Basis Functions (RBFs) Competitive Learning Hopfield Algoritmos de Aprendizado Regra de Hebb Perceptron

Leia mais

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas

Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas Álgebra Linear I - Aula 22 1. Matrizes 2 2 ortogonais e simétricas. 2. Projeções ortogonais. 3. Matrizes ortogonais e simétricas 3 3. Roteiro 1 Matrizes simultaneamente ortogonais e simétricas 2 2 Propriedade

Leia mais

AGA Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares

AGA Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares 1 / 0 AGA 0505- Análise de Dados em Astronomia I 7. Modelagem dos Dados com Máxima Verossimilhança: Modelos Lineares Laerte Sodré Jr. 1o. semestre, 018 modelos modelagem dos dados dado um conjunto de dados,

Leia mais

Classificadores. André Tavares da Silva.

Classificadores. André Tavares da Silva. Classificadores André Tavares da Silva andre.silva@udesc.br Reconhecimento de padrões (etapas) Obtenção dos dados (imagens, vídeos, sinais) Pré-processamento Segmentação Extração de características Obs.:

Leia mais

PROCEDIMENTOS NÃO SUPERVISIONADOS E TÉCNICAS DE AGRUPAMENTO (parte 1)

PROCEDIMENTOS NÃO SUPERVISIONADOS E TÉCNICAS DE AGRUPAMENTO (parte 1) PROCEDIMENTOS NÃO SUPERVISIONADOS E TÉCNICAS DE AGRUPAMENTO (parte 1) 1 Procedimentos não supervisionados Não se conhece a classificação das amostras de treinamento Qual é o interesse? 1) Coletar e rotular

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Inferência estatística lassificador bayesiano Inferência estatística Na inferência estatística, toma-se uma decisão usando a informação contida numa amostra. Na abordagem paramétrica,

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

P4 de Álgebra Linear I de junho de 2005 Gabarito

P4 de Álgebra Linear I de junho de 2005 Gabarito P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G3 de Álgebra Linear I 2.2 Gabarito ) Considere a matriz 4 N = 4. 4 Observe que os vetores (,, ) e (,, ) são dois autovetores de N. a) Determine uma forma diagonal D de N. b) Determine uma matriz P tal

Leia mais

TP537 Transmissão Digital 1ª Avaliação 27/10/ :00h Prof. Dayan Adionel Guimarães. Aluno(a):

TP537 Transmissão Digital 1ª Avaliação 27/10/ :00h Prof. Dayan Adionel Guimarães. Aluno(a): TP537 Transmissão Digital ª Avaliação 7//4 8:h Prof. Dayan Adionel Guimarães ota: Aluno(a): ª questão (4 pontos) Prova com consulta ao livro texto, com duração de 3 horas. A interpretação é parte integrante

Leia mais

Marcelo M. Santos DM-IMECC-UNICAMP msantos/

Marcelo M. Santos DM-IMECC-UNICAMP  msantos/ Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência 0 anos c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Identificação de Cônicas

Leia mais

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018

GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 2018 GEOMETRIA II EXERCÍCIOS RESOLVIDOS - ABRIL, 08 ( Seja a R e f(x, y ax + ( ay. Designe por C a a cónica dada por f(x, y 0. (a Mostre que os quatro pontos (±, ± R pertencem a todas as cónicas C a (independentemente

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e Q1. Sejam A M 6 (R) uma matriz real e T : R 6 R 6 o operador linear tal que [T ] can = A, em que can denota a base canônica de R 6. Se o polinômio característico de T for então poderemos afirmar que: p

Leia mais

P4 de Álgebra Linear I

P4 de Álgebra Linear I P4 de Álgebra Linear I 2008.2 Data: 28 de Novembro de 2008. Gabarito. 1) (Enunciado da prova tipo A) a) Considere o plano π: x + 2 y + z = 0. Determine a equação cartesiana de um plano ρ tal que a distância

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

Aula 1: k-nearest Neighbors

Aula 1: k-nearest Neighbors Aula 1: k-nearest Neighbors Paulo C. Marques F. Aula ministrada no Insper 29 de Janeiro de 2016 Insper Aula 1: k-nearest Neighbors 29 de Janeiro de 2016 1 / 14 O problema geral de classificação Insper

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

Aprendizado Bayesiano

Aprendizado Bayesiano Aprendizado Bayesiano Marcelo K. Albertini 26 de Junho de 2014 2/20 Conteúdo Teorema de Bayes Aprendizado MAP Classificador ótimo de Bayes 3/20 Dois papéis para métodos bayesianos Algoritmos de aprendizado

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 5 de março de 2013 1 Aplicações de Integrais subject Aplicações de Integrais

Leia mais

AGA Análise de Dados em Astronomia I. 1. Introdução

AGA Análise de Dados em Astronomia I. 1. Introdução 1 / 22 1. Introdução AGA 0505 - Análise de Dados em Astronomia I 1. Introdução Laerte Sodré Jr. 1o. semestre, 2019 2 / 22 introdução aula de hoje: Introdução 1 objetivo 2 o que é ciência 3 dados 4 o que

Leia mais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais MP-208: Filtragem Ótima com Aplicações Aeroespaciais Seção 2.6: Vetores Aleatórios Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica davists@ita.br São José dos Campos,

Leia mais

Aula 5 - Produto Vetorial

Aula 5 - Produto Vetorial Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa

Leia mais

Álgebra Linear I - Aula 22

Álgebra Linear I - Aula 22 Álgebra Linear I - Aula 1. Bases Ortonormais.. Matrizes Ortogonais. 3. Exemplos. 1 Bases Ortonormais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de

Leia mais

23 e 24. Forma Quadrática e Equação do Segundo Grau em R 3. Sumário

23 e 24. Forma Quadrática e Equação do Segundo Grau em R 3. Sumário 23 e 24 Forma Quadrática e Equação do Segundo Grau em R 3 Sumário 23.1 Introdução....................... 2 23.2 Autovalores e Autovetores de uma matriz 3 3.. 2 23.3 Mudança de Coordenadas no Espaço........

Leia mais

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral:

Autovalores e Autovetores Determinante de. Motivando com Geometria Definição Calculando Diagonalização Teorema Espectral: Lema (determinante de matriz ) A B A 0 Suponha que M = ou M =, com A e D 0 D C D matrizes quadradas Então det(m) = det(a) det(d) A B Considere M =, com A, B, C e D matrizes C D quadradas De forma geral,

Leia mais

Diagonalização unitária e diagonalização ortogonal. (Positividade do produto interno) Raíz quadrada. Formas quadráticas.

Diagonalização unitária e diagonalização ortogonal. (Positividade do produto interno) Raíz quadrada. Formas quadráticas. Aplicações: Diagonalização unitária e diagonalização ortogonal (Positividade do produto interno) Raíz quadrada Formas quadráticas Mínimos quadrados Produto externo e produto misto (Área do paralelogramo.

Leia mais

Classificador de Bayes

Classificador de Bayes Capítulo 1 Classificador de Bayes Versão de 18 de setembro de 2007 1.1 Revisão de Probabilidade e Estatística Experimento Espaço amostral Evento Probabilidade Distribuição de probabilidade Distribuições

Leia mais

Sensoriamento Remoto II

Sensoriamento Remoto II Sensoriamento Remoto II Componentes principais Revisão de matemática Análise de componentes principais em SR UFPR Departamento de Geomática Prof. Jorge Centeno 2016 copyright@ centenet Revisão matemática

Leia mais

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 1 Preliminares MAP3121 - Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 A decomposição de Cholesky aplicada a Finanças O exercício-programa

Leia mais

Transmissão de impulsos em banda-base

Transmissão de impulsos em banda-base Transmissão de impulsos em banda-base Transmissão de impulsos através de um canal com ruído aditivo. Probabilidades de erro com detecção no ponto central Detecção de sinais binários em ruído gaussiano

Leia mais

AGA Análise de Dados em Astronomia I 8. Inferência Bayesiana e MCMC

AGA Análise de Dados em Astronomia I 8. Inferência Bayesiana e MCMC 1 / 1 AGA 0505- Análise de Dados em Astronomia I 8. Inferência Bayesiana e MCMC Laerte Sodré Jr. 1o. semestre, 2018 2 / 1 Inferência Bayesiana inferência bayesiana consideremos um conjunto de dados D que

Leia mais

21 e 22. Superfícies Quádricas. Sumário

21 e 22. Superfícies Quádricas. Sumário 21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a

Leia mais

ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Aplicao do Captulo VI 1 / 12

ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Aplicao do Captulo VI 1 / 12 Aplicação do Capítulo VI à Classificação de Cónicas e Quádricas ALGA 007/008 Mest. Int. Eng. Electrotécnica e de Computadores Aplicao do Captulo VI 1 / 1 A diagonalização de matrizes simétricas reais pode

Leia mais

Formas Quádricas Cônicas hlcs

Formas Quádricas Cônicas hlcs UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORE Formas Quádricas Cônicas hlcs Álgebra Linear A equação mais geral de uma cônica é a seguinte: Q(,)= a + b + c +d + e +f =,...() onde a,b,c,d,e,f são números reais

Leia mais

P1 de Álgebra Linear I

P1 de Álgebra Linear I P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para

Leia mais

Máxima Verossimilhança Método dos Mínimos Quadrados (Al

Máxima Verossimilhança Método dos Mínimos Quadrados (Al Departamento de Física Experimental Máxima Verossimilhança (Alexandre Grothendieck) 20-21 de maio de 2014 Alexandre Grothendieck - 1928 Recherche, 486 (2014) 26-41. 1951 1991? Prólogo Nesta apresentação

Leia mais

5 Filtro de Kalman Aplicado ao Modelo de Schwartz e Smith (2000)

5 Filtro de Kalman Aplicado ao Modelo de Schwartz e Smith (2000) 5 Filtro de Kalman Aplicado ao Modelo de Schwartz e Smith (2000) A primeira parte deste capítulo, referente à passagem dos modelos estocásticos para as equações do Filtro de Kalman, já foi previamente

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais

Técnicas Multivariadas em Saúde. Vetores Aleatórios. Métodos Multivariados em Saúde Roteiro. Definições Principais. Vetores aleatórios:

Técnicas Multivariadas em Saúde. Vetores Aleatórios. Métodos Multivariados em Saúde Roteiro. Definições Principais. Vetores aleatórios: Roteiro Técnicas Multivariadas em Saúde Lupércio França Bessegato Dep. Estatística/UFJF 1. Introdução 2. Distribuições de Probabilidade Multivariadas 3. Representação de Dados Multivariados 4. Testes de

Leia mais

F- Classificação. Banda A

F- Classificação. Banda A F- Classificação Classificação Digital é associar determinado pixel a determinada categoria por meio de critérios estatísticos Banda B? da d b dc Espaço dos Atributos Classes Banda A Classificação: ordenar,

Leia mais

forças em relação a um ponto P E 3 como sendo o vetor M P V 3 dado por: Considere o sistema formado pelas forças

forças em relação a um ponto P E 3 como sendo o vetor M P V 3 dado por: Considere o sistema formado pelas forças Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal positiva de V 3. A menos de menção explícita em contrário, equações

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Mínimos quadrados. A 2 M mn (R), b 2 R m. Como Au 2 C (A) para todo o u 2 R n e

Mínimos quadrados. A 2 M mn (R), b 2 R m. Como Au 2 C (A) para todo o u 2 R n e Mínimos quadrados Au b A M mn (R), b R m Como Au C (A) para todo o u R n e b P C(A) (b) kb Auk, u R n é a melhor solução aproximada ou solução de mínimos quadrados de Au b se u veri car Au P C(A) (b) kb

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

Processamento de Imagens CPS755

Processamento de Imagens CPS755 Processamento de Imagens CPS755 aula 06 - sistemas não lineares Antonio Oliveira Ricardo Marroquim 1 / 38 laboratório de processamento de imagens tópicos RANSAC métodos iterativos (não-lineares) gradientes

Leia mais

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0

Exercício: Identifique e faça um esboço do conjunto solução da. 3x xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 + 2 3xy + y 2 + 2x 2 3y = 0 Motivação Exercício: Identifique e faça um esboço do conjunto solução da equação 3x 2 +

Leia mais

Aprendizado por Instâncias Janelas de Parzen & Knn

Aprendizado por Instâncias Janelas de Parzen & Knn Universidade Federal do Paraná (UFPR) Especialização em Engenharia Industrial 4.0 Aprendizado por Instâncias Janelas de Parzen & Knn David Menotti www.inf.ufpr.br/menotti/ci171-182 Hoje Aprendizado por

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 14 de abril de 2014 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.

Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa. Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum

Leia mais

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4. MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Autovalores e Autovetores Maria Luísa B. de Oliveira SME0300 Cálculo Numérico 24 de novembro de 2010 Introdução Objetivo: Dada matriz A, n n, determinar todos os vetores v que sejam paralelos a Av. Introdução

Leia mais

CARGA HORÁRIA SEMANAL: 06 horas

CARGA HORÁRIA SEMANAL: 06 horas PLANO DE ENSINO DE DISCIPLINA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Geometria Analítica e Álgebra Linear CÓDIGO: MAT 135 DURAÇÃO

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 19 de março de 2013 1 Aplicações de Integrais 2 subject Aplicações de

Leia mais

canal para sinais contínuos

canal para sinais contínuos Processos estocásticos, Entropia e capacidade de canal para sinais contínuos 24 de setembro de 2013 Processos estocásticos, Entropia e capacidade de canal para1 sin Conteúdo 1 Probabilidade de sinais contínuos

Leia mais

MAT-27 Lista-09 Outubro/2011

MAT-27 Lista-09 Outubro/2011 MAT-27 Lista-09 Outubro/2011 1. Determinar, se possível, uma matriz M M 2 (R) de maneira que M 1 AM seja diagonal nos seguintes casos: [ ] 2 4 (a) 3 13 [ ] 3 2 2 1 2. Achar uma matriz diagonal semelhante

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

Análise multivariada

Análise multivariada UNIFAL-MG, campus Varginha 11 de Setembro de 2018 Dada uma matriz A (p p), podemos obter um escalar λ e um vetor v (p 1) de modo que seja satisfeita? Av = λv (1) Dada uma matriz A (p p), podemos obter

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

= f(0) D2 f 0 (x, x) + o( x 2 )

= f(0) D2 f 0 (x, x) + o( x 2 ) 6 a aula, 26-04-2007 Formas Quadráticas Suponhamos que 0 é um ponto crítico duma função suave f : U R definida sobre um aberto U R n. O desenvolvimento de Taylor de segunda ordem da função f em 0 permite-nos

Leia mais

Aula 2 Uma breve revisão sobre modelos lineares

Aula 2 Uma breve revisão sobre modelos lineares Aula Uma breve revisão sobre modelos lineares Processo de ajuste de um modelo de regressão O ajuste de modelos de regressão tem como principais objetivos descrever relações entre variáveis, estimar e testar

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 0 DE JULHO 08 CADERNO... P00/00 Como se trata de uma distribuição normal temos que: ( ) 0,9545. P µ σ

Leia mais

Reconhecimento de Padrões/Objetos

Reconhecimento de Padrões/Objetos Reconhecimento de Padrões/Objetos André Tavares da Silva andre.silva@udesc.br Capítulo 12 de Gonzales Reconhecimento de Padrões (imagem) Objetivo: Interpretar o conteúdo da imagem através de um mapeamento

Leia mais

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v. Q1. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam T : V V um operador linear simétrico e W um subespaço de V tal que T (w) W, para todo w W. Suponha que W V e que

Leia mais

MÉTODOS ESTATÍSTICOS PARA ANÁLISE DE DADOS

MÉTODOS ESTATÍSTICOS PARA ANÁLISE DE DADOS MÉTODOS ESTATÍSTICOS PARA ANÁLISE DE DADOS LEANDRO DE PAULA UFRJ Escola de Inverno do IFGW A Física de Partículas do Novo Século julho de 2014 PROGRAMA DO CURSO Introdução à Probabilidade e Estatística

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Introdução Solução de equações não lineares

Leia mais

PROBABILIDADE E DISTÂNCIAS

PROBABILIDADE E DISTÂNCIAS PROBABILIDADE E DISTÂNCIAS Definições Básicas Variável aleatória 2 Em Estatística, é muito comum ver o termo variável aleatória. Mas qual o seu significado? Existem várias definições para o termo variável

Leia mais

HP UFCG Analytics Abril-Maio Um curso sobre Reconhecimento de Padrões e Redes Neurais. Por Herman Martins Gomes.

HP UFCG Analytics Abril-Maio Um curso sobre Reconhecimento de Padrões e Redes Neurais. Por Herman Martins Gomes. HP UFCG Analytics Abril-Maio 2012 Um curso sobre Reconhecimento de Padrões e Redes Neurais Por Herman Martins Gomes hmg@dsc.ufcg.edu.br Programa Visão Geral (2H) Reconhecimento Estatístico de Padrões (3H)

Leia mais

AGA Análise de Dados em Astronomia I. 2. Probabilidades

AGA Análise de Dados em Astronomia I. 2. Probabilidades 1 / 26 1. Introdução AGA 0505 - Análise de Dados em Astronomia I 2. Probabilidades Laerte Sodré Jr. 1o. semestre, 2019 2 / 26 aula de hoje: 1 o que são 2 distribuições de 3 a distribuição normal ou gaussiana

Leia mais

Álgebra Linear I - Aula 10. Roteiro

Álgebra Linear I - Aula 10. Roteiro Álgebra Linear I - Aula 10 1. Distância entre duas retas. 2. A perpendicular comum a duas retas. 3. Posições relativas. Roteiro 1 Distância entre duas retas r e s Calcularemos a distância entre duas retas

Leia mais

CARGA HORÁRIA SEMANAL: 06 horas

CARGA HORÁRIA SEMANAL: 06 horas PLANO DE ENSINO DE DISCIPLINA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Geometria Analítica e Álgebra Linear CÓDIGO: MAT 135 DURAÇÃO

Leia mais

SUPPORT VECTOR MACHINE - SVM

SUPPORT VECTOR MACHINE - SVM SUPPORT VECTOR MACHINE - SVM Definição 2 Máquinas de Vetores Suporte (Support Vector Machines - SVMs) Proposto em 79 por Vladimir Vapnik Um dos mais importantes acontecimentos na área de reconhecimento

Leia mais

CARGA HORÁRIA SEMANAL: 06 horas

CARGA HORÁRIA SEMANAL: 06 horas PLANO DE ENSINO DE DISCIPLINA UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Geometria Analítica e Álgebra Linear CÓDIGO: MAT 135 DURAÇÃO

Leia mais

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26

MATRIZES - PARTE Mais exemplos Multiplicação de duas matrizes AULA 26 AULA 26 MATRIZES - PARTE 2 26. Mais exemplos Nesta aula, veremos mais dois algoritmos envolvendo matrizes. O primeiro deles calcula a matriz resultante da multiplicação de duas matrizes e utiliza três

Leia mais

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente.

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente. Q1. Sejam n um inteiro positivo, T : C n C n um operador linear e seja A = [T ] can a matriz que representa T em relação à base canônica do espaço vetorial complexo C n. Suponha que a matriz A tenha entradas

Leia mais

Introdução ao Processamento Estatístico de Sinais

Introdução ao Processamento Estatístico de Sinais Charles Casimiro Cavalcante charles@gtel.ufc.br Grupo de Pesquisa em Telecomunicações Sem Fio GTEL Departamento de Engenharia de Teleinformática Universidade Federal do Ceará UFC http://www.gtel.ufc.br/

Leia mais

Aula 14. Aula de hoje. Aula passada

Aula 14. Aula de hoje. Aula passada Aula 14 Aula passada Autovalores, autovetores, decomposição Convergência para estacionaridade Tempo de mistura Spectral gap Tempo de mistura de passeios aleatórios Aula de hoje Caminho amostral Teorema

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas o semestre 07/08 0/07/08 :0 o Teste C 0 valores. Um relatório anual estabelece que

Leia mais

CM005 Álgebra Linear Lista 3

CM005 Álgebra Linear Lista 3 CM005 Álgebra Linear Lista 3 Alberto Ramos Seja T : V V uma transformação linear. Se temos que T v = λv, v 0, para λ K. Dizemos que λ é um autovalor de T e v autovetor de T associado a λ. Observe que λ

Leia mais

Reconhecimento de Padrões. Reconhecimento de Padrões

Reconhecimento de Padrões. Reconhecimento de Padrões Reconhecimento de Padrões 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Escola Superior de Tecnologia Engenharia Informática Reconhecimento de Padrões Prof. João Ascenso Sumário:

Leia mais

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito

P2 de Álgebra Linear I Data: 10 de outubro de Gabarito P2 de Álgebra Linear I 2005.2 Data: 10 de outubro de 2005. Gabarito 1 Decida se cada afirmação a seguir é verdadeira ou falsa. Itens V F N 1.a F 1.b V 1.c V 1.d F 1.e V 1.a Considere duas bases β e γ de

Leia mais

Dados no R n. Dados em altas dimensões 29/03/2017

Dados no R n. Dados em altas dimensões 29/03/2017 Dados no R n Dados em altas dimensões Alguns dados são apresentados como vetores em R n Alguns dados não são apresentados como vetores mas podem ser representados como vetores (e.g. Texto) Texto Dados

Leia mais

GEOPROCESSAMENTO. Classificação de imagens de Sensoriamento Remoto. Prof. Luiz Rotta

GEOPROCESSAMENTO. Classificação de imagens de Sensoriamento Remoto. Prof. Luiz Rotta GEOPROCESSAMENTO Classificação de imagens de Sensoriamento Remoto Prof. Luiz Rotta CLASSIFICAÇÃO Processo de extração de informação em imagens para reconhecer padrões e objetos homogêneos Sensoriamento

Leia mais