Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL. Professor: Gustavo Silva

Tamanho: px
Começar a partir da página:

Download "Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL. Professor: Gustavo Silva"

Transcrição

1 Vibrações e Dinâmica das Máquinas Aula Vibração excitada harmonicamente- 1GL Professor: Gustavo Silva 1

2 1. Introdução Nesta aula estudaremos sistemas amortecidos e não amortecidos sendo excitados harmonicamente. Anteriormente foi estudado a solução homogênea (transiente) de sistemas vibratórios, assim sendo, não havia força externa sendo exercida sobre o corpo. Lembrando que a resposta homogênea é dada pela expressão: x(t) = e ζω nt (C 1 cos ω d t + C 2 sin ω d t) 2

3 1. Introdução Ao considerarmos uma força harmônica externa excitando o sistema, devemos considerar também a solução particular (permanente) do sistema para obtermos a solução total x(t). A força harmônica pode ser dada por uma função do tipo: F t = F 0 cos(ωt) onde F0 é a amplitude da força excitadora, ω é a frequência da mesma. K x C m F 3

4 2. Equação de movimento Como já visto anteriormente, a equação de movimento de um sistema massa-mola-amortecedor é uma equação da seguinte forma: m x + c x + kx = F Para o caso onde F não é zero, temos que a solução geral x(t) é dada pela soma de x h (t) (solução homogenia) e x p (t) (solução particular): x t = x h (t) + x p (t) K C x m F 4

5 2. Equação de movimento 5

6 3. Resposta de um sistema não amortecido à força harmônica Um sistema não amortecido possui uma equação de movimento da seguinte forma: m x + kx = F(t) Sabendo que é uma força harmônica da forma: F(t) = F 0 cos(ωt) Temos que: m x + kx = F 0 cos(ωt) A solução homogenia desta equação é dada quando a F é igual a zero: x h (t) = C 1 cos(ω n t) + C 2 sin(ω n t) como já visto anteriormente. 6

7 3. Resposta de um sistema não amortecido à força harmônica Como estamos trabalhando com forçar harmônicas, o sistema responderá com a mesma frequência harmônica ω. Assim a solução particular x p (t) pode ser dada por: x p (t) = X cos(ωt) onde X é uma constante que representa a máxima amplitude para a função x p (t). Temos que o valor de X é: X = F 0 k mω 2 = δ st 1 ω ω n 2 onde δst é a deflexão estática dada por δst = F 0 k 7

8 3. Resposta de um sistema não amortecido à força harmônica Sabendo que x t = x h (t) + x p (t) temos que: x t = C 1 cos(ω n t) + C 2 sin(ω n t) + X cos(ωt) x t = C 1 cos(ω n t) + C 2 sin(ω n t) + F 0 k mω 2 cos(ωt) onde C1 e C2: C 1 = x 0 F 0 k mω 2 C 2 = x 0 ω n 8

9 3. Resposta de um sistema não amortecido à força harmônica A razão de frequências r= assim: - Caso 1: 0 < r < 1 ω ω n pode ser um número entre 0 e 1, 1 ou ainda maior que um, O denominador da equação de X é positivo, assim a solução particular é dada pela equação: x p (t) = X cos(ωt) como já visto. X = δ st 1 ω ω n 2 9

10 -Caso 2: r > 1 3. Resposta de um sistema não amortecido à força harmônica Neste caso o denominador é negativo, assim a solução particular passa a ser: x p t = X cos(ωt) e a amplitude passa a ser: X = ω ω n δ st 2 1 Neste caso é dito que a resposta esta defasada de 180º em relação a força externa. 10

11 -Caso 3: r = 1 3. Resposta de um sistema não amortecido à força harmônica Neste caso a frequência excitadora é igual a frequência natural do sistema, então temos a condição de ressonância, onde a amplitude X passa a ser infinita. Assim a resposta total do sistema é dada por: x t = x o cos(ω n t) + x 0 sin(ω ω n t) + δ stω n t n 2 sin(ω n t) 11

12 3. Resposta de um sistema não amortecido à força harmônica Outras formas de escrever a resposta total nos casos 1 e 2 são: x t A cos(ω n t φ) + δ st 1 ω ω n 2 cos(ω nt) PARA r < 1 x t A cos(ω n t φ) δ st 1 ω ω n 2 cos(ω nt) PARA r > 1 12

13 3. Resposta de um sistema não amortecido à força harmônica Batimento: O fenômeno do Batimento ocorre quando o sistema é excitado com uma frequência próxima, mas não igual a sua frequência natural. Neste caso o sistema vibra em uma frequência mais alta modulada por uma frequência mais baixa. O período de batimento é dado por: τ b = 2π ω n ω 13

14 3. Resposta de um sistema amortecido à força harmônica Um sistema amortecido possui uma equação de movimento da seguinte forma: m x + c x + kx = F Sabendo que é uma força harmônica da forma: F(t) = F 0 cos(ωt) Temos que: m x + c x + kx = F 0 cos(ωt) A solução particular desta equação é dada por: x p (t) = X cos(ωt φ) onde φ representa o atraso temporal de x p em relação à força excitadora 14

15 3. Resposta de um sistema amortecido à força harmônica X = F 0 k mω c 2 ω φ = tg 1 cω k mω 2 ou X = F 0 /k 1 r (2ζr) φ = tg 1 2ζr 1 r 2 15

16 3. Resposta de um sistema amortecido à força harmônica Por fim, a resposta total pode ser dada por: x(t) = X 0 e ζω nt cos ω d t φ 0 + X cos(ωt φ) Os valores de X 0 eφ 0 podem ser determinados pelas condições iniciais: x 0 = X 0 cos φ 0 + X cos φ x 0 = ζω n X 0 cos φ 0 + ω d X 0 sin φ 0 + ωx sin φ 16

17 4. Excitação pela base Às vezes, a base de um sistema sofre movimento harmônico, neste caso temos que além do sistema possuir uma amplitude de vibração, o mesmo ocorre com base do sistema. Se X é a amplitude da resposta particular do sistema e Y é a amplitude do movimento da base, temos: X Y = k 2 + cω 2 k mω cω 2 onde X/Y é denominada transmissibilidade de deslocamento (Td). FT é a amplitude máxima da força transmitida à base e é dada por: F T ky = r² 1 + 2ζr 2 1 r ζr 2 onde FT/kY é a transmissibilidade de força. 1 2 = 1 + 2ζr r ζr

18 4. Excitação pela base 18

19 4. Excitação pela base 19

20 5. Resposta de um sistema amortecido ao desbalanceamento rotativo Uma das principais causas de vibração é o desbalanceamento rotativo. Na figura temos um sistema cujo a massa total é M e duas massas excêntricas m/2 giram com velocidade angular constante, uma no sentido horário e outra anti-horário. A força centrífuga de cada massa é dada por F = m 2 a n = m 2 e ω2. Estas forças causarão excitação na massa total M. 20

21 5. Resposta de um sistema amortecido ao desbalanceamento rotativo Note que as forças horizontais se cancelam, enquanto as forças verticais se somam. Assim a força vertical total é dada por F t = m e ω 2 sin ωt. A equação de movimento é dada por: m x + c x + kx = F(t) m x + c x + kx = m e ω 2 sin ωt A solução particular é dada por: x p (t) = X sin(ωt φ) X = Onde: meω² k Mω c 2 ω 2 1 φ = tg 1 2 cω k Mω 2 21

22 5. Resposta de um sistema amortecido ao desbalanceamento rotativo Ou ainda podemos trabalhar com as equações: MX me = r² 1 r ζr φ = tg 1 2ζr 1 r 2 O máximo valor de MX para sistemas com 0 < ζ < 1 pode ser encontrado com a equação: me 2 MX me máx = 1 2ζ 1 ζ 2 22

23 5. Resposta de um sistema amortecido ao desbalanceamento rotativo 23

24 Exercício 24

25 Exercício 25

26 Exercício 26

27 Exercício 27

28 Exercício 28

29 Exercício 29

30 Exercício 30

31 Bibliografia RAO, S. S. Vibrações Mecânicas. São Paulo: Pearson Prentice Hall, 4 ed.,

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017 Vibrações Movimento harmônico Prof. Juliano G. Iossaqui Engenharia Mecânica Universidade Tecnológica Federal do Paraná (UTFPR) Londrina, 2017 Prof. Juliano G. Iossaqui (UTFPR) Aula 02 Londrina, 2017 1

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 3 de abril de 2013 OSCILAÇÕES FORÇADAS Mecânica II (FIS-6) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 3 de abril de 013 Roteiro 1 Forçadas Roteiro 1 Resultado M: 66 DP: 0 Conceito N L 3 MB 4 B 7 R 3 I 1 D 5 Roteiro Forçadas

Leia mais

Aplicações: Desbalanceamento Rotativo Excitação da Base Isolamento de Vibrações

Aplicações: Desbalanceamento Rotativo Excitação da Base Isolamento de Vibrações 1 17 Aplicações: Desbalanceamento Rotativo Excitação da Base Isolamento de Vibrações 1 INTRODUÇÃO A vibração pode ser um fenômeno desejável ou indesejável. Em certos situações, como no caso de britadoras,

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

Física 2. Guia de Estudos P2

Física 2. Guia de Estudos P2 Física 2 Guia de Estudos P2 1. Amortecimento Anteriormente, no Movimento Harmônico Simples (MHS), foi estudado o movimento com uma força restauradora proporcional ao deslocamento em relação à uma posição

Leia mais

Universidade Nova de Lisboa. Faculdade de Ciências e Tecnologia. Dinâmica de Sólidos. Fichas da disciplina. Corneliu Cismaşiu

Universidade Nova de Lisboa. Faculdade de Ciências e Tecnologia. Dinâmica de Sólidos. Fichas da disciplina. Corneliu Cismaşiu Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia Dinâmica de Sólidos Fichas da disciplina Corneliu Cismaşiu c DEC/FCT/UNL, 005-009 Capítulo 6 Vibrações mecânicas Uma vibração mecânica é o

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

Prova P3 Física para Engenharia II, turma nov. 2014

Prova P3 Física para Engenharia II, turma nov. 2014 Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com

Leia mais

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são:

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são: APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DE SEGUNDA ORDEM Como aplicação das equações diferenciais de segunda ordem, vamos considerar o movimento oscilatório de uma mola de comprimento l e constante de elasticidade

Leia mais

Curso de Complementos de Física

Curso de Complementos de Física Aula 2 Curso de Engenharia Civil Faculdade Campo Grande 27 de Agosto de 2015 Plano de Aula 1 Exemplo 1 Um bloco, preso firmemente a uma mola, oscila verticalmente uma frequência de 4 Hertz e uma amplitude

Leia mais

UNIVERSIDADE DO MINHO

UNIVERSIDADE DO MINHO - - UNIVERSIDADE DO MINHO Laboratório de Órgãos de Máquinas e Tribologia Guia de Realização do Trabalho Prático DETERMINAÇÃO DE FREQUÊNCIAS CRÍTICAS DE VIBRAÇÃO EM VEIOS ROTATIVOS Guimarães, 999 - -. Introdução

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

APONTAMENTOS DE VIBRAÇÕES MECÂNICAS

APONTAMENTOS DE VIBRAÇÕES MECÂNICAS APONTAMENTOS DE VIBRAÇÕES MECÂNICAS Análise de Estruturas Mestrado Integrado em Engenharia Civil & Mestrado em Engenharia Civil (Reabilitação de Edifícios) Ano lectivo 009/010 Estes apontamentos foram

Leia mais

Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D

Resolução da 2ª Prova de Física II -UFRJ do Período (12/11/2014). Versão D www.engenhariafacil.weebly.com Resolução da ª Prova de Física II -UFRJ do Período- 014. (1/11/014). Versão D OBS: Esse não é o gabarito oficial. O gabarito oficial será lançado no site do Instituto de

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 59070 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 6 00 Superposição de Movimentos Periódicos Há muitas situações em física que envolvem a ocorrência simultânea de duas ou mais

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

Rosane Gonçalves Ferreira

Rosane Gonçalves Ferreira UNIVERSIDADE FEDERAL DE GOIÁS REGIONAL CATALÃO UNIDADE ACADÊMICA ESPECIAL DE MATEMÁTICA E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM E OTIMIZAÇÃO Rosane Gonçalves Ferreira EFEITOS DO ATRASO SOBRE

Leia mais

RELATÓRIO DE ESTÁGIO 2/3 (segundo de três) Período: de 24/03/2010 a 11/05/2010 SCHULZ S/A

RELATÓRIO DE ESTÁGIO 2/3 (segundo de três) Período: de 24/03/2010 a 11/05/2010 SCHULZ S/A Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Engenharia Mecânica Coordenadoria de Estágio do Curso de Engenharia Mecânica CEP 88040-970 - Florianópolis - SC - BRASIL www.emc.ufsc.br/estagiomecanica

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. Dr. José Luis Azcue Puma Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides

Leia mais

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6

Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6 59136 Física II (Química) FFCLRP USP Prof. Antônio Roque Aula 6 Oscilações Forçadas e Ressonância Nas aulas precedentes estudamos oscilações livres de diferentes tipos de sistemas físicos. Em uma oscilação

Leia mais

Física 2. Guia de Estudos P1

Física 2. Guia de Estudos P1 Física 2 Guia de Estudos P1 1. Movimento Harmônico Simples (MHS) Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

Prof. MSc. David Roza José -

Prof. MSc. David Roza José - 1/14 2/14 Introdução Conforme mencionado anteriormente, um sistema com n graus de liberdade necessita de n coordenadas independentes para descrever sua configuração e movimento. Normalmente essas coordenadas

Leia mais

O Movimento Harmônico Simples

O Movimento Harmônico Simples O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento

Leia mais

Osciladores livres, amortecidos, forçados e ressonância

Osciladores livres, amortecidos, forçados e ressonância Osciladores livres, amortecidos, forçados e ressonância Notas de aula Daniel Cosmo Pizetta Instituto de Física de São Carlos Universidade de São Paulo Laboratório de Física II 1. Oscilador livre Força

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Métodos Experimentais para Vibrações Mecânicas

Métodos Experimentais para Vibrações Mecânicas Métodos Experimentais Métodos Experimentais para Vibrações Mecânicas Prof. Aline Souza de Paula Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Mecânica Introdução A maioria

Leia mais

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L. Esquema do problema Consideremos uma corda longa, fixa nas extremidades, por onde se

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

Circuito RLC série FAP

Circuito RLC série FAP Circuito RLC série Vamos considerar um circuito com um indutor puro e um capacitor puro ligados em série, em que o capacitor está carregado no instante t. Como inicialmente o capacitor está com a carga

Leia mais

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é: AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui

Leia mais

Oscilador Harmônico. 8 - Oscilador Harmônico. Oscilador Harmônico. Oscilador Harmônico Simples. Oscilador harmônico simples

Oscilador Harmônico. 8 - Oscilador Harmônico. Oscilador Harmônico. Oscilador Harmônico Simples. Oscilador harmônico simples Oscilador Harmônico 8 - Oscilador Harmônico Mecânica Quântica Em Física, o oscilador harmônico é qualquer sistema que apresenta movimento oscilatório, de forma harmônica, em torno de um ponto de equilíbrio.

Leia mais

U15040 Pêndulo de torção segundo Prof. Pohl

U15040 Pêndulo de torção segundo Prof. Pohl 3B SCIENTIFIC PHYSICS U15040 Pêndulo de torção segundo Prof. Pohl Instruções para o uso 1/03 ALF 9 8 7 6 5 4 bl bm bn bo bp 3 1 1 Motor do excitador Botão rotativo para o ajuste fino da tensão do excitador

Leia mais

Física II para a Escola Politécnica ( ) - P3 (02/12/2016) [z7ba]

Física II para a Escola Politécnica ( ) - P3 (02/12/2016) [z7ba] [z7ba] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 5 5 5 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número USP (um em cada

Leia mais

AULA 45 O OSCILADOR HARMÔNICO FORÇADO

AULA 45 O OSCILADOR HARMÔNICO FORÇADO AULA 45 O OSCILADOR HARMÔNICO FORÇADO OBJETIVOS: ESTUDAR O MOVIMENTO HARMÔNICO FORÇADO 45.1 MOVIMENTO HARMÔNICO FORÇADO Este oscilador está na base de um grande número de fenômenos da Natureza e aplicações

Leia mais

Métodos de Resposta em Freqüência

Métodos de Resposta em Freqüência Métodos de Resposta em Freqüência 1. Sistemas de fase mínima 2. Exemplo de traçado do diagrama de Bode 3. Medidas da resposta em freqüência 4. Especificações de desempenho no domínio da freqüência pag.1

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 10 597 Física II Ondas, Fluidos e Termodinâmica USP Prof. ntônio Roque ula Oscilações acopladas e modos normais Os sistemas naturais não são isolados, mas interagem entre si. Em particular, se dois ou mais

Leia mais

Circuitos Elétricos I

Circuitos Elétricos I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Circuitos Elétricos I Prof. José Azcue; Dr. Eng. Excitação Senoidal e Fasores Impedância Admitância 1 Propriedades das Senóides

Leia mais

CONCEITOS DE VIBRAÇÃO

CONCEITOS DE VIBRAÇÃO CONCEITOS DE VIBRAÇÃO Paulo S. Varoto 55 3.1 - Itrodução O objetivo pricipal desta secção é o de apresetar coceitos básicos da teoria de vibrações bem como iterpretá-los sob o poto de vista dos esaios

Leia mais

Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário

Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário 1 de 8 05/05/2008 11:32 Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário Aplicações do Movimento Harmônico Simples, Amortecimento, Oscilações Forçadas e Ressonância) Guia de

Leia mais

Vibrações Aula 01 Conceitos básicos de vibração

Vibrações Aula 01 Conceitos básicos de vibração Vibrações Conceitos básicos de vibração Prof. Dr. Thiago Andrade de Toledo https://sites.google.com/site/profthiagotoledo/home thiago.toledo@kroton.com.br Vibração A vibração é um movimento oscilatório

Leia mais

Aula do cap. 17 Ondas

Aula do cap. 17 Ondas Aula do cap. 17 Ondas O que é uma onda?? Podemos definir onda como uma variação de uma grandeza física que se propaga no espaço. É um distúrbio que se propaga e pode levar sinais ou energia de um lugar

Leia mais

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular.

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular. Oscilações amortecidas Lista de exercícios Exercício 1 harmônica? Qualitativamente, o que é que distingue uma oscilação amortecida de uma oscilação Exercício 2 um deles? Quais são os três possíveis regimes

Leia mais

Vibrações 1º EE Questão 1

Vibrações 1º EE Questão 1 Vibrações º EE 2052 Questão O sistema claramente tem um grau de liberdade, e é mais facilmente tratável, na minha opinião, considerado como um sistema rotativo A coordenada generalizada empregada será

Leia mais

Física para Engenharia II

Física para Engenharia II Física para Engenharia II 430196 (FEP196) Turma 01111 Sala C-13 3as 15h00 / 5as 9h0. Prof. Antonio Domingues dos Santos Depto. Física Materiais e Mecânica IF USP Ed. Mário Schemberg, sala 05 adsantos@if.usp.br

Leia mais

Mecânica e Ondas fascículo 23

Mecânica e Ondas fascículo 23 Mecânica e Ondas fascículo 3 May 7, 008 Contents 3.1 Oscilações acopladas......................... 414 3. Conceito de onda........................... 40 3.3 Equação das cordas vibrantes....................

Leia mais

1. Sinais de teste. 2. Sistemas de primeira ordem. 3. Sistemas de segunda ordem. Especificações para a resposta

1. Sinais de teste. 2. Sistemas de primeira ordem. 3. Sistemas de segunda ordem. Especificações para a resposta Desempenho de Sistemas de Controle Realimentados 1. Sinais de teste. Sistemas de primeira ordem 3. Sistemas de segunda ordem Especificações para a resposta Fernando de Oliveira Souza pag.1 Engenharia de

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

Instituto Politécnico co de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico co de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Ano lectivo 1-11 Engenharia Electrotécnica e de Computadores Exercícios de Física Ficha 8 Movimento Vibratório e Ondulatório Capítulo 5 Conhecimentos e capacidades a adquirir pelo aluno Aplicação dos conceitos

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 20 de março de 2013 Roteiro 1 Amortecidas forçadas Roteiro Amortecidas forçadas 1 Amortecidas

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP196 - Física para Engenharia II Prova P1-18/09/008 Nome:........................................... N o USP:...................... Assinatura:................................ Turma/Professor:.................

Leia mais

Ressonador de Helmholtz.

Ressonador de Helmholtz. Ressonador de Helmholtz. Modelo mecânico do ressonador de Helmholtz O ressonador é composto por um volume V, esférico no caso mostrado na figura, e um gargalo de seção reta S e comprimento l. A primeira

Leia mais

Física para Engenharia II - Prova P2-2012

Física para Engenharia II - Prova P2-2012 430196 Física para Engenharia II - Prova P - 01 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de horas. Não somos responsáveis

Leia mais

ONDULATÓRIA: EQUAÇÃO DE ONDAS E CONCEITOS

ONDULATÓRIA: EQUAÇÃO DE ONDAS E CONCEITOS TE053-Ondas Eletromagnéticas ONDULATÓRIA: EQUAÇÃO DE ONDAS E CONCEITOS BÁSICOS PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da Aula: Conceitos básicos sobre

Leia mais

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula - Cinemática Professor: Gustavo Silva 1 Cinemática do Movimento Plano de um Corpo Rígido 1 Movimento de um corpo rígido; 2 Translação; 3 Rotação em torno de um eixo

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

ANÁLISE TEÓRICA E SIMULAÇÃO COMPUTACIONAL DE ABSORVEDORES DINÂMICOS DE VIBRAÇÃO

ANÁLISE TEÓRICA E SIMULAÇÃO COMPUTACIONAL DE ABSORVEDORES DINÂMICOS DE VIBRAÇÃO XIX Congresso Nacional de Estudantes de Engenharia Mecânica -13 a 17/08/01 São Carlos-SP Artigo CREEM01 ANÁLISE TEÓRICA E SIMULAÇÃO COMPUTACIONAL DE ABSORVEDORES DINÂMICOS DE VIBRAÇÃO Luís Henrique Bragança

Leia mais

Experimento 9 Circuitos RL em corrente alternada

Experimento 9 Circuitos RL em corrente alternada 1. OBJETIVO Experimento 9 Circuitos RL em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RL em presença de uma fonte de alimentação de corrente alternada. 2. MATERIAL UTILIZADO

Leia mais

Vamos considerar um gerador de tensão alternada ε(t) = ε m sen ωt ligado a um resistor de resistência R. A tensão no resistor é igual à fem do gerador

Vamos considerar um gerador de tensão alternada ε(t) = ε m sen ωt ligado a um resistor de resistência R. A tensão no resistor é igual à fem do gerador Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo uiz Viana Referências bibliográficas: H. 36-1, 36-3, 36-4, 36-5, 36-6 S. 32-2, 32-3, 32-4,

Leia mais

do Semi-Árido - UFERSA

do Semi-Árido - UFERSA Universidade Federal Rural do Semi-Árido - UFERSA Ondas Subênia Karine de Medeiros Mossoró, Outubro de 2009 Ondas Uma ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio

Leia mais

Pêndulo de Pohl. Observe que as forças podem ser decompostas em componentes radiais e tangenciais, respectivamente:

Pêndulo de Pohl. Observe que as forças podem ser decompostas em componentes radiais e tangenciais, respectivamente: Pêndulo de Pohl Ana Caroline Manso de Carvalho - 15/0116683 e João Augusto Sobral da Silva - 15/0131895 IF-UnB/ Laboratório de Oscilações, Ondas e Fluidos - Grupo:G1 (Data: 22 de Março) Objetivos: Estudo

Leia mais

Capítulo 7 Movimento Vibratório

Capítulo 7 Movimento Vibratório Capítulo 7 Movimento Vibratório Dos movimentos encontrados na natureza, um dos mais importantes é o movimento oscilatório (ou vibratório). Uma partícula tem oscilação quando se move periodicamente em torno

Leia mais

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k

1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t 3 + t 2 )i + 3t 2 k 1) O vetor posição de uma partícula que se move no plano XZ e dado por: r = (2t + t 2 )i + t 2 k onde r é dado em metros e t em segundos. Determine: (a) (1,0) o vetor velocidade instantânea da partícula,

Leia mais

Centro Federal de Educação Tecnológica de Minas Gerais

Centro Federal de Educação Tecnológica de Minas Gerais Centro Federal de Educação ecnológica de Minas Gerais Graduação em Engenharia da Computação Prática 07 - Oscilação Sistema Massa-Mola Alunos: Egmon Pereira; Igor Otoni Ripardo de Assis Leandro de Oliveira

Leia mais

Dinâ micâ de Mâ quinâs e Vibrâçõ es II

Dinâ micâ de Mâ quinâs e Vibrâçõ es II Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.

Leia mais

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x

F = m d 2 x d t 2. temos que as forças a única força que atua no bloco é a força elástica da mola ( F E ), dada por. F E = k x Um bloco de massa m = 0,5 kg é ligado a uma mola de constante elástica k = 1 N/m. O bloco é deslocado de sua posição de equilíbrio O até um ponto P a 0,5 m e solto a partir do repouso, determine: a) A

Leia mais

ANALYTICAL METHODS IN VIBRATION. Leonard Meirovitch Capitulo 1

ANALYTICAL METHODS IN VIBRATION. Leonard Meirovitch Capitulo 1 ANALYTICAL METHODS IN VIBRATION Leonard Meirovith Capitulo Comportamento de sistemas Um sistema é definido omo uma montagem de omponentes atuando omo um todo. Os omponentes são lassifiados e definidos

Leia mais

Experimento 7 Circuitos RC em corrente alternada

Experimento 7 Circuitos RC em corrente alternada 1. OBJETIVO Experimento 7 Circuitos RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação de corrente alternada.. 2. MATERIAL

Leia mais

7. Movimentos Oscilatórios

7. Movimentos Oscilatórios 7.1. Uma massa m = 90 g ligada a uma mola é largada com velocidade inicial zero de um ponto a 2 cm da posição de equilíbrio. A constante da mola é k = 81 N /m. Considere o movimento no plano horizontal

Leia mais

Formulário de Mecânica e Ondas MeMEC e LEAN Mário J. Pinheiro Para consulta no Teste e Exame

Formulário de Mecânica e Ondas MeMEC e LEAN Mário J. Pinheiro Para consulta no Teste e Exame 1 Formulário de Mecânica e Ondas MeMEC e LEAN Mário J. Pinheiro Para consulta no Teste e Exame Constantes Físicas Fundamentais: Velocidade da luz, c.9979458 10 8 m.s 1 Constante da aceleração da gravidade,

Leia mais

A energia total do circuito é a soma da potencial elétrica e magnética

A energia total do circuito é a soma da potencial elétrica e magnética Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 35-, 35-4, 35-5, 35-6 S. 3-6, 3-7 T. 8-4 Aula 7 Circuitos

Leia mais

Aula 04 Representação de Sistemas

Aula 04 Representação de Sistemas Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,

Leia mais

Problemas sobre osciladores simples

Problemas sobre osciladores simples Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 5

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 5 Introdução ao Soluções dos Exercícios Propostos Capítulo 5. Considere a sequência ( π ) x[n] = cos 4 n encontre todos os sinais contínuos que poderiam gerar essa sequência e as respectivas taxas de amostragem.

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 12 de março de 2013 GIROSCÓPIO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 12 de março de 2013 Roteiro 1 2 Roteiro 1 2 Dinâmica F (ext) = M a CM τ (ext) = d L dt L = M r CM v CM + L CM τ (ext) CM = d L

Leia mais

Prof. Oscar 2º. Semestre de 2013

Prof. Oscar 2º. Semestre de 2013 Cap. 16 Ondas I Prof. Oscar º. Semestre de 013 16.1 Introdução Ondas são perturbações que se propagam transportando energia. Desta forma, uma música, a imagem numa tela de tv, a comunicações utilizando

Leia mais

ONDAS SONORAS. Nesta aula estudaremos ondas sonoras e nos concentraremos nos seguintes tópicos:

ONDAS SONORAS. Nesta aula estudaremos ondas sonoras e nos concentraremos nos seguintes tópicos: ONDAS SONORAS Nesta aula estudaremos ondas sonoras e nos concentraremos nos seguintes tópicos: Velocidade das ondas sonoras. Relação entre a amplitude do deslocamento e a pressão. Interferência de ondas

Leia mais

Capítulo O Movimento Harmônico Simples (MHS)

Capítulo O Movimento Harmônico Simples (MHS) Capítulo 3 Oscilações Após nosso estudo prévio de rotações de corpos rígidos, agora nos voltamos para outro tipo de movimento. O movimento oscilatório. Este movimento corresponde a vibrações localizadas

Leia mais

Movimento conjunto batimento-atraso

Movimento conjunto batimento-atraso Movimento conjunto batimento-atraso Vamos agora estudar a pá com dois tipos de movimento simultâneo: Batimento Atraso Vamos assumir que ambas as dobradiças são coincidentes De notar que, devido à conjugação

Leia mais

EE01-Gabarito

EE01-Gabarito 2017.1-EE01-Gabarito July 10, 2017 1 2017.1 1º Exercício Escolar 1.1 Questão 1 1.1.1 Amplitude e fase da resposta In [1]: from math import pi, log10, sqrt, log, ceil from IPython.display import Image from

Leia mais

Física II para a Escola Politécnica ( ) - P2 (26/06/2015) [0000]

Física II para a Escola Politécnica ( ) - P2 (26/06/2015) [0000] Física II para a Escola Politécnica (3310) - P (6/06/015) [0000] NUSP: 0 0 0 0 0 0 0 1 1 1 1 1 1 1 3 3 3 3 3 3 3 5 5 5 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preena

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

Física I 2010/2011. Aula 10. Movimento Oscilatório II

Física I 2010/2011. Aula 10. Movimento Oscilatório II Física I 2010/2011 Aula 10 Movimento Oscilatório II Sumário Capítulo 15: Oscilações 15-3 A Energia no Movimento Harmónico Simples 15-4 Um Oscilador Harmónico Simples Angular 15-5 O Pêndulo simples 15-7

Leia mais

Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto

Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância. Prof. Ettore Baldini-Neto Movimento Harmônico Simples - III Relação entre o MHS e o MCU Oscilações amortecidas Oscilações Forçadas e Ressonância Prof. Ettore Baldini-Neto 1610: Galileu, usando um telescópio recém construído, descobre

Leia mais

MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17

MAT EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17 MAT 340 - EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Aulas 14-17 Bulmer Mejía García 2010-II Universidade Federal de Viçosa EDO de Cauchy-Euler É uma EDO da seguinte forma a n (ax+b) n y (n) (x)+a n 1 (ax+b) n

Leia mais

IMPORTANTE PARA O EXAME DE ANALISTA I - * IMPORTANTES PARA OS EXAMES DE ANALISTAS I E II IMPORTANTE PARA O EXAME DE ANALISTA II - #

IMPORTANTE PARA O EXAME DE ANALISTA I - * IMPORTANTES PARA OS EXAMES DE ANALISTAS I E II IMPORTANTE PARA O EXAME DE ANALISTA II - # FUNDAÇÃO DE PESQUISA E ASSESSORAMENTO À INDÚSTRIA E INSTITUTO DE VIBRAÇÃO MTA. ORIENTAÇÃO PARA ESTUDAR PARA O EXAME DE QUALIFICAÇÃO EM ANÁLISE DE VIBRAÇÕES. ESPECIALISTAS NÍVEIS I E II IMPORTANTE PARA

Leia mais

Equações Diferenciais

Equações Diferenciais IFBA Equações Diferenciais Versão 1 Allan de Sousa Soares Graduação: Licenciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Conquista - BA 2013

Leia mais

7 Exemplos Numéricos do Caso Não-Linear

7 Exemplos Numéricos do Caso Não-Linear 84 7 Exemplos Numéricos do Caso Não- Neste capítulo é apresentada uma série de exemplos numéricos mostrando a influência da não-linearidade da fundação na resposta do sistema, tanto para o caso de resposta

Leia mais

Resumo para Mecânica e Ondas (Hugo Serôdio, 2010) Não é permitido o uso destas folhas no exame.

Resumo para Mecânica e Ondas (Hugo Serôdio, 2010) Não é permitido o uso destas folhas no exame. Resumo para Mecânica e Ondas (Hugo Serôdio, 2010) Não é permitido o uso destas folhas no exame. I. CINEMÁTICA DO PONTO MATERIAL Posição: r = x e x + y e y + z e z Velocidade média/instantânea: v m = r

Leia mais

Vibrações mecânicas e eléctricas

Vibrações mecânicas e eléctricas Vol. III, Fasc. GAZEA DE FÍSICA Outubro 954 Vibrações mecânicas e eléctricas O que se segue tem por objectivo pôr mais uma vez em evidência a profunda analogia existente entre os fenómenos vibratórios,

Leia mais

Física Módulo 2 Ondas

Física Módulo 2 Ondas Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

VIBRAÇÕES E RUIDO PROBLEMAS

VIBRAÇÕES E RUIDO PROBLEMAS VIBRAÇÕES E RUIDO PROBLEMAS NNN / PCS 1 Revisões Problema 0.1 Realizar as seguintes operações no conjunto dos complexos: a) (2 + 3 i) + (3 + i) b) (4 + 5 i).(3 2 i) c) (2 + 2 i)/(3-1 i) Solução: a) (5

Leia mais