SISTEMAS DE OSCILADORES

Tamanho: px
Começar a partir da página:

Download "SISTEMAS DE OSCILADORES"

Transcrição

1 SISTEMAS DE OSCILADORES Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de abril de 2018

2 Roteiro 1 Formulação geral Acoplamento fraco 2 Mesma direção Direções perpendiculares 3 Pêndulo duplo Sistema carro/pêndulo

3 Roteiro Formulação geral Acoplamento fraco 1 Formulação geral Acoplamento fraco 2 3

4 Motivação Formulação geral Acoplamento fraco

5 Motivação Formulação geral Acoplamento fraco

6 Modelo Formulação geral Acoplamento fraco k 1 m 1 x 1 q m 2 x 2 k 2 Aplicando a 2a lei de Newton { m 1 ẍ 1 = kx 1 qx 1 + qx 2 m 2 ẍ 2 = kx 2 + qx 1 qx 2 SEDOLH Sendo X = [ x1 x 2 ] [ m1 0, M = 0 m 2 ] [ k1 + q q, K = q k 2 + q ] MẌ = KX

7 Solução Formulação geral Acoplamento fraco Solução tentativa: X(t) = ae iωt, sendo a uma matriz coluna Mω 2 ae iωt = Kae iωt (K ω 2 M)a = O Este é um problema (generalizado) de autovalores/autovetores. OBS.: De forma equivalente: (M 1 K ω 2 I)a = O Sempre é possível encontrar autovalores reais e autovetores ortogonais, pois M e K são simétricas. Solução do SEDO Sendo a 1 e a 2 dois autovetores (com autovalores ω 1 e ω 2 ) X(t) = c 1 a 1 sin(ω 1 t + φ 1 ) + c 2 a 2 sin(ω 2 t + φ 2 )

8 Modos normais Formulação geral Acoplamento fraco As soluções a 1 sin(ω 1 t + φ 1 ) e a 2 sin(ω 2 t + φ 2 ) são chamadas de modos normais de vibração. As frequências ω 1 e ω 2 são as frequências normais de vibração. De forma geral, o sistema oscila como uma combinação dos modos normais. Isto quer dizer que, em geral, as oscilações não são harmônicas, e não há uma única frequência de vibração definida.

9 Modos normais Formulação geral Acoplamento fraco x1(t) t x2(t) t

10 Modos normais Formulação geral Acoplamento fraco Se as condições iniciais são tais que c 2 = 0 e c 1 0, então X(t) = c 1 a 1 sin(ω 1 t + φ 1 ) Logo, o sistema permanece neste modo para t [0, ), com uma frequência ω 1 bem definida. Algo análogo ocorre se c 1 = 0 e c 2 0.

11 Formulação geral Acoplamento fraco Caso de interesse: m 1 = m 2 m, e k 1 = k 2 k. [ ] m 0 M = = mi 0 m sendo [ ] k + q q K = = ki + qa q k + q [ A = ]

12 Formulação geral Acoplamento fraco Para obter os modos normais: (K ω 2 M)a = O [qa (ω 2 m k)i]a = O [ ] [ 1 1 Como os autovetores de A são e 1 1 aos autovalores 0 e 2, temos a 1 = [ 1 1 ], ω 1 = k m [ a 2 = 1 1 ], associados ] k + 2q, ω 2 = m

13 Análise da solução Formulação geral Acoplamento fraco Seja a matriz de mudança de base Ξ = Y [ u v ] [ Ξ 1 X = Ξ 1 [ x1 x 2 ] ]. Assim: Ÿ = [ ü v ] [ ω 2 = ω2 2 ] [ u v ]

14 Análise da solução Formulação geral Acoplamento fraco { ü = ω 2 1u v = ω 2 2v Trata-se de duas equações de MHS desacopladas e admitem as soluções gerais: { u = A 1 sin(ω 2 1t + φ 1 ) v = A 2 sin(ω 2 2t + φ 2 )

15 Modos normais Formulação geral Acoplamento fraco Voltando às coordenadas x 1 e x 2 : { x 1 (t) = u(t) + v(t) x 2 (t) = u(t) v(t) As 4 constantes arbitrárias (A 1, A 2, φ 1, φ 2 ) devem ser determinadas pelas condições iniciais.

16 Modos normais Formulação geral Acoplamento fraco As soluções não correspondem, em geral, a um MHS para x 1 e x 2. Entretanto, há duas coordenadas u e v, combinações lineares de x 1 e x 2, que oscilam harmonicamente. Essas coordenadas chamam-se coordenadas normais. Neste caso, u e v admitem uma interpretação física muito simples: u é o deslocamento do CM e 2v é o deslocamento relativo das massas. Nas coordenadas normais, o sistema se desacopla.

17 Modos simétrico e anti-simétrico Formulação geral Acoplamento fraco Para condições iniciais apropriadas, temos { { A 2 = 0 x 1 (t) = x 2 (t) = A 1 sin(ω 1 t + φ 1 ) A 1 = 0 x 1 (t) = x 2 (t) = A 2 sin(ω 2 t + φ 2 ) Nestes dois casos, as partículas oscilam harmonicamente com uma frequência bem definida em fase ou em oposição de fase. Estes são os modos normais de vibração. A solução geral é uma superposição dos modos normais de vibração.

18 Modos simétrico e anti-simétrico Formulação geral Acoplamento fraco 1o modo: x 1 (t) = x 2 (t) (modo simétrico). A mola que liga as duas massas não é nem comprimida nem esticada: é como se ela não existisse. 2o modo: x 1 = x 2 (modo anti-simétrico). A frequência de oscilação é maior que no caso anterior pois há uma forma restauradora que não havia antes: a da mola do meio. Note que ω 2 > ω 1, isto é, o modo anti-simétrico tem frequência mais alta que a do modo simétrico.

19 Modos simétrico e anti-simétrico Formulação geral Acoplamento fraco Situação de interesse: massas partem do repouso, e uma delas é deslocada da posição de equilíbrio Solução x 1 (0) = a, x 2 (0) = 0, ẋ 1 (0) = ẋ 2 (0) = 0 x 1 (t) = a 2 [cos ω 1t + cos ω 2 t] x 2 (t) = a 2 [cos ω 1t cos ω 2 t] Reescrevendo ( ) ωt x 1 (t) = a cos cos( ωt) 2 ( ) ωt x 2 (t) = a sin sin( ωt) 2 onde ω = ω 2 ω 0, ω = ω 1 + ω 2 2

20 Batimentos Formulação geral Acoplamento fraco Se considerarmos o caso em que o acoplamento é pequeno (i.e. q k), temos: ω = ω 1 e w = ω2 q, em que ωq 2 = q/m. ω 1 Temos então ( uma ) situação típica de( batimentos, ) modulados ωt ωt por a cos para x 1 e por a sin para x 2, ou seja, a 2 2 modulação das amplitudes está em quadratura: os máximos de uma correspondem aos zeros da outra.

21 Batimentos Formulação geral Acoplamento fraco x1(t) t x2(t) t

22 Roteiro Mesma direção Direções perpendiculares 1 2 Mesma direção Direções perpendiculares 3

23 Mesma direção Direções perpendiculares Há diversas situações em que MHS s se superpõem gerando um movimento resultante. Exemplo: 2 diapasões vibrantes produzem tons musicais puros (que correspondem a MHS s) que atingem simultaneamente o tímpano de nosso ouvido, fazendo-o vibrar com uma combinação de 2 MHS s. Vamos analisar agora algumas formas possíveis de como a superposição pode ocorrer.

24 Mesma frequência Mesma direção Direções perpendiculares x(t) = A 1 cos(ωt + ϕ 1 ) + A 2 cos(ωt + ϕ 2 ) = Re [A ] 1 e i(ωt+ϕ1) + A 2 e i(ωt+ϕ 2) = Re [ e iωt ( A 1 e iϕ 1 + A 2 e iϕ )] 2 = A cos(ωt + β) sendo Ae iβ = A 1 e iϕ 1 + A 2 e iϕ 2

25 Mesma direção Direções perpendiculares Frequências diferentes: batimentos x 1 (t) = A 1 cos(ω 1 t + ϕ 1 ) e x 2 (t) = A 2 cos(ω 2 t + ϕ 2 ) A diferença de fase θ = (ω 2 ω 1 )t + (ϕ 2 ϕ 1 ) varia com o tempo de modo que podemos tomar por t = 0 o instante em que a diferença de fase é multipla de 2π, o que equivaleria a considerar: ϕ 1 = ϕ 2 = 0 Para w 1 e w 2 quaisquer, o movimento resultante x(t) = x 1 (t) + x 2 (t) não será em geral sequer um movimento periódico (para ser periódico, ω 1 e ω 2 precisam ser comensuráveis).

26 Mesma direção Direções perpendiculares Mesma direção e frequências diferentes Caso importante: quando ω 1 e ω 2 são muito próximas (ocorre batimento). Supondo A 1 = A 2 = A. ( ) ωt x(t) = 2A cos cos( ωt) 2 }{{} a(t) ω ω, podemos supor que x(t) é regido pelo cos ωt com uma amplitude que varia no tempo como a(t) x(t) t

27 Mesma frequência Mesma direção Direções perpendiculares x(t) = A cos(ωt + ϕ x ) y(t) = B cos(ωt + ϕ y ) Rearranjando e sendo ϕ = ϕ y ϕ x : y B = cos (ωt + ϕ x + ϕ) = x A cos(ϕ y ϕ x ) sin(ωt+ϕ x ) sin( ϕ) [ y B x ] ] 2 A cos( ϕ) = sin 2 (ωt+ϕ x ) sin 2 ( ϕ) = [1 x2 A 2 sin 2 ( ϕ) x 2 A 2 + y2 B 2 2xy AB cos( ϕ) = sin2 ( ϕ) Esta curva geralmente representa uma elipse, exceto em alguns casos particulares.

28 Mesma direção Direções perpendiculares Mesma frequência B y B y A A x A A x B ϕ = 0 B y B B y ϕ = π A A x A A x B ϕ = π/2 B ϕ = π/2

29 Frequências diferentes Mesma direção Direções perpendiculares Nesse caso, observam-se as curvas de Lissajous y y x x

30 Frequências diferentes Mesma direção Direções perpendiculares Se ω 1 e ω 2 são comensuráveis, a curva é fechada. Do contrário, a trajetória nunca se fecha. y x

31 Roteiro Pêndulo duplo Sistema carro/pêndulo Pêndulo duplo Sistema carro/pêndulo

32 Pêndulo duplo Sistema carro/pêndulo Enunciado Obtenha os modos e as frequências normais de oscilação do pêndulo duplo φ 1 l 1 m 1 l 2 φ 2 m 2

33 Pêndulo duplo Sistema carro/pêndulo Solução Diagrama de forças (atenção: forças de inércia em vermelho) T 1 T 2 α = φ 2 φ 1 φ 2 m 1 g m 1 α T 2 m 2 φ 1 m 2 φ2 1 l 1 m 2 g

34 Solução Pêndulo duplo Sistema carro/pêndulo Aplicando a 2a lei de Newton para m 1 na direção polar: m 1 g sin φ 1 + T 2 sin(φ 2 φ 1 ) = m 1 l 1 φ1 Aplicando a 2a lei de Newton para m 2 (direções polar e radial): { T 2 m 2 g cos φ 2 m 2 φ2 1 l 1 cos(φ 2 φ 1 ) = ml 2 2 φ 2 2 m 2 g sin φ 2 m 2 l 1 φ1 cos(φ 2 φ 1 ) m 2 φ2 1 l 1 sin(φ 2 φ 1 ) = m 2 l 2 φ2

35 Solução Pêndulo duplo Sistema carro/pêndulo Linearizando (assumindo pequenas oscilações) T 2 = m 2 g m 1 l 1 φ1 = m 1 gφ 1 + m 2 g(φ 2 φ 1 ) l 2 φ2 = gφ 2 l 1 φ1 Reescrevendo { m 1 l 1 φ1 = (m 1 + m 2 )gφ 1 + m 2 gφ 2 m 1 l 2 φ2 = (m 1 + m 2 )gφ 1 (m 1 + m 2 )gφ 2

36 Pêndulo duplo Sistema carro/pêndulo Solução Definindo τ = ω 1 t, ω 1 = g/l 1, r = m 2 /m 1, α 2 = l 1 /l 2 { φ 1 = (1 + r)φ 1 + rφ 2 φ 2 = (1 + r)α 2 φ 1 (1 + r)α 2 φ 2 em que φ = dφ/dτ. Para encontrar os modos e as frequências normais, precisamos resolver [ em que K = det(k ω 2 I) = 0 (1 + r) r α 2 (1 + r) (r + 1)α 2 ].

37 Solução Pêndulo duplo Sistema carro/pêndulo Para melhor insight da Física, é conveniente considerar α = 1 e r = 1 p(ω) = det(k ω 2 I) = ω 4 4ω 2 + 2, cujas raízes são ω 1 = 2 2 ω 2 = O primeiro modo tem frequência ω 1 = 2 2 e satisfaz a φ 2 = 2φ 1. Neste modo, as oscilações dos pêndulos estão em fase. O segundo modo tem frequência ω 2 = e satisfaz a φ 2 = 2φ 1. Neste modo, as oscilações dos pêndulos estão em oposição de fase.

38 Enunciado Pêndulo duplo Sistema carro/pêndulo Obtenha os modos e as frequências normais de carro acoplado ao pêndulo k m x θ L M

39 Solução Pêndulo duplo Sistema carro/pêndulo Diagrama de forças T kx m θ T Mẍ θ Mg θ Aplicando a 2a lei de Newton T sin θ kx = mẍ Mg sin θ Mẍ cos θ = ML θ T Mg cos θ + Mẍ sin θ = M θ 2 L

40 Solução Pêndulo duplo Sistema carro/pêndulo Reescrevendo as equações e desprezando termos não lineares (para pequenos ângulos) mẍ = kx + Mgθ θ = k ( ) M g ml x m + 1 L θ Definimos: r = M/m, u = x/l, ω = g/l, k = α 2 m ω 2, τ = ωt { u = α 2 u + rθ θ = α 2 u (r + 1)θ em que usamos u = d 2 u/dτ 2 e θ = d 2 θ/dτ 2

41 Solução Pêndulo duplo Sistema carro/pêndulo Para encontrar os modos e as frequências normais, precisamos resolver det(k ω 2 I) = 0 [ ] α 2 r em que K = α 2. Para melhor insight da Física, (r + 1) é conveniente considerar α = 2 e r = 1 cujas raízes são p(ω) = det(k ω 2 I) = ω 4 4ω 2 + 2, ω 1 = 2 2 ω 2 = 2 + 2

42 Solução Pêndulo duplo Sistema carro/pêndulo O primeiro modo tem frequência ω 1 = 2 2 e satisfaz a θ = 2u. Neste modo, as oscilações do carro e do pêndulo estão em fase. O segundo modo tem frequência ω 2 = e satisfaz a θ = 2u. Neste modo, as oscilações do carro e do pêndulo estão em oposição de fase.

Prof. Dr. Ronaldo Rodrigues Pelá. 9 de abril de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 9 de abril de 2013 OSCILAÇÕES FORÇADAS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 9 de abril de 013 Roteiro 1 Roteiro 1 Equação de movimento: { Mẍ 1 = kx 1 qx 1 + qx Mẍ = kx + qx 1 qx sendo w 0 = k M

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013 OSCILAÇÕES FORÇADAS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 3 de abril de 013 Roteiro 1 Forçadas Roteiro 1 Resultado M: 66 DP: 0 Conceito N L 3 MB 4 B 7 R 3 I 1 D 5 Roteiro Forçadas

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10 597 Física II Ondas, Fluidos e Termodinâmica USP Prof. ntônio Roque ula Oscilações acopladas e modos normais Os sistemas naturais não são isolados, mas interagem entre si. Em particular, se dois ou mais

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 24 de julho de 2018

Prof. Dr. Ronaldo Rodrigues Pelá. 24 de julho de 2018 OSCILAÇÕES Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 24 de julho de 2018 MHS, Roteiro 1 Organização do curso Motivação Definições Gerais 2 Formulação geral Sistema Massa-Mola 3 Pêndulo

Leia mais

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 15 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 15 de março de 2013 PÊNDULOS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 15 de março de 013 Roteiro 1 Harmônicas Roteiro Harmônicas 1 Harmônicas Harmônicas Sistemas que vibram: constituem uma classe de problemas

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Resumo e Lista de Exercícios. Física II Fuja do Nabo P

Resumo e Lista de Exercícios. Física II Fuja do Nabo P Resumo e Lista de Exercícios Física II Fuja do Nabo P1 018. Resumo 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

VIBRAÇÃO EXCITADA HARMONICAMENTE

VIBRAÇÃO EXCITADA HARMONICAMENTE VIBRAÇÃO EXCITADA HARMONICAMENTE Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 6 de abril de 2018 Roteiro 1 2 Ventilador Motor Roteiro 1 2 Introdução x M F (t) Mẍ + cẋ + kx = F (t) Trata-se

Leia mais

Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL Professor: Gustavo Silva 1 1. Introdução Nesta aula estudaremos sistemas amortecidos e não amortecidos sendo excitados harmonicamente.

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas

Leia mais

Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30.

Física para Engenharia II (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Física para Engenharia II 4320196 (antiga FEP2196) Turma 09 Sala C2-09 3as 13h10 / 5as 9h20. Turma 10 Sala C2-10 3as 15h00 / 5as 7h30. Profa. Márcia Regina Dias Rodrigues Depto. Física Nuclear IF USP Ed.

Leia mais

Vibrações de sistemas com um grau de liberdade 1

Vibrações de sistemas com um grau de liberdade 1 Vibrações de sistemas com um grau de liberdade 1 DEFINIÇÕES Vibração mecânica movimento de uma partícula ou de um corpo que oscila em torno de uma posição de equilíbrio. Período de vibração intervalo de

Leia mais

Física 2. Guia de Estudos P1

Física 2. Guia de Estudos P1 Física 2 Guia de Estudos P1 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em

Leia mais

Mecânica e Ondas fascículo 23

Mecânica e Ondas fascículo 23 Mecânica e Ondas fascículo 3 May 7, 008 Contents 3.1 Oscilações acopladas......................... 414 3. Conceito de onda........................... 40 3.3 Equação das cordas vibrantes....................

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017 Vibrações Movimento harmônico Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula 02 Londrina, 2017 1

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 23 de maio de 2013 OSCILAÇÕES FORÇADAS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 23 de maio de 2013 Roteiro 1 Unidimensionais Equação de Unidimensionais Harmônicas em cordas Roteiro Unidimensionais Equação

Leia mais

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J).

2. Em um sistema massa-mola temos k = 300 N/m, m = 2 kg, A = 5 cm. Calcule ω, T, f, E (12,25 rad/s; 0,51 s; 1,95 Hz; 0,38 J). FÍSICA BÁSICA II - LISTA 1 - OSCILAÇÕES - 2019/1 1. Em um sistema massa-mola temos k = 200 N/m, m = 1 kg, x(0) = A = 10 cm. Calcule ω, T, f, v m, a m, E (14,14 rad/s; 0,44 s; 2,25 Hz; 1,41 m/s; 20 m/s

Leia mais

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo

Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Sistemas Dinâmicos e Caos - 2016.2 - Lista de Problemas 2.1 1 Sistemas Dinâmicos e Caos Lista de Problemas 2.1 Prof. Marco Polo Questão 01: Oscilador harmônico Considere o oscilador harmônico ẋ = y, ẏ

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/7 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s. (1) [1,0] Um móvel executa MHS e obedece à função horária x=cos(0,5πt+π), no SI. O tempo necessário para que este

Leia mais

LISTA DE EXERCÍCIOS 1

LISTA DE EXERCÍCIOS 1 LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrerem turbulência

Leia mais

Física II para a Escola Politécnica ( ) - P2 (26/06/2015) [0000]

Física II para a Escola Politécnica ( ) - P2 (26/06/2015) [0000] Física II para a Escola Politécnica (3310) - P (6/06/015) [0000] NUSP: 0 0 0 0 0 0 0 1 1 1 1 1 1 1 3 3 3 3 3 3 3 5 5 5 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preena

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

Física para Engenharia II

Física para Engenharia II Física para Engenharia II 430196 (FEP196) Turma 01111 Sala C-13 3as 15h00 / 5as 9h0. Prof. Antonio Domingues dos Santos Depto. Física Materiais e Mecânica IF USP Ed. Mário Schemberg, sala 05 adsantos@if.usp.br

Leia mais

Para quem não se recorda do tratamento completo do sistema massa-mola, após esta seção, reproduzo aquela que seria uma seção anterior.

Para quem não se recorda do tratamento completo do sistema massa-mola, após esta seção, reproduzo aquela que seria uma seção anterior. 1 Este texto é parte integrante do texto do curso Introdução Física Quântica de Materiais que ministro no Programa de Pós-Graduação em Ciência e Tecnologia dos Materiais. A seção 1..1 apresenta um problema

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 DINÂMICA Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 1 de março de 013 Roteiro 1 Roteiro 1 : caso geral Componente do momento angular ao longo do eixo de rotação é L = I ω Mas o momento

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

O Sistema Massa-Mola

O Sistema Massa-Mola O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola

Leia mais

MODOS NORMAIS de vibração. mola e peso barbante

MODOS NORMAIS de vibração. mola e peso barbante MODOS NORMAIS de vibração mola e peso barbante MODOS NORMAIS de vibração de uma corda (aula Ondas3 de Fis. 2) f/2 3f/2 5f/2 7f/2 f 2f 3f 4f https://www.youtube.com/watch?v=v_kopeob1ke A matemática... y

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

Curso de Complementos de Física

Curso de Complementos de Física Solução da Orientações Gerais Curso de Engenharia Civil Faculdade Campo Grande 7 de Agosto de 2015 Solução da Plano de Aula 1 Oscilações Simples 2 3 Solução da 4 5 Introdução Oscilações Simples Solução

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples.

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3. de maneira que o sistema se comporta como um oscilador harmônico simples. 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 3 O Pêndulo Simples O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola

Leia mais

PGF Mecânica Clássica Prof. Iberê L. Caldas

PGF Mecânica Clássica Prof. Iberê L. Caldas PGF 55 - Mecânica Clássica Prof. Iberê L. Caldas Terceiro Estudo Dirigido o semestre de 18 Os estudos dirigidos podem ser realizados em duplas. Apenas os exercícios marcados com asteriscos precisam ser

Leia mais

Prova P3 Física para Engenharia II, turma nov. 2014

Prova P3 Física para Engenharia II, turma nov. 2014 Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com

Leia mais

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas. Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá

Corpos Rígidos MOMENTO ANGULAR. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá MOMENTO ANGULAR Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de março de 2013 Roteiro 1 Roteiro 1 Quando todas as partículas de um corpo rígido se movem ao longo de trajetórias que

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS Prof. Bruno Farias Ondas Uma onda surge quando um sistema é deslocado de sua posição

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

Capítulo 4 O Oscilador Amortecido

Capítulo 4 O Oscilador Amortecido Capítulo 4 O Oscilador Amortecido Vamos supor que um oscilador harmônico tenha amortecimento, isto é, sofre uma resistência ao seu movimento e que esta resistência, para simplificar seja linearmente proporcional

Leia mais

6.5 Movimento oscilatório

6.5 Movimento oscilatório 6.5-1 6.5 Movimento oscilatório 6.5.1 Osciladores acoplados Na seção anterior estudamos, entre outras coisas, como funciona a transferência de energia de um agitador externo para um oscilador. Agora vamos

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

É o número de oscilações que acontecem por segundo. A medida é feita em hertz: T = 1 f. x = x m

É o número de oscilações que acontecem por segundo. A medida é feita em hertz: T = 1 f. x = x m 1 OSCILAÇÕES Veja o pêndulo simples abaixo. Suponha que a bola amarela parta da posição vertical de repouso até alcançar o ponto de máximo deslocamento positivo. Considerando que não há nenhuma perda,

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) Respostas das versıes de m ltipla escolha: 16A7: (1) C; () D; (3) C; (4) D; 3A33: (1) C; () B; (3) C; (4) E; E7Hx: (1) C; () B; (3) B; (4) C; 11F: (1) A;

Leia mais

6. Sistemas oscilantes

6. Sistemas oscilantes 6. Sistemas oscilantes 6.1 O oscilador harmónico simples A figura 6.1 mostra uma mola numa posição vertical com um extremo fixo. Quando uma esfera de massa m é pendurada no outro extremo, a mola estica

Leia mais

ONDULATÓRIA: EQUAÇÃO DE ONDAS E CONCEITOS

ONDULATÓRIA: EQUAÇÃO DE ONDAS E CONCEITOS TE053-Ondas Eletromagnéticas ONDULATÓRIA: EQUAÇÃO DE ONDAS E CONCEITOS BÁSICOS PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Conceitos básicos sobre

Leia mais

TURNO. 3. Equações do M.H.S Usamos o artifício matemático do estudo de um M.C.U para encontrar as equações do M.H.S.

TURNO. 3. Equações do M.H.S Usamos o artifício matemático do estudo de um M.C.U para encontrar as equações do M.H.S. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) MARCOS HAROLDO, MOACIR WEYNE E TEIXEIRA JR. SEDE Nº TC TURMA TURNO DATA / / FÍSICA MOVIMENTOS PERIÓDICOS / MOVIMENTO HARMÔNICO SIMPLES / SUPERPOSIÇÃO

Leia mais

FUNDAMENTOS DE CONTROLE - EEL 7531

FUNDAMENTOS DE CONTROLE - EEL 7531 Soluções periódicas e ciclos limite Funções descritivas FUNDAMENTOS DE CONTROLE - EEL 7531 Professor: Aguinaldo S. e Silva LABSPOT-EEL-UFSC 9 de junho de 2015 Professor: Aguinaldo S. e Silva FUNDAMENTOS

Leia mais

Física I Prova 3 19/03/2016

Física I Prova 3 19/03/2016 Nota Física I Prova 3 19/03/2016 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 3 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 10

Leia mais

Vibrações Mecânicas. Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE. Ramiro Brito Willmersdorf

Vibrações Mecânicas. Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE. Ramiro Brito Willmersdorf Vibrações Mecânicas Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE Ramiro Brito Willmersdorf 2015.1 Introdução Sistemas que requerem 2 coordenadas generalizadas para especificar unicamente sua configuração;

Leia mais

EUF. Exame Unificado

EUF. Exame Unificado EUF Exame Unificado das Pós-graduações em Física Para o segundo semestre de 016 Respostas esperadas Parte 1 Estas são sugestões de possíveis respostas Outras possibilidades também podem ser consideradas

Leia mais

Física 2. Guia de Estudos P2

Física 2. Guia de Estudos P2 Física 2 Guia de Estudos P2 1. Amortecimento Anteriormente, no Movimento Harmônico Simples (MHS), foi estudado o movimento com uma força restauradora proporcional ao deslocamento em relação à uma posição

Leia mais

Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D

Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D www.engenhariafacil.weebly.com Resolução da ª Prova de Física II -UFRJ do Período- 014. (1/11/014). Versão D OBS: Esse não é o gabarito oficial. O gabarito oficial será lançado no site do Instituto de

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

Capítulo 3 O Oscilador Hamônico

Capítulo 3 O Oscilador Hamônico Capítulo 3 O Oscilador Hamônico Uma força unidimensional, que depende somente da posição x, tem uma expansão de Taylor em torno da sua posição de equilíbrio x=0 (onde F=0) Quando somente o termo linear

Leia mais

Seção 11: EDOLH com coeficientes constantes

Seção 11: EDOLH com coeficientes constantes Seção 11: EDOLH com coeficientes constantes Observação fundamental: Se L(y) = y + py + qy, com p, q constantes então L(e λt ) = ( λ + pλ + q ) e λt. Portanto a EDO L(y) = 0 pode ter solução da forma y

Leia mais

Lista de Exercícios - OSCILAÇÕES

Lista de Exercícios - OSCILAÇÕES UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS FÍSICA GERAL E EXPERIMENTAL II-E

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS FÍSICA GERAL E EXPERIMENTAL II-E UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS 122 - FÍSICA GERAL E EXPERIMENTAL II-E www.fis.ufba.br/~fis122 LISTA DE EXERCÍCIOS: OSCILAÇÕES 2014.1 01)

Leia mais

25/05/06 MAP Análise Numérica e Equações Diferenciais I 1 o Semestre de EDO linear homogênea a coeficientes constantes - Continução

25/05/06 MAP Análise Numérica e Equações Diferenciais I 1 o Semestre de EDO linear homogênea a coeficientes constantes - Continução 25/05/06 MAP 2310 - Análise Numérica e Equações Diferenciais I 1 o Semestre de 2006 Continuação 185 EDO linear homogênea a coeficientes constantes - Continução Exercício 36 Ache a solução geral complexa

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L

Leia mais

Revisão III: Dinâmica Estrutural Linear: Superposição Modal

Revisão III: Dinâmica Estrutural Linear: Superposição Modal Revisão III: Dinâmica Estrutural Linear: Superposição Modal Como calcular a parcela elástica da posição do elemento de massa: p d Hipótese: flexibilidade moderada pequenos deslocamentos elásticos comportamento

Leia mais

Dinâ micâ de Mâ quinâs e Vibrâçõ es II

Dinâ micâ de Mâ quinâs e Vibrâçõ es II Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.

Leia mais

Física 2 - EMB5039. Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017

Física 2 - EMB5039. Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017 Física 2 - EMB5039 Prof. Diego Duarte Oscilações (lista 4) 19 de abril de 2017 1. Mostre que a equação que descreve o sistema massa-mola vertical da figura 1 é dada por: d 2 y dt 2 + ω2 y = 0 (1) em que

Leia mais

Oscilações II. Estudo: Pêndulo Simples Oscilador Forçado Ressonância

Oscilações II. Estudo: Pêndulo Simples Oscilador Forçado Ressonância Oscilações II Estudo: Pêndulo Simples Oscilador Forçado Ressonância Oscilações - Pêndulo Considere um corpo de massa m, presso a extremidade livre de um fio inextensível de comprimento L, como indicado

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/15 2/15 Análise Modal Na aula anterior fomos apresentados à matriz P, que reunia os autovetores de um problema de vibração. Esta matriz pode ser utilizada para desacoplar equações de vibrações, ao transformar

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s 2. Respostas da questões por versão de prova: E7Hx: (1) A; (2) E; (3) A; (4) E; 112F: (1) E; (2) B; (3) D; (4) B;

Leia mais

Exercícios de Mecânica Analítica

Exercícios de Mecânica Analítica Universidade de São Paulo - Instituto de Física Complementos de Mecânica Clássica Exercícios de Mecânica Analítica Rafael Wagner - 8540310 1 de novembro de 016 1 Primeiro exercício Um sistema "pêndulo-mola"consiste

Leia mais

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais

Leia mais

EXPERIÊNCIA M003-3 PÊNDULO SIMPLES

EXPERIÊNCIA M003-3 PÊNDULO SIMPLES UFSC - CFM DEPTO. DE FÍSICA FÍSICA EXPERIMENTAL I - FSC 5122 1 - OBJETIVOS EXPERIÊNCIA M003-3 PÊNDULO SIMPLES a) Medir a aceleração da gravidade local. b) Identificar o equipamento e entender seu funcionamento.

Leia mais

AULA 43 RELAÇÃO ENTRE O MOVIMENTO HARMÔNICO E O MOVIMENTO CIRCULAR

AULA 43 RELAÇÃO ENTRE O MOVIMENTO HARMÔNICO E O MOVIMENTO CIRCULAR AULA 43 RELAÇÃO ENTRE O MOVIMENTO HARMÔNICO E O MOVIMENTO CIRCULAR OBJETIVOS: ESTUDAR A RELAÇÃO DO MOVIMENTO HARMÔNICO COM O CIRCULAR, MOSTRANDO QUE ESTE É UMA COMPOSIÇÃO DE DOIS MOVIMENTOS HARMÔNICOS

Leia mais

8. Estabilidade e bifurcação

8. Estabilidade e bifurcação 8. Estabilidade e bifurcação Os sistemas dinâmicos podem apresentar pontos fixos, isto é, pontos no espaço de fase onde o sistema permanece sempre no mesmo estado. Para identificar os pontos fixos e estudar

Leia mais

Terceira Prova - Questões objetivas (0,7 pontos)

Terceira Prova - Questões objetivas (0,7 pontos) Universidade Federal do Rio de janeiro Instituto de Física Disciplina: Física II-A (FIT122) 2018.2 Data: 30/11/2018 Terceira Prova - Questões objetivas (0,7 pontos) 1. Se a temperatura de um gás ideal

Leia mais

Modos Normais. Física do Estado Sólido 2017/2018, 23 Abril Modos Normais FES Fonões 1 / 20

Modos Normais. Física do Estado Sólido 2017/2018, 23 Abril Modos Normais FES Fonões 1 / 20 odos Normais Física do Estado Sólido 2017/2018, 23 Abril 2018 odos Normais FES Fonões 1 / 20 Outline 1 Introdução 2 Sistema Clássico 3 Sistema Quântico odos Normais FES Fonões 2 / 20 Sistemas perto do

Leia mais

O Movimento Harmônico Simples

O Movimento Harmônico Simples O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

MHS Movimento Harmônico Simples

MHS Movimento Harmônico Simples 2010 ESCOLA ALUNO MHS Movimento Harmônico Simples 1. (Mackenzie) Uma partícula descreve um movimento harmônico simples segundo a equação X = 0,3. cos (π /3 + 2.t), no S.I.. O módulo da máxima velocidade

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental II (MAF 2202) L I S T A I Capítulo 16 Oscilações 1. Um oscilador

Leia mais

MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17

MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17 MAT 340 - EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17 Bulmer Mejía García 2010-II Universidade Federal de Viçosa EDO de Cauchy-Euler É uma EDO da seguinte forma a n (ax+b) n y (n) (x)+a n 1 (ax+b) n

Leia mais

Corpos Rígidos CORPOS RÍGIDOS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá

Corpos Rígidos CORPOS RÍGIDOS. Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA. 5 de março de R.R.Pelá CORPOS RÍGIDOS Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de março de 2013 Roteiro 1 2 Roteiro 1 2 Algarismos significativos 0,333 3 alg. sign. 3,155 4 alg. sign. 3 1 alg. sign. 3,0

Leia mais

POLARIZAÇÃO DE ONDAS ELETROMAGNÉTICAS

POLARIZAÇÃO DE ONDAS ELETROMAGNÉTICAS TE053-Ondas Eletromagnéticas POLARIZAÇÃO DE ONDAS ELETROMAGNÉTICAS PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Representação Geral da Polarização

Leia mais

(Versão 2014/2) (b) (d)

(Versão 2014/2) (b) (d) MOVIMENTO HARMÔNICO SIMPLES (Versão 2014/2) 1. INTRODUÇÃO Um dos movimentos mais importantes que observamos na natureza é o movimento oscilatório. Chamado também movimento periódico ou vibracional. Em

Leia mais

Universidade do Algarve

Universidade do Algarve Universidade do Algarve Departamento de Física Problemas de Movimento Oscilatório e Ondas Orlando Camargo Rodríguez 06 de Setembro de 005 Capa: Superfície ondulada por: M.C. Escher 1 Movimento Harmónico

Leia mais

Mecânica Analítica. Dinâmica Hamiltoniana. Licenciatura em Física. Prof. Nelson Luiz Reyes Marques MECÂNICA ANALÍTICA PARTE 2

Mecânica Analítica. Dinâmica Hamiltoniana. Licenciatura em Física. Prof. Nelson Luiz Reyes Marques MECÂNICA ANALÍTICA PARTE 2 Mecânica Analítica Dinâmica Hamiltoniana Licenciatura em Física Prof. Nelson Luiz Reyes Marques Princípio de Hamilton O caminho real que uma partícula percorre entre dois pontos 1 e 2 em um dado intervalo

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés

Leia mais

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4. O Pêndulo Físico 591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 4 O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Instituto de Física - USP FGE Laboratório de Física III - LabFlex

Instituto de Física - USP FGE Laboratório de Física III - LabFlex Instituto de Física - USP FGE013 - Laboratório de Física III - LabFlex Aula 14 - (Exp 3.3) - Oscilador magnético forçado amortecido Manfredo H. Tabacniks Alexandre Suaide novembro 007 M.H. Tabacniks, A.

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais