Curso de Complementos de Física

Tamanho: px
Começar a partir da página:

Download "Curso de Complementos de Física"

Transcrição

1 Solução da Orientações Gerais Curso de Engenharia Civil Faculdade Campo Grande 7 de Agosto de 2015

2 Solução da Plano de Aula 1 Oscilações Simples 2 3 Solução da 4 5

3 Introdução Oscilações Simples Solução da Oscilações Simples Movimento Harmônico Simples

4 Introdução Oscilações Simples Solução da Oscilações Simples Movimento Harmônico Simples Harmônico = cíclico

5 Introdução Oscilações Simples Solução da Oscilações Simples Movimento Harmônico Simples Harmônico = cíclico Exemplos: Figura: Diversos sistemas oscilantes.

6 Definição Oscilações Simples Solução da Um sistema se comporta como uma oscilação simples se está sujeito a ação de uma força restauradora: F = k x. Figura: Diagrama de corpo livre em um sistema oscilante.

7 Solução da Considere o sistema da Figura (3). Figura: Sistema massa mola suspensa. Apenas a força peso e a força da mola agem sobre a massa. Fonte: página da FisicaBr na internet.

8 Solução da Plano de Aula 1 Oscilações Simples 2 3 Solução da 4 5

9 Solução da Figura: Posição de equilíbrio.

10 Solução da F k m g = m a.

11 Solução da F k m g = m a. F k mg = ma

12 Solução da F k m g = m a. F k mg = ma k (y y 0 ) mg = ma

13 Solução da F k m g = m a. F k mg = ma k (y y 0 ) mg = ma ky + ky 0 mg = ma.

14 Solução da F k m g = m a. F k mg = ma k (y y 0 ) mg = ma ky + ky 0 mg = ma. ky = ma.

15 Solução da Em sua forma matemática, ky = m d2 y dt 2 m d2 y dt 2 + ky = 0 d2 y dt 2 + k m y = 0.

16 Solução da Em sua forma matemática, ky = m d2 y dt 2 m d2 y dt 2 + ky = 0 d2 y dt 2 + k m y = 0. Essa é a equação diferencial de um movimento harmônico simples.

17 Solução da Plano de Aula 1 Oscilações Simples 2 3 Solução da 4 5

18 Solução Oscilações Simples Solução da Função incógnita: y = y(t).

19 Solução Oscilações Simples Solução da Função incógnita: Tentativa: y = y(t). y = cos(t).

20 Solução Oscilações Simples Solução da Função incógnita: Tentativa: Problema: d 2 cos(t) dt 2 y = y(t). y = cos(t). = d dt ( ) d cos(t) dt

21 Solução Oscilações Simples Solução da Função incógnita: Tentativa: Problema: d 2 cos(t) dt 2 y = y(t). y = cos(t). = d dt = d dt ( sin(t)) ( ) d cos(t) dt

22 Solução Oscilações Simples Solução da Função incógnita: Tentativa: Problema: d 2 cos(t) dt 2 y = y(t). y = cos(t). = d dt = d dt ( sin(t)) ( ) d cos(t) dt = cos(t)

23 Solução Oscilações Simples Solução da d2 cos(t) dt 2 k = m. + k m cos(t) = cos(t) + k ( ) k cos(t) = cos(t) m m 1 = 0 Não é o que precisamos!

24 Solução Oscilações Simples Solução da d2 cos(t) dt 2 k = m. + k m cos(t) = cos(t) + k ( ) k cos(t) = cos(t) m m 1 = 0 Não é o que precisamos! Mas há como resover! y = cos(ωt) dy dt = ω sin(ωt) d2 y dt 2 = ω2 cos(ωt).

25 Solução Oscilações Simples Solução da d2 cos(t) dt 2 k = m. + k m cos(t) = cos(t) + k ( ) k cos(t) = cos(t) m m 1 = 0 Não é o que precisamos! Mas há como resover! Daí, y = cos(ωt) dy dt = ω sin(ωt) d2 y dt 2 = ω2 cos(ωt). d 2 cos(ωt) dt 2 + k m cos(ωt) = ω2 cos(ωt) + k m cos(ωt)

26 Solução Oscilações Simples Solução da ( = ω 2 + k ) cos(ωt) m

27 Solução Oscilações Simples Solução da ( = ω 2 + k ) cos(ωt) m Isso vai implicar apenas que ω 2 = k m.

28 Solução Oscilações Simples Solução da ( = ω 2 + k ) cos(ωt) m Isso vai implicar apenas que ω 2 = k m. A solução mais geral é y(t) = Acos(ωt + φ).

29 Solução da Análise da solução A constante A é a amplitude do movimento. Figura: Ilustração do papel da amplitude na solução.

30 Solução da Análise da solução A constante ωt + φ é a fase.

31 Solução da Análise da solução A constante ωt + φ é a fase. Ela informa em que posição a massa estará, dentre as posições extremas, em um dado instante.

32 Solução da Análise da solução A constante ωt + φ é a fase. Ela informa em que posição a massa estará, dentre as posições extremas, em um dado instante. Já a constante φ é chamada de constante de fase. Ela indica qual a posição inicial do movimento. Figura: Ilustração da influência da constante de fase φ no movimento.

33 Solução da Plano de Aula 1 Oscilações Simples 2 3 Solução da 4 5

34 Solução da Análise da solução Vejamos o papel da constante ω.

35 Solução da Análise da solução Vejamos o papel da constante ω. Vamos, para isso, acrescer um período T ao intervalo de tempo.

36 Solução da Análise da solução Vejamos o papel da constante ω. Vamos, para isso, acrescer um período T ao intervalo de tempo. Como esses movimentos são cíclicos, após a decorrência de um período, Acos(ωt + φ) = Acos[ω (t + T) + φ].

37 Solução da Análise da solução Vejamos o papel da constante ω. Vamos, para isso, acrescer um período T ao intervalo de tempo. Como esses movimentos são cíclicos, após a decorrência de um período, Acos(ωt + φ) = Acos[ω (t + T) + φ]. Mas a função cosseno só se repete após um ciclo de 2π. Assim: ω (t + T) = ωt + 2π

38 Solução da Análise da solução Vejamos o papel da constante ω. Vamos, para isso, acrescer um período T ao intervalo de tempo. Como esses movimentos são cíclicos, após a decorrência de um período, Acos(ωt + φ) = Acos[ω (t + T) + φ]. Mas a função cosseno só se repete após um ciclo de 2π. Assim: ω (t + T) = ωt + 2π Logo, ωt = 2π ω = 2π T.

39 Solução da Plano de Aula 1 Oscilações Simples 2 3 Solução da 4 5

40 Oscilações Simples Solução da São representações gráficas dessas soluções. Figura:.

Curso de Complementos de Física

Curso de Complementos de Física Aula 2 Curso de Engenharia Civil Faculdade Campo Grande 27 de Agosto de 2015 Plano de Aula 1 Exemplo 1 Um bloco, preso firmemente a uma mola, oscila verticalmente uma frequência de 4 Hertz e uma amplitude

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

Centro Federal de Educação Tecnológica de Minas Gerais

Centro Federal de Educação Tecnológica de Minas Gerais Centro Federal de Educação ecnológica de Minas Gerais Graduação em Engenharia da Computação Prática 07 - Oscilação Sistema Massa-Mola Alunos: Egmon Pereira; Igor Otoni Ripardo de Assis Leandro de Oliveira

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30.

Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Física para Engenharia II 4320196 (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Profa. Márcia Regina Dias Rodrigues Depto. Física Nuclear IF USP Ed.

Leia mais

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento

Leia mais

Oscilação Livre sem Amortecimento

Oscilação Livre sem Amortecimento Figura 1.1: Diversos sistemas oscilantes. Oscilação Livre sem Amortecimento 1 Introdução Quando se trata desse assunto, ele é frequentemente descrito em livros textos de física como movimento harmônico

Leia mais

Dinâ micâ de Mâ quinâs e Vibrâçõ es II

Dinâ micâ de Mâ quinâs e Vibrâçõ es II Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.

Leia mais

Teoria de Eletricidade Aplicada

Teoria de Eletricidade Aplicada 1/34 Teoria de Eletricidade Aplicada Considerações sobre a Corrente Alternada (CA) Prof. Jorge Cormane Engenharia de Energia 2/34 SUMÁRIO 1. Introdução 2. Formas de Onda 3. Funções Senoidais 4. Valor Médio

Leia mais

Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D

Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D www.engenhariafacil.weebly.com Resolução da ª Prova de Física II -UFRJ do Período- 014. (1/11/014). Versão D OBS: Esse não é o gabarito oficial. O gabarito oficial será lançado no site do Instituto de

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/7 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s. (1) [1,0] Um móvel executa MHS e obedece à função horária x=cos(0,5πt+π), no SI. O tempo necessário para que este

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

A energia total do circuito é a soma da potencial elétrica e magnética

A energia total do circuito é a soma da potencial elétrica e magnética Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 35-, 35-4, 35-5, 35-6 S. 3-6, 3-7 T. 8-4 Aula 7 Circuitos

Leia mais

MODOS NORMAIS de vibração. mola e peso barbante

MODOS NORMAIS de vibração. mola e peso barbante MODOS NORMAIS de vibração mola e peso barbante MODOS NORMAIS de vibração de uma corda (aula Ondas3 de Fis. 2) f/2 3f/2 5f/2 7f/2 f 2f 3f 4f https://www.youtube.com/watch?v=v_kopeob1ke A matemática... y

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Slides 5 e 6 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 1 2.1 Sinais Um

Leia mais

Figura 1.1: Diagrama esquemático ilustrando o sistema do problema.

Figura 1.1: Diagrama esquemático ilustrando o sistema do problema. Figura 1.1: Diagrama esquemático ilustrando o sistema do problema. 1 Exemplos 1.1 Um bloco, preso firmemente a uma mola, oscila verticalmente uma frequência de 4 Hertz e uma amplitude de 7 centímetros.

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrerem turbulência

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico

Leia mais

SISTEMAS DE OSCILADORES

SISTEMAS DE OSCILADORES SISTEMAS DE OSCILADORES Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de abril de 2018 Roteiro 1 Formulação geral Acoplamento fraco 2 Mesma direção Direções perpendiculares 3 Pêndulo

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana

O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana O que são ondas? I. Farkas, D. Helbing e T. Vicsek, Nature (London) 419, 131 (2002). A onda humana Ondas transversas: pulsos numa corda, mola, etc. Ondas longitudinais: mola, som, etc. Diferentes tipos

Leia mais

Prova P3 Física para Engenharia II, turma nov. 2014

Prova P3 Física para Engenharia II, turma nov. 2014 Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6 59136 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6 Oscilações Forçadas e Ressonância Nas aulas precedentes estudamos oscilações livres de diferentes tipos de sistemas físicos. Em uma oscilação

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s 2. Respostas da questões por versão de prova: E7Hx: (1) A; (2) E; (3) A; (4) E; 112F: (1) E; (2) B; (3) D; (4) B;

Leia mais

Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações )

Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações ) Nota de Aula: Equações Diferenciais Ordinárias de Ordem ( Aplicações ) Vamos nos ater a duas aplicações de grande interesse na engenharia: Sistema massa-mola-amortecedor ( Oscilador Mecânico ) O Sistema

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) Respostas das versıes de m ltipla escolha: 16A7: (1) C; () D; (3) C; (4) D; 3A33: (1) C; () B; (3) C; (4) E; E7Hx: (1) C; () B; (3) B; (4) C; 11F: (1) A;

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

7Maio/2018 Aula Movimento periódico 16.1 Movimento harmónico simples (MHS) 16.2 Conservação da energia no MHS. 2/Maio/2018 Aula 15

7Maio/2018 Aula Movimento periódico 16.1 Movimento harmónico simples (MHS) 16.2 Conservação da energia no MHS. 2/Maio/2018 Aula 15 2/Maio/208 Aula 5 5 Movimento de planetas 5. Leis de Keppler 5.2 Conservação da energia 5.3 Velocidade de escape 5.4 Movimento de satélites 7Maio/208 Aula 6 6 Movimento periódico 6. Movimento harmónico

Leia mais

Instituto de Física - USP FGE Laboratório de Física III - LabFlex

Instituto de Física - USP FGE Laboratório de Física III - LabFlex Instituto de Física - USP FGE013 - Laboratório de Física III - LabFlex Aula 14 - (Exp 3.3) - Oscilador magnético forçado amortecido Manfredo H. Tabacniks Alexandre Suaide novembro 007 M.H. Tabacniks, A.

Leia mais

Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL Professor: Gustavo Silva 1 1. Introdução Nesta aula estudaremos sistemas amortecidos e não amortecidos sendo excitados harmonicamente.

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Movimentos Periódicos 1 Objetivos Gerais: Verificar experimentalmente o comportamento da força exercida por uma mola em função do alongamento da mola; Determinar a constante de rigidez k da mola; Determinar

Leia mais

Física 2 - EMB5039. Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017

Física 2 - EMB5039. Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017 Física 2 - EMB5039 Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017 1. Mostre que a equação que descreve o sistema massa-mola vertical da figura 1 é dada por: d 2 y dt 2 + ω2 y = 0 (1) em que

Leia mais

Sinal: perturbação que produz alteração de uma propriedade física. A perturbação (o sinal) provoca oscilações ou vibrações num ponto de um meio.

Sinal: perturbação que produz alteração de uma propriedade física. A perturbação (o sinal) provoca oscilações ou vibrações num ponto de um meio. Ondas e sinais Para gerar uma onda num meio é necessário criar uma perturbação num ponto (ou numa zona), ou seja, alterar uma propriedade física do meio nesse ponto. Quando isso ocorre, dizemos que foi

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k 1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t + t 2 )i + t 2 k onde r é dado em metros e t em segundos. Determine: (a) (1,0) o vetor velocidade instantânea da partícula,

Leia mais

Instrumentação e Controle Aula 12. Controle PID. Prof. Renato Watanabe ESTO004-17

Instrumentação e Controle Aula 12. Controle PID. Prof. Renato Watanabe ESTO004-17 Instrumentação e Controle Aula 12 Controle PID Prof. Renato Watanabe ESTO004-17 Onde estamos no curso Sistema Realimentação Sensores Obtenção das Equações Diferenciais que descrevem o comportamento do

Leia mais

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas. Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que

Leia mais

Mecânismos A06. Prof. Nilton Ferruzzi. Prof. Nilton Ferruzzi 1

Mecânismos A06. Prof. Nilton Ferruzzi. Prof. Nilton Ferruzzi 1 Mecânismos A06 Prof. Nilton Ferruzzi Prof. Nilton Ferruzzi 1 Definição de Vibração Mecânica: É qualquer movimento que se repete, regular ou irregularmente, depois de um intervalo de tempo. O movimento

Leia mais

Circuitos com excitação Senoidal

Circuitos com excitação Senoidal MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 24 de julho de 2018

Prof. Dr. Ronaldo Rodrigues Pelá. 24 de julho de 2018 OSCILAÇÕES Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 24 de julho de 2018 MHS, Roteiro 1 Organização do curso Motivação Definições Gerais 2 Formulação geral Sistema Massa-Mola 3 Pêndulo

Leia mais

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular.

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular. Oscilações amortecidas Lista de exercícios Exercício 1 harmônica? Qualitativamente, o que é que distingue uma oscilação amortecida de uma oscilação Exercício 2 um deles? Quais são os três possíveis regimes

Leia mais

Física 2. Guia de Estudos P1

Física 2. Guia de Estudos P1 Física 2 Guia de Estudos P1 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em

Leia mais

TRANSFORMADA DE LAPLACE E PVI

TRANSFORMADA DE LAPLACE E PVI Inversa Solução de PVI via TRANSFORMADA DE LAPLACE E PVI por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 21 e 23 de novembro de 2018 Inversa Solução de PVI via Propriedades

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10 597 Física II Ondas, Fluidos e Termodinâmica USP Prof. ntônio Roque ula Oscilações acopladas e modos normais Os sistemas naturais não são isolados, mas interagem entre si. Em particular, se dois ou mais

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS

UNIVERSIDADE CATÓLICA DE GOIÁS NOTA DE AULA 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL II (MAF 0) Coordenador: Prof. Dr. Elias Calixto Carrijo CAPÍTULO 16 OSCILAÇÕES

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

Experimento 9 Circuitos RL em corrente alternada

Experimento 9 Circuitos RL em corrente alternada 1. OBJETIVO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO

Leia mais

Experiência 3 - Pêndulo

Experiência 3 - Pêndulo Roteiro de Física Experimental II 13 Experiência 3 - Pêndulo 1 - OBJEIVO O objetivo desta aula é discutir o movimento harmônico de um pêndulo físico e realizar um experimento sobre o mesmo Através de medidas

Leia mais

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J).

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J). FÍSICA BÁSICA II - LISTA 1 - OSCILAÇÕES - 2019/1 1. Em um sistema massa-mola temos k = 200 N/m, m = 1 kg, x(0) = A = 10 cm. Calcule ω, T, f, v m, a m, E (14,14 rad/s; 0,44 s; 2,25 Hz; 1,41 m/s; 20 m/s

Leia mais

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER

TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER TRANSFORMADAS INTEGRAIS LAPLACE E FOURIER Transformada integral Em Física Matemática há pares de funções que satisfazem uma expressão na forma: F α = a b f t K α, t dt f t = A função F( ) é denominada

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples. 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola

Leia mais

Aula 04 Representação de Sistemas

Aula 04 Representação de Sistemas Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,

Leia mais

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Aulas 7 e 8 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 3. Série de Fourier

Leia mais

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009 Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

Osciladores livres, amortecidos, forçados e ressonância

Osciladores livres, amortecidos, forçados e ressonância Osciladores livres, amortecidos, forçados e ressonância Notas de aula Daniel Cosmo Pizetta Instituto de Física de São Carlos Universidade de São Paulo Laboratório de Física II 1. Oscilador livre Força

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

MHS Movimento Harmônico Simples

MHS Movimento Harmônico Simples 2010 ESCOLA ALUNO MHS Movimento Harmônico Simples 1. (Mackenzie) Uma partícula descreve um movimento harmônico simples segundo a equação X = 0,3. cos (π /3 + 2.t), no S.I.. O módulo da máxima velocidade

Leia mais

Noções Básicas de Física Arquitectura Paisagística LEI DE HOOKE (1)

Noções Básicas de Física Arquitectura Paisagística LEI DE HOOKE (1) LEI DE HOOKE INTRODUÇÃO A Figura 1 mostra uma mola de comprimento l 0, suspensa por uma das suas extremidades. Quando penduramos na outra extremidade da mola um corpo de massa m, a mola passa a ter um

Leia mais

O circuito RLC. 1. Introdução

O circuito RLC. 1. Introdução O circuito C Na natureza são inúmeros os fenómenos que envolvem oscilações. Um exemplo comum é o pêndulo de um relógio, que se move periodicamente (ou seja, repetindo o seu movimento ao fim de um intervalo

Leia mais

Prof. Daniel Hasse. Princípios de Comunicações

Prof. Daniel Hasse. Princípios de Comunicações Prof. Daniel Hasse Princípios de Comunicações AULA 3 Análise de Fourier Prof. Daniel Hasse Sinais e espectros Os sinais são compostos de várias componentes senoidais (Série de Fourier) Generalização ransformada

Leia mais

PGF Mecânica Clássica Prof. Iberê L. Caldas

PGF Mecânica Clássica Prof. Iberê L. Caldas PGF 55 - Mecânica Clássica Prof. Iberê L. Caldas Terceiro Estudo Dirigido o semestre de 18 Os estudos dirigidos podem ser realizados em duplas. Apenas os exercícios marcados com asteriscos precisam ser

Leia mais

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017 Vibrações Movimento harmônico Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula 02 Londrina, 2017 1

Leia mais

Resumo e Lista de Exercícios. Física II Fuja do Nabo P

Resumo e Lista de Exercícios. Física II Fuja do Nabo P Resumo e Lista de Exercícios Física II Fuja do Nabo P1 018. Resumo 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante

Leia mais

Aula 12. Aritmétrica complexa. Laboratório Numérico 1

Aula 12. Aritmétrica complexa. Laboratório Numérico 1 Aula 12 Aritmétrica complexa Laboratório Numérico 1 Circuito RLC (corrente alterna) V = V L + V C + V R = V 0 cos ωt V R = RI Lei d Ohm V C = 1 C න Idt V L = L di dt Laboratório Numérico 2 sinais a 50

Leia mais

Aula 12: Oscilações Eletromagnéticas. Curso de Física Geral III F o semestre, 2014

Aula 12: Oscilações Eletromagnéticas. Curso de Física Geral III F o semestre, 2014 Aula : Oscilações Eletromagnéticas urso de Física Geral III F-38 o semestre, 4 Oscilações eletromagnéticas () Vimos: ircuitos R e R: q(t), i(t) e V(t): têm comportamento exponencial Veremos: ircuito :

Leia mais

Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente

Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente Aula 23 Fasores I Fontes senoidais Exemplo de representações de fontes senoidais Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente v t = V

Leia mais

Circuito RLC série FAP

Circuito RLC série FAP Circuito RLC série Vamos considerar um circuito com um indutor puro e um capacitor puro ligados em série, em que o capacitor está carregado no instante t. Como inicialmente o capacitor está com a carga

Leia mais

O circuito RLC. 1. Introdução

O circuito RLC. 1. Introdução O circuito Na natureza são inúmeros os fenómenos que envolvem oscilações. Um exemplo comum é o pêndulo de um relógio, que se move periódicamente (ou seja, de repetindo o seu movimento ao fim de um intervalo

Leia mais

Vibrações de sistemas com um grau de liberdade 1

Vibrações de sistemas com um grau de liberdade 1 Vibrações de sistemas com um grau de liberdade 1 DEFINIÇÕES Vibração mecânica movimento de uma partícula ou de um corpo que oscila em torno de uma posição de equilíbrio. Período de vibração intervalo de

Leia mais

O Movimento Harmônico Simples

O Movimento Harmônico Simples O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 2 2 quadrimestre 2011 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares quadrimestre 0 (P-0003D) (HAYKIN, 00, p 9) Use a equação de definição da TF para obter a representação no domínio da

Leia mais

LISTA DE EXERCÍCIOS 1

LISTA DE EXERCÍCIOS 1 LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física

Leia mais

Tópico 8. Aula Prática: Pêndulo Simples

Tópico 8. Aula Prática: Pêndulo Simples Tópico 8. Aula Prática: Pêndulo Simples 1. INTRODUÇÃO Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora

Leia mais

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013

Método de Euler. Marina Andretta/Franklina Toledo ICMC-USP. 29 de outubro de 2013 Solução numérica de Equações Diferenciais Ordinárias: Método de Euler Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2013 Baseado nos livros: Análise Numérica, de R. L. Burden e J. D. Faires;

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS Prof. Bruno Farias Ondas Uma onda surge quando um sistema é deslocado de sua posição

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. Dr. José Luis Azcue Puma Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides

Leia mais

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade

Leia mais

Para quem não se recorda do tratamento completo do sistema massa-mola, após esta seção, reproduzo aquela que seria uma seção anterior.

Para quem não se recorda do tratamento completo do sistema massa-mola, após esta seção, reproduzo aquela que seria uma seção anterior. 1 Este texto é parte integrante do texto do curso Introdução Física Quântica de Materiais que ministro no Programa de Pós-Graduação em Ciência e Tecnologia dos Materiais. A seção 1..1 apresenta um problema

Leia mais

TRANSFORMADA DE FOURIER. Larissa Driemeier

TRANSFORMADA DE FOURIER. Larissa Driemeier TRANSFORMADA DE FOURIER Larissa Driemeier TESTE 7hs30 às 8hs00 Este não é um sinal periódico. Queremos calcular seu espectro usando análise de Fourier, mas aprendemos que o sinal deve ser periódico. O

Leia mais

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel

Cálculo Diferencial e Integral C. Me. Aline Brum Seibel Cálculo Diferencial e Integral C Me. Aline Brum Seibel Em ciências, engenharia, economia e até mesmo em psicologia, frequentemente desejamos descrever ou modelar o comportamento de algum sistema ou fenômeno

Leia mais

Física para Engenharia II - Prova de Recuperação

Física para Engenharia II - Prova de Recuperação 43096 Física para Engenharia II - Prova de Recuperação - 03 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de horas. Não somos

Leia mais

Equações Diferenciais

Equações Diferenciais IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013

Leia mais

EXPERIÊNCIA M003-3 PÊNDULO SIMPLES

EXPERIÊNCIA M003-3 PÊNDULO SIMPLES UFSC - CFM DEPTO. DE FÍSICA FÍSICA EXPERIMENTAL I - FSC 5122 1 - OBJETIVOS EXPERIÊNCIA M003-3 PÊNDULO SIMPLES a) Medir a aceleração da gravidade local. b) Identificar o equipamento e entender seu funcionamento.

Leia mais

Lista de Exercícios - OSCILAÇÕES

Lista de Exercícios - OSCILAÇÕES UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração

Leia mais

Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace

Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace Solução de Equações Diferenciais Ordinárias por Transformadas de Laplace Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Transformada de Laplace da Derivada de uma Função Teorema 1:

Leia mais

MOVIMENTO HARMÔNICO SIMPLES (MHS)11

MOVIMENTO HARMÔNICO SIMPLES (MHS)11 MOVIMENTO HARMÔNICO SIMPLES (MHS)11 Gil da Costa Marques 11.1 Introdução 11. Movimentos periódicos 11.3 Movimento Oscilatório 11.4 A Força Elástica 11.5 Equação do movimento 11.6 Período e Frequência 11.7

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4 O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP196 - Física para Engenharia II Prova P1-18/09/008 Nome:........................................... N o USP:...................... Assinatura:................................ Turma/Professor:.................

Leia mais

Módulo de elasticidade aproximado de alguns sólidos em unidades de Pa

Módulo de elasticidade aproximado de alguns sólidos em unidades de Pa Formulário: Oscilador*Simples* m d 2 x dt = kx!!!!!!!!!!!!! x(t ) = Acos(ω t +ϕ ) ω 2 2 0 0 = k / m L d 2 θ dt = gθ 2!!!!!!!!!!!!!!! θ(t ) = θ cos(ωt +ϕ ) max Ω2 = g / L! Oscilador*Amortecido * m d 2 x

Leia mais