Capítulo 4 O Oscilador Amortecido
|
|
|
- Rui Alvarenga Chaplin
- 9 Há anos
- Visualizações:
Transcrição
1 Capítulo 4 O Oscilador Amortecido Vamos supor que um oscilador harmônico tenha amortecimento, isto é, sofre uma resistência ao seu movimento e que esta resistência, para simplificar seja linearmente proporcional à velocidade Dividindo a equação acima por m, teremos onde Tomando equação característica e substituindo em (1), obtemos a cujas raízes são A solução geral será então 1) Regime Subcrítico: Chamando de e substituindo em (4), temos Impondo que é real, isto é,, teremos. Reescrevendo, obtemos e 1
2 Condições Iniciais: A Energia Mecânica varia no tempo Derivando em relação ao tempo A energia diminui com o tempo: Substituindo (5) e (6) em (8), fazendo médias temporais no intervalo, para um instante arbitrário,. Nestas integrais podemos tirar fora da integral o fator que oscila muito pouco, pois é pequeno e recuperando resultado que já provamos:, obtemos Definimos o tempo de decaimento quando a exponencial é igual a A energia dissipada num ciclo de período vale então 2
3 Definimos o fator de qualidade Q (adimensional) Quanto menor o amortecimento maior o fator de qualidade Q. 2) Regime supercrítico: Da equação (3) podemos definir a frequência Note que. Então a solução será só exponenciais decrescentes Neste regime superamortecido, o oscilador não oscila! 3) Regime crítico: Só temos uma única solução (raiz) da equação característica. Precisamos de outra solução linearmente independente. Pode-se mostrar que esta outra solução é um misto de exponencial e linear no tempo, isto é E a solução geral Os amortecedores de portas de hospitais, prédios públicos, etc. devem ser colocados no regime crítico. 3
4 Oscilações Forçadas Suponha que um oscilador, sem amortecimento, esteja sob a ação de uma força externa periódica de frequência. A equação de movimento será Dividindo por e definindo a frequência natural de oscilação Tomando a eq. (17) se transforma em (18) se reduz (17) tomando sua parte real. A solução deve então ser do tipo Substituindo em (18) ou Note que temos 2 possíveis situações finitas e de maneira que podemos reescrever ou seja Quando teremos a ressonância, com a amplitude de oscilação divergindo, fenômeno que já derrubou pontes e leva a voz de uma soprano a quebrar uma taça de cristal. 4
5 Oscilações Amortecidas e Forçadas ou no plano complexo A equação homogênea tem como solução um dos 3 regimes discutidos na secção de amortecimento (regimes subcrítico, crítico e supercrítico). A vigência dessa solução é por um certo intervalo de tempo, já que o amortecimento levará, com o tempo, ao desaparecimento dessa solução...por isso essa solução é chamada de transiente. Precisamos agora encontrar uma solução particular da não homogênea e que não evanesça com o tempo uma solução estacionária. Tomando e substituindo em (23), teremos Da expressão acima vemos que é um número complexo. Escrevendo Donde E, finalmente que é a solução estacionária do oscilador harmônico forçado [deve se utilizada junto com (26 a e b). 5
6 Uma aplicação importante da solução acima é no circuito RLC. Oscilações Acopladas Na figura abaixo vemos dois pêndulos de massas e acoplados por uma mola de constante. Vamos analisar o movimento para pequenas oscilações. Na fig. a mola está esticada ( ) de maneira que o corpo 1 é puxado pela mola para a direita e o corpo 2 para a esquerda mas, e de forma que Dividindo tudo por onde. As eq. acima formam um sistema acoplado de eq. diferenciais. 6
7 Somando (29 a) e (29 b) teremos Subtraindo (29 a) e (29 b) teremos Definindo as chamadas coordenadas normais Teremos Com soluções Vemos que os modos normais desacoplam as eq. diferenciais e correspondem aos modos: simétrico (fig. a) quando e antissimétrico (fig. b) quando 7
8 Oscilações Longitudinais e Transversais Numa oscilação longitudinal o corpo e onda se propagam na mesma direção. Numa oscilação transversal o corpo se movimenta numa direção perpendicular à propagação da onda. Deixaremos a oscilação transversal para o curso de Vibrações e Ondas, já que sua manifestação é típica de vibração de uma corda ou de propagação de ondas eletromagnéticas. Sejam 3 molas idênticas com constante de mola e comprimento livre. Elas têm massas desprezíveis e estão ligadas a 2 corpos idênticos de massa. Sejam os seus deslocamentos a partir das posições livres (escolhemos o sentido positivo para a direita). Então Dividindo por Somando (33 a e b) Subtraindo (33 a e b) 8
9 Definindo as coordenadas normais teremos as soluções No modo simétrico e no antissimétrico 9
AULA 45 O OSCILADOR HARMÔNICO FORÇADO
AULA 45 O OSCILADOR HARMÔNICO FORÇADO OBJETIVOS: ESTUDAR O MOVIMENTO HARMÔNICO FORÇADO 45.1 MOVIMENTO HARMÔNICO FORÇADO Este oscilador está na base de um grande número de fenômenos da Natureza e aplicações
Capítulo 3 O Oscilador Hamônico
Capítulo 3 O Oscilador Hamônico Uma força unidimensional, que depende somente da posição x, tem uma expansão de Taylor em torno da sua posição de equilíbrio x=0 (onde F=0) Quando somente o termo linear
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas
c il a ções Física 2 aula 9 2 o semestre, 2012
Os c il a ções Física aula 9 o semestre, 1 Movimento Harmônico simples: coneão entre vibrações e ondas Energia no MHS Energia Mecânica Total: 1 1 Quando =A ou =-A (etremos): E mv k 1 1 1 E m() k( A) ka
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E
AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico
, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.
Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que
Vibrações Mecânicas. Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE. Ramiro Brito Willmersdorf
Vibrações Mecânicas Sistemas com 2 Graus de Liberdade DEMEC/CTG/UFPE Ramiro Brito Willmersdorf 2015.1 Introdução Sistemas que requerem 2 coordenadas generalizadas para especificar unicamente sua configuração;
Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto
Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância Prof. Ettore Baldini-Neto 1610: Galileu, usando um telescópio recém construído, descobre
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CIRCUITOS RLC COM ONDA QUADRADA
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CIRCUITOS RLC COM ONDA QUADRADA 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem
Fenómenos ondulatórios
Fenómenos ondulatórios Onda É uma perturbação que se propaga em um meio, determinando a transferência de energia, sem transporte de matéria. Em relação à direção de propagação da energia nos meios materiais
Oscilações II. Estudo: Pêndulo Simples Oscilador Forçado Ressonância
Oscilações II Estudo: Pêndulo Simples Oscilador Forçado Ressonância Oscilações - Pêndulo Considere um corpo de massa m, presso a extremidade livre de um fio inextensível de comprimento L, como indicado
Circuitos RLC alimentados com onda quadrada
Circuitos RLC alimentados com onda quadrada 8 8.1 Material capacitor de 10 nf; resistores de 100 Ω; indutor de 23,2 mh; potenciômetro. 8.2 Introdução Nos experimentos anteriores estudamos o comportamento
Circuitos RLC alimentados com onda quadrada
Circuitos RLC alimentados com onda quadrada 4 4.1 Material Gerador de funções; osciloscópio; multímetro; capacitor de 10 nf; resistores de 100 Ω; indutor de 10 a 50 mh; potenciômetro. 4.2 Introdução No
Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10
597 Física II Ondas, Fluidos e Termodinâmica USP Prof. ntônio Roque ula Oscilações acopladas e modos normais Os sistemas naturais não são isolados, mas interagem entre si. Em particular, se dois ou mais
Experimento 5 Circuitos RLC com onda quadrada
Experimento 5 Circuitos RLC com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem nas placas de um capacitor, em função do tempo, num circuito RLC alimentado com onda quadrada.
UNIDADE 15 OSCILAÇÕES
UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito
Prof. Oscar 2º. Semestre de 2013
Cap. 16 Ondas I Prof. Oscar º. Semestre de 013 16.1 Introdução Ondas são perturbações que se propagam transportando energia. Desta forma, uma música, a imagem numa tela de tv, a comunicações utilizando
Cap. 16 Ondas I. Prof. Oscar 1º. Semestre de 2011
Cap. 16 Ondas I Prof. Oscar 1º. Semestre de 011 16.1 Introdução Ondas são perturbações que se propagam transportando energia. Desta forma, uma música, a imagem numa tela de tv, a comunicações utilizando
MOVIMENTO OSCILATÓRIO
MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões
Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.
Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento
Capí tulo 6 Movimento Oscilato rio Harmo nico
Capí tulo 6 Movimento Oscilato rio Harmo nico 1. O Movimento Harmónico Simples Vamos estudar o movimento de um corpo sujeito a uma força elástica. Consideramos o sistema como constituído por um corpo de
Ressonador de Helmholtz.
Ressonador de Helmholtz. Modelo mecânico do ressonador de Helmholtz O ressonador é composto por um volume V, esférico no caso mostrado na figura, e um gargalo de seção reta S e comprimento l. A primeira
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I PROF.: KAIO DUTRA Tipos de Ondas As ondas podem ser de três tipos principais: Ondas Mecânicas: São governadas pelas leis de Newton e existem apenas
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um
As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto
Departamento de Física - ICE/UFJF Laboratório de Física II
1 Objetivos Gerais: Movimento Harmônico Amortecido Determinar o período de oscilação do pêndulo T ; Determinar a constante de amortecimento. *Anote a incerteza dos instrumentos de medida utilizados: ap
PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA EXPERIÊNCIA 10: REDES DE SEGUNDA ORDEM
ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA Edição 2017 E.Galeazzo / L.Yoshioka
Mecânismos A06. Prof. Nilton Ferruzzi. Prof. Nilton Ferruzzi 1
Mecânismos A06 Prof. Nilton Ferruzzi Prof. Nilton Ferruzzi 1 Definição de Vibração Mecânica: É qualquer movimento que se repete, regular ou irregularmente, depois de um intervalo de tempo. O movimento
Prova P3 Física para Engenharia II, turma nov. 2014
Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA
FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 2 OSCILAÇÕES PROF.: KAIO DUTRA Movimento Harmônico Simples O movimento harmônico simples é um tipo básico de oscilação. Movimento Harmônico Simples Uma propriedade
FEP Física para Engenharia II
FEP2196 - Física para Engenharia II Prova P1-25/10/2007 - Gabarito 1. Um corpo de massa 50 g está preso a uma mola de constante k = 20 N/m e oscila, inicialmente, livremente. Esse oscilador é posteriormente
Física I 2010/2011. Aula 10. Movimento Oscilatório II
Física I 2010/2011 Aula 10 Movimento Oscilatório II Sumário Capítulo 15: Oscilações 15-3 A Energia no Movimento Harmónico Simples 15-4 Um Oscilador Harmónico Simples Angular 15-5 O Pêndulo simples 15-7
Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.
Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com
Fenómenos ondulatórios
Fenómenos ondulatórios Características das ondas Uma onda é descrita pelas seguintes características físicas: Amplitude, A Frequência, f Comprimento de onda, Velocidade, v Características das ondas A amplitude
FÍSICA. Oscilação e Ondas. Ondas e Propriedades Ondulatórias. Prof. Luciano Fontes
FÍSICA Oscilação e Ondas Ondas e Propriedades Ondulatórias Prof. Luciano Fontes ONDAS: É uma perturbação que se propaga num meio. Ondas e energia: Transporta energia mas não matéria Direção de Propagação:
FEP Física para Engenharia II
FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.
TEXTO INTRODUTÓRIO. Luz e Ondas Eletromagnéticas ONDAS: Licenciatura em Ciências USP/ Univesp. Luiz Nunes de Oliveira Daniela Jacobovitz
1 ONDAS: CONCEITOS BÁSICOS Luiz Nunes de Oliveira Daniela Jacobovitz TEXTO INTRODUTÓRIO Licenciatura em Ciências USP/ Univesp Licenciatura em Ciências USP/Univesp Módulo 1 2 Para compreender a natureza
Experimento 5 Circuitos RLC com onda quadrada
Experimento 5 Circuitos RLC com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem nas placas de um capacitor, em função do tempo, num circuito RLC alimentado com onda quadrada.
A energia total do circuito é a soma da potencial elétrica e magnética
Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 35-, 35-4, 35-5, 35-6 S. 3-6, 3-7 T. 8-4 Aula 7 Circuitos
Terceira Prova - Questões objetivas (0,7 pontos)
Universidade Federal do Rio de janeiro Instituto de Física Disciplina: Física II-A (FIT122) 2018.2 Data: 30/11/2018 Terceira Prova - Questões objetivas (0,7 pontos) 1. Se a temperatura de um gás ideal
Capítulo 3 Equações Diferenciais. O Wronskiano (de Josef Hoëné-Wronski, polonês, )
Capítulo 3 Equações Diferenciais O Wronskiano (de Josef Hoëné-Wronski, polonês, 1776 1853) Seja a equação diferencial, ordinária, linear e de 2ª. ordem Podemos dividir por os 2 membros e escrever a equação
LISTA DE EXERCÍCIOS 2
LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés
Ondas. Lucy V. C. Assali. Física II IO
Ondas Física II 2016 - IO O que é uma onda? Qualquer sinal que é transmitido de um ponto a outro de um meio, com velocidade definida, sem que haja transporte direto de matéria. distúrbio se propaga leva
Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009
Universidade de São Paulo Instituto de Física FEP11 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 9 Primeira Lista de Exercícios Oscilações 1) Duas molas idênticas, cada uma de constante, estão
As principais formas de oscilação são: Massa - mola Pêndulo Ondas em uma superfície.
Tudo ao nosso redor oscila!!! As principais formas de oscilação são: Ondas Massa - mola Pêndulo Ondas em uma superfície. O que é um pêndulo? Um corpo suspenso por um fio, afastado da posição de equilíbrio
Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular.
Oscilações amortecidas Lista de exercícios Exercício 1 harmônica? Qualitativamente, o que é que distingue uma oscilação amortecida de uma oscilação Exercício 2 um deles? Quais são os três possíveis regimes
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS Prof. Bruno Farias Ondas Uma onda surge quando um sistema é deslocado de sua posição
PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA
1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: SUPERIOR DE TECNOLOGIA EM SISTEMAS DE TELECOMUNICAÇÔES Nome da disciplina: Campos e ondas Código: 54160 Carga horária: 83 horas Semestre previsto: 2
= 0,28 m/s. F = m d 2 x d t 2
Um bloco de massa m = 0,1 kg é ligado a uma mola de constante elástica k = 0,6 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até
Circuitos RLC alimentados com onda quadrada
Capítulo 5 Circuitos RLC alimentados com onda quadrada 5.1 Material Gerador de funções; osciloscópio; multímetro; capacitor de 10 nf; resistores de 100 Ω; indutor de 10 a 50 mh; potenciômetro. 5.2 Introdução
Aula do cap. 17 Ondas
Aula do cap. 17 Ondas O que é uma onda?? Podemos definir onda como uma variação de uma grandeza física que se propaga no espaço. É um distúrbio que se propaga e pode levar sinais ou energia de um lugar
Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas
Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples
Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9
591036 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 9 A Equação de Onda em Uma Dimensão Ondas transversais em uma corda esticada Já vimos no estudo sobre oscilações que os físicos gostam de
Ondas (Aula 1) Prof. Ettore Baldini-Neto
Ondas (Aula 1) Prof. Ettore Baldini-Neto Tipos de ondas: Ondas mecânicas: Ondas sonoras, sísmicas, na água. São governadas pelas leis da mecânica e propagam-se em meios materiais: rochas, cordas, ar, água.
Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6
59136 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6 Oscilações Forçadas e Ressonância Nas aulas precedentes estudamos oscilações livres de diferentes tipos de sistemas físicos. Em uma oscilação
Exercício 1. Exercício 2.
Exercício 1. A equação de uma onda transversal se propagando ao longo de uma corda muito longa é, onde e estão expressos em centímetros e em segundos. Determine (a) a amplitude, (b) o comprimento de onda,
Ondas Estacionárias em uma Corda
Ondas Estacionárias em uma Corda INTRODUÇÃO Ondas estacionárias em uma corda finita Em uma corda uniforme de densidade linear de massa, submetida a uma tensão T, a velocidade de propagação v de um pulso
Imagem: Jkrieger / Creative Commons Attribution-Share Alike 3.0 Unported
Imagem: Jkrieger / Creative Commons Attribution-Share Alike 3.0 Unported -A 0 Movimento oscilatório: todo movimento de vaivém realizado simetricamente em torno de um ponto de equilíbrio. A Movimento periódico:
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
Problemas sobre osciladores simples
Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto
FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIEIRA DA CUNHA Projeto para Trabalho Trimestral de Física
FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIEIRA DA CUNHA Projeto para Trabalho Trimestral de Física Curso: Mecânica Turma: 3111 Data: 29/08/2008 Sala : 275 Aluno:Augusto Haubrich n : 02 Aluno: Daniel Rudolph
Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013
OSCILAÇÕES FORÇADAS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 3 de abril de 013 Roteiro 1 Forçadas Roteiro 1 Resultado M: 66 DP: 0 Conceito N L 3 MB 4 B 7 R 3 I 1 D 5 Roteiro Forçadas
QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)
[0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s 2. Respostas da questões por versão de prova: E7Hx: (1) A; (2) E; (3) A; (4) E; 112F: (1) E; (2) B; (3) D; (4) B;
Prof. Neckel 06/08/2017. Tipos de ondas. Nesta disciplina: Ondas mecânicas. Simulação no desmos
FÍSICA 2 ONDAS PROGRESSIVAS PROF. MSC. LEANDRO NECKEL ONDA Definição de onda: Perturbação Periódica que se propaga em um meio ou no espaço Tipos de ondas Mecânicas: oscilação em um determinado meio, dependem
FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia
FÍSICA Professor Sérgio Gouveia MÓDULO 17 OSCILAÇÕES E ONDAS MOVIMENTO HARMÔNICO SIMPLES (MHS) 1. MHS DEFINIÇÃO É o movimento oscilatório e retilíneo, tal que a aceleração é proporcional e de sentido contrário
Osciladores livres, amortecidos, forçados e ressonância
Osciladores livres, amortecidos, forçados e ressonância Notas de aula Daniel Cosmo Pizetta Instituto de Física de São Carlos Universidade de São Paulo Laboratório de Física II 1. Oscilador livre Força
Uma onda é definida como um distúrbio que é auto-sustentado e se propaga no espaço com uma velocidade constante. Ondas podem ser classificados em
Ondas I Tipos de ondas; Amplitude, fase, freqüência, período, velocidade de propagação de uma onda; Ondas mecânicas propagando ao longo de uma corda esticada; Equação de onda; Princípio da superposição
Seção 9: EDO s lineares de 2 a ordem
Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y
Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente. da onda da onda ocorre é no problema da corda vibrante.
Seção 18: Equação da Onda Nesta seção começamos o estudo das equações diferenciais a derivadas parciais, abreviadamente EDP s. Começamos pela equação da onda. Um exemplo de situação em que a equação da
SISTEMAS DE OSCILADORES
SISTEMAS DE OSCILADORES Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 5 de abril de 2018 Roteiro 1 Formulação geral Acoplamento fraco 2 Mesma direção Direções perpendiculares 3 Pêndulo
INTRODUÇÃO À ONDULATÓRIA
INTRODUÇÃO À ONDULATÓRIA Considerações Iniciais Considerações Iniciais: O que é ONDA??? Perturbação produzida: PULSO O PULSO se movimenta a partir da região onde foi gerado: ONDA A onda se movimenta transferindo
Capítulo 9. Circuitos de Segunda Ordem
EA-53 Circuitos Elétricos I Capítulo 9 Circuitos de Segunda Ordem EA-53 Circuitos Elétricos I 9. Circuitos com Dois Elementos Armazenadores Circuito com dois indutores, onde deseja-se obter a corrente
Oscilações e ondas. FCM 0410 Física para Engenharia Ambiental. Universidade de São Paulo Instituto de Física de São Carlos - IFSC
Universidade de São Paulo Instituto de Física de São Carlos - IFSC FCM 0410 Física para Engenharia Ambiental Oscilações e ondas Prof. Dr. José Pedro Donoso Agradescimentos O docente da disciplina, Jose
Nota de Aula: Equações Diferenciais Ordinárias de 2 Ordem. ( Aplicações )
Nota de Aula: Equações Diferenciais Ordinárias de Ordem ( Aplicações ) Vamos nos ater a duas aplicações de grande interesse na engenharia: Sistema massa-mola-amortecedor ( Oscilador Mecânico ) O Sistema
Sessão 1: Generalidades
Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar
F = m d 2 x d t 2. F R = bv = b d x
Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 0,5 N/m e a um amortecedor de constante de amortecimento b = 0,5 N.s/m. O bloco é deslocado de sua posição de equilíbrio O até
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA IFPB Campus João Pessoa Departamento de Ensino Superior
PLANO DE DISCIPLINA IDENTIFICAÇÃO CURSO: CST EM SISTEMAS DE TELECOMUNICACÕES DISCIPLINA: Campos e Ondas CÓDIGO DA DISCIPLINA: PRÉ-REQUISITO(S): Cálculo Diferencial e Integral I, Álgebra Vetorial e Eletricidade
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.
CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia
Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações. Professor: Gustavo Silva
Vibrações e Dinâmica das Máquinas Aula Fundamentos de vibrações Professor: Gustavo Silva 1 1.Movimentos Movimento oscilatório é qualquer movimento onde o sistema observado move-se em torno de uma certa
ONDULATÓRIA: EQUAÇÃO DE ONDAS E CONCEITOS
TE053-Ondas Eletromagnéticas ONDULATÓRIA: EQUAÇÃO DE ONDAS E CONCEITOS BÁSICOS PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: [email protected] CURITIBA-PR Roteiro da Aula: Conceitos básicos sobre
O Sistema Massa-Mola
O Sistema Massa-Mola 1 O sistema massa mola, como vimos, é um exemplo de sistema oscilante que descreve um MHS. Como sabemos (aplicando a Segunda Lei de Newton) temos que F = ma Como sabemos, no caso massa-mola
Circuito RLC série FAP
Circuito RLC série Vamos considerar um circuito com um indutor puro e um capacitor puro ligados em série, em que o capacitor está carregado no instante t. Como inicialmente o capacitor está com a carga
Ondas. Definição: Onda é uma perturbação de partículas de um meio ou cargas elétricas, sendo uma propagação de energia sem o transporte de matéria.
Ondas Quando batemos na superfície da água formam-se ondas que se propagam em todas as direções. Ocorre o mesmo quando um alto falante bate no ar da atmosfera ou então quando batemos em uma corda. Essas
Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D
www.engenhariafacil.weebly.com Resolução da ª Prova de Física II -UFRJ do Período- 014. (1/11/014). Versão D OBS: Esse não é o gabarito oficial. O gabarito oficial será lançado no site do Instituto de
Aula do cap. 16 MHS e Oscilações
Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia
Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento
Lista de exercícios n 2 - Ondas Prof. Marco
o Lista de exercícios n 2 - Ondas Prof. Marco Ondas periódicas 1 Uma onda tem velocidade escalar igual a 240 m/s e seu comprimento de onda é 3,2 m. Quais são: (a) A freqüência; (b) O período da onda? [Resp.
Capítulo 8 Equações Diferenciais Parciais
Capítulo 8 Equações Diferenciais Parciais Equação de Onda Transversal em Uma Dimensão Seja uma onda se propagando em 1 dimensão na direção. A deflexão dessa onda é descrita por uma função de 2 variáveis.
de Coeficientes Constantes
Seção 12: Equações Diferenciais Lineares não Homogêneas de Coeficientes Constantes O objetivo desta seção é estudar as equações lineares não homogêneas de coeficientes constantes No entanto, a versão do
