a) 256 b) 360 c) 450 d) 648 e) 1 296

Tamanho: px
Começar a partir da página:

Download "a) 256 b) 360 c) 450 d) 648 e) 1 296"

Transcrição

1 Chama-se palíndromo qualquer número, palavra ou frase que se pode ler da esquerda para a direita ou da direita para a esquerda, sem que o seu sentido seja alterado. Por exemplo, são palíndromos: o número e a palavra ROTOR. Certo dia, um funcionário de uma Agência do Banco do Brasil, contabilizando as cédulas que havia em caixa, verificou que elas totalizavam X reais, < X< Sabendo que o número X é um palíndromo em que os algarismos das unidades, das dezenas e das centenas são distintos entre si, os possíveis valores de X são a) 256 b) 360 c) 450 d) 648 e) 1 296

2 Considerando que as equipes A, B, C, D e E disputem um torneio que premie as três primeiras colocadas, julgue os itens a seguir. O total de possibilidades distintas para as três primeiras colocações é 58. Certo Errado

3 Considerando que as equipes A, B, C, D e E disputem um torneio que premie as três primeiras colocadas, julgue os itens a seguir. O total de possibilidades distintas para as três primeiras colocações com a equipe A em primeiro lugar é 15. Certo Errado

4 Considerando que as equipes A, B, C, D e E disputem um torneio que premie as três primeiras colocadas, julgue os itens a seguir. Se a equipe A for desclassificada, então o total de possibilidades distintas para as três primeiras colocações será 24. Certo Errado

5 Considerando que uma empresa tenha 5 setores, cada setor seja dividido em 4 subsetores, cada subsetor tenha 6 empregados e que um mesmo empregado não pertença a subsetores distintos, julgue os itens subsequentes. O número de subsetores dessa empresa é superior a 24. Certo Errado

6 Considerando que uma empresa tenha 5 setores, cada setor seja dividido em 4 subsetores, cada subsetor tenha 6 empregados e que um mesmo empregado não pertença a subsetores distintos, julgue os itens subsequentes. O número de empregados dessa empresa é inferior a 125. Certo Errado

7 Supondo que André, Bruna, Cláudio, Leila e Roberto sejam, não necessariamente nesta ordem, os cinco primeiros classificados em um concurso, julgue os itens seguintes. O número de possibilidades distintas para a classificação com um homem em último lugar é 144. Certo Errado

8 Usamos FATORIAL toda vez que pensamos em troca. 5!= 5x4x3x2x1 = 120 4!= 4x3x2x1 = 24 3!= 3x2x1 = 6 2!= 2x1 = 2 1!= 1 (Por definição) 0!= 1 (Por convenção)

9

10 João, Pedro, Celso, Raul e Marcos foram aprovados em um concurso. Cada um trabalhará em uma unidade diferente da empresa: P, Q, R, S ou T. Considerando que João já foi designado para trabalhar na unidade P, de quantos modos distintos é possível distribuir os demais aprovados pelas unidades restantes? a) 12 b) 24 c) 48 d) 90 e) 120

11

12 Supondo que André, Bruna, Cláudio, Leila e Roberto sejam, não necessariamente nesta ordem, os cinco primeiros classificados em um concurso, julgue os itens seguintes. Existem 120 possibilidades distintas para essa classificação. Certo Errado

13 Supondo que André, Bruna, Cláudio, Leila e Roberto sejam, não necessariamente nesta ordem, os cinco primeiros classificados em um concurso, julgue os itens seguintes. Com André em primeiro lugar, existem 20 possibilidades distintas para a classificação. Certo Errado

14 Supondo que André, Bruna, Cláudio, Leila e Roberto sejam, não necessariamente nesta ordem, os cinco primeiros classificados em um concurso, julgue os itens seguintes. Com Bruna, Leila e Roberto classificados em posições consecutivas, existem 36 possibilidades distintas para classificação. Certo Errado

15 Na sala de reuniões de uma empresa há uma mesa de formato retangular com 8 cadeiras dispostas da forma como é mostrado na figura abaixo. Sabe-se que, certo dia, seis pessoas reuniram-se nessa sala: o Presidente, o Vice-Presidente e 4 Membros da Diretoria. Considerando que o Presidente e o Vice- Presidente sentaram-se nas cabeceiras da mesa, de quantos modos podem ter se acomodado nas cadeiras todas as pessoas que participaram da reunião?

16 a) 720 b) 360 c) 120 d) 72 e) 36

17 Marcelo vai passar quatro dias na praia e leva em sua bagagem sete camisetas (três camisetas brancas diferentes, uma preta, uma amarela, uma vermelha e uma laranja) e quatro bermudas (uma preta, uma cinza, uma branca e uma azul). De quantos modos distintos Marcelo poderá escolher uma camiseta e uma bermuda para vestirse, de modo que as peças escolhidas sejam de cores diferentes? a) 14 b) 17 c) 24 d) 26 e) 28

18 Caso as senhas de acesso dos clientes aos caixas eletrônicos de certa instituição bancária contenham 3 letras das 26 do alfabeto, admitindose repetição, nesse caso, a quantidade dessas senhas que têm letras repetidas é superior a Certo Errado

19 Anagramas ou anágramas são letras que trocam de lugar, sem necessitar que haja formação de palavra inteligível. Tomando por base as letras da palavra CERTO, responda os itens: * Quantos anagramas podemos formar?

20 Palavra CERTO * Quantos anagramas podemos formar, começando por C? * Quantos anagramas podemos formar, começando por vogal e terminando por consoante?

21 Se todos os anagramas da palavra BRASIL forem dispostos em ordem alfabética, o primeiro anagrama cuja última letra é B ocupará que posição? a) 5ª b) 25ª c) 34ª d) 49ª e) 121ª

22 Julgue os itens que se seguem, a respeito de contagem. Ao se listar todas as possíveis permutações das 13 letras da palavra PROVAVELMENTE, incluindo-se as repetições, a quantidade de vezes que esta palavra aparece é igual a 6. Certo Errado

23 Quando há letras repetidas... Exemplo: Quantos anagramas podemos formar com as letras da palavra ALA Como pensar, para poder calcular? São três letras que TROCAM de lugar, mas tanto faz a TROCA de duas letras A

24 Quantos anagramas distintos podemos formar com as letras da palavra ARARA?

25 A quantidade de permutações distintas que podem ser formadas com as 7 letras da palavra REPETIR, que começam e terminam com R, é igual a 60. Certo Errado

26 Com as letras da palavra TROCAS é possível construir mais de 300 pares distintos de letras. Certo Errado

27 Uma reunião possui 40 participantes. Ao final todos se cumprimentam com um aperto de mão. Quantos apertos de mão foram dados no final dessa reunião?

28 Com relação a lógica sentencial, contagem e combinação, julgue os itens a seguir. Em um torneio em que 5 equipes joguem uma vez entre si em turno único, o número de jogos será superior a 12. Certo Errado

29 Em um tribunal, os julgamentos dos processos são feitos em comissões compostas por 3 desembargadores de uma turma de 5 desembargadores. Nessa situação, a quantidade de maneiras diferentes de se constituírem essas comissões é superior a 12.

30 Num grupo de 7 mulheres e 5 homens deseja-se formar uma comissão representativa com 3 mulheres e 2 homens. Quantas comissões distintas podem ser formadas?

31 7 mulheres e 5 homens Quantas comissões distintas de 4 pessoas poderemos formar com, no mínimo, 3 mulheres?

32 Considere que 7 tarefas devam ser distribuídas entre 3 funcionários de uma repartição de modo que o funcionário mais recentemente contratado receba 3 tarefas, e os demais, 2 tarefas cada um. Nessa situação, sabendo-se que a mesma tarefa não será atribuída a mais de um funcionário, é correto concluir que o chefe da repartição dispõe de menos de 120 maneiras diferentes para distribuir essas tarefas.

33 7 tarefas. O funcionário mais recentemente contratado receba 3 tarefas, e os demais, 2 tarefas cada um. Menos de 120 maneiras diferentes para distribuir essas tarefas. 7 x 6 x 5 x 4 x 3 x 2 x 1 3! 2! 2! 7 x 5 x 3 x 2 = 210 maneiras

34 O número de países representados nos Jogos Pan-Americanos realizados no Rio de Janeiro foi 42, sendo 8 países da América Central, 3 da América do Norte, 12 da América do Sul e 19 do Caribe. Com base nessas informações, julgue os itens que se seguem.

35 Países: 42 ACentral: 8 ANorte: 3 ASul: 12 Caribe: 19 * Considerando-se apenas os países da América do Norte e da América Central participantes dos Jogos Pan-Americanos, a quantidade de comitês de 5 países que poderiam ser constituídos contendo pelo menos 3 países da América Central é inferior a 180. ACentral: 8 ANorte: 3

36 ACentral: 8 ANorte: 3 * Comitês de 5 países com pelo menos 3 países da América Central é inferior a x 7 x 6 x 3 x 2 3! 2! 8 x 7 x 6 x 5 x 3 4! = 168 = x 7 x 6 x 5 x 4 = 56 5! Total = 434

37 * Considerando-se que, em determinada modalidade esportiva, havia exatamente 1 atleta de cada país da América do Sul participante dos Jogos Pan-Americanos, então o número de possibilidades distintas de dois atletas desse continente competirem entre si é igual a 66. ASul: x 11 2! = 66

38 COMBINAÇÃO COM REPETIÇÃO Teoria

39 Uma loja vende barras de chocolate de diversos sabores. Em uma promoção, era possível comprar três barras de chocolate com desconto, desde que estas fossem dos sabores ao leite, amargo, branco ou com amêndoas, repetidos ou não. Assim, um cliente que comprar as três barras na promoção poderá escolher os sabores de n modos distintos, sendo n igual a a) 20 b) 16 c) 12 d) 10 e) 4

40

41 Com 3 marcas diferentes de cadernos, a quantidade de maneiras distintas de se formar um pacote contendo 5 cadernos será...

42 Como identificar ARRANJO, COMBINAÇÃO e PERMUTAÇÃO.

43

44 Teoria Permutação Circular

45 Uma mesa circular tem seus 6 lugares que serão ocupados pelos 6 participantes de uma reunião. Nessa situação, o número de formas diferentes para se ocupar esses lugares com os participantes da reunião é superior a 10 2.

46 Para o policiamento ostensivo e ininterrupto de uma cidade, o comando local estabeleceu a escala de 24 horas de plantão por 48 horas de folga para cada policial local e, em cada plantão, por razões de segurança, determinou que nenhum policial poderá trabalhar sozinho. Com base nas informações da situação hipotética acima apresentada, julgue os itens que se seguem.

47 Escala de 24 por 48 horas, nenhum policial poderá trabalhar sozinho. Caso o comando local disponha de 12 policiais e 4 deles devam estar de plantão a cada dia, então, nesse caso, haverá mais de 500 maneiras distintas de se escolher a equipe que trabalhará no primeiro dia. ERRADO

48 Escala de 24 por 48 horas, nenhum policial poderá trabalhar sozinho. Considere que, entre os 12 policiais do comando local, sejam sorteados dois prêmios distintos e que um mesmo policial não receba os dois prêmios. Nesse caso, existem mais de 100 maneiras distintas de se distribuírem esses prêmios. CERTO

49 A Associação dos Correspondentes de Imprensa Estrangeira no Brasil (ACIE) organiza, pelo quinto ano consecutivo, o Prêmio e Mostra ACIE de Cinema. Os filmes indicados serão seguidos pela votação de aproximadamente 250 correspondentes afiliados às associações de correspondentes do Rio de Janeiro, de São Paulo e de Brasília. Os vencedores serão escolhidos nas categorias Melhor Filme (ficção), Melhor Documentário, Melhor Diretor, Melhor Roteiro, Melhor Ator, Melhor Atriz, Melhor Fotografia e Melhor Filme Júri Popular. A partir da organização do texto acima e considerando os princípios de contagem, julgue os itens subseqüentes.

50 250 filmes indicados. Correspondentes do Rio de Janeiro, de São Paulo e de Brasília. Categorias Melhor Filme (ficção), Melhor Documentário, Melhor Diretor, Melhor Roteiro, Melhor Ator, Melhor Atriz, Melhor Fotografia e Melhor Filme Júri Popular. Caso se deseje escolher, entre os 50 correspondentes mais antigos, 3 para constituírem uma comissão consultiva especial, haverá menos de 20 mil maneiras possíveis para se formar essa comissão. Certo Errado

51 PROBABILIDADE OPERAÇÃO CONJUNTOS

52

53 Uma urna contém 10 bolas, sendo 4 brancas, 3 azuis, 2 amarelas e 1 vermelha. Baseando-se nesses dados, responda as questões que seguem.

54 Retirando-se apenas uma bola da urna, qual a probabilidade de que ela seja branca?

55 Retirando-se apenas uma bola da urna, qual a probabilidade de que ela seja vermelha?

56

57 Retirando-se apenas uma bola da urna, qual a probabilidade de que ela seja branca ou azul?

58 Retirando-se duas bolas, com reposição, qual a probabilidade que elas sejam branca e azul, nesta ordem?

59 Retirando-se duas bolas, sem reposição, qual a probabilidade que elas sejam branca e azul, nesta ordem?

60

61 Retirando-se duas bolas, com reposição, qual a probabilidade que elas sejam branca e azul, independentemente da ordem?

62 Retirando-se apenas uma bola da urna, qual a probabilidade de se retirar uma bola azul, sabendo que a bola retirada não é branca?

63 Suponha que certa Agência do Banco do Brasil tenha 25 funcionários, cujas idades, em anos, são as seguintes: A probabilidade de que, ao escolher-se aleatoriamente um desses funcionários, a sua idade seja superior a 48 anos é de a) 28%. b) 27,4%. c) 27%. d) 25,8%. e) 24%.

64 Tendo como referência a figura acima, que mostra os valores das taxas de juros anuais, em dois anos consecutivos, denominados anterior e atual, em 10 países, julgue os itens seguintes.

65 Se um dos dez países considerados for selecionado ao acaso, então a probabilidade de que a taxa de juros atual desse país encontre-se entre 5,5% e 10% será igual a 0,2. Certo Errado

66 Na Agência dos Correios de uma certa cidade trabalham 20 funcionários. Sabe-se que 12 desses funcionários jogam futebol, 8 jogam vôlei e 5 jogam futebol e vôlei. Escolhendo ao acaso um dos funcionários, qual a probabilidade dele não praticar nenhum desses esportes? a) 12% b) 5% c) 25% d) 50% e) 75%

67 José sabe que a probabilidade de encontrar Ana no shopping é de 68%, a probabilidade de encontrar Paulo no shopping é de 54%. Mas José também sabe que a probabilidade de encontrar ambos no shopping é de 52%. Então qual a probabilidade de José não encontrar nem Ana nem Paulo no shopping?

68 Ana é de 68%, Paulo é de 54%. Ambos é de 52%. Então qual a probabilidade de José não encontrar nem Ana nem Paulo no shopping?

69 Saul e Fred poderão ser contratados por uma empresa. A probabilidade de Fred não ser contratado é igual a 0,75; a probabilidade de Saul ser contratado é igual a 0,5; e a probabilidade de os dois serem contratados é igual a 0,2. Nesse caso, é correto afirmar que a probabilidade de

70 a) pelo menos um dos dois ser contratado é igual a 0,75. b) Fred ser contratado é igual a 0,5. c) Saul ser contratado e Fred não ser contratado é igual a 0,3. d) Fred ser contratado e Saul não ser contratado é igual a 0,1. e) Saul não ser contratado é igual a 0,25.

71 Os bilhetes de uma rifa são numerados de 1 a 100. A probabilidade do bilhete sorteado ser um número maior que 40 ou número par é: A) 60% B) 70% C) 80% D) 90% E) 50%

72

73 OBSERVANDO OS TERMOS Quando constarem termos como SABENDO QUE, CONSIDERANDO QUE, TENDO EM VISTA QUE, etc... pode ser que o total esteja sendo reduzido.

74 Em uma sala com 50 alunos há 7 alunos com camiseta preta e 10 com camiseta azul escura. Os outros estão vestindo camisetas com cores claras. As cores claras são amarelo (12 alunos), branco ( 8 alunos) e azul claro ( 13 alunos). CORES CLARAS CORES ESCURAS Amarelo: 12 Preto: 7 Branco:8 Azul escuro: 10 Azul Claro: 13

75 CORES CLARAS CORES ESCURAS Amarelo: 12 Preto: 7 Branco:8 Azul escuro: 10 Azul Claro: 13 Sendo escolhido aleatoriamente um aluno dessa turma, qual a probabilidade do aluno escolhido estar vestindo camisa amarela, sabendo que o escolhido possui camiseta de cor clara?

76 Considerando como valor aproximado para e -5, julgue os próximos itens, relativos à movimentação de clientes acima descrita.

77 A probabilidade de que, em determinado minuto, cheguem dois ou mais clientes é inferior a 95%.

78 A probabilidade de que, em determinado minuto, chegue exatamente um cliente é inferior a 4%.

79 Em um setor de uma fábrica trabalham 10 pessoas que serão divididas em 2 grupos de 5 pessoas cada para realizar determinadas tarefas. João e Pedro são duas dessas pessoas. Nesse caso, a probabilidade de João e Pedro ficarem no mesmo grupo é: a) inferior a 0,36 b) superior a 0,36 e inferior a 0,40 c) superior a 0,40 e inferior a 0,42 d) superior a 0,42 e inferior a 0,46 e) superior a 0,46

80

81

82 a) inferior a 0,36 b) superior a 0,36 e inferior a 0,40 c) superior a 0,40 e inferior a 0,42 d) superior a 0,42 e inferior a 0,46 e) superior a 0,46

83 Considere-se que, das 82 varas do trabalho relacionadas no sítio do TRT da 9.ª Região, 20 ficam em Curitiba, 6 em Londrina e 2 em Jacarezinho. Considere-se, ainda, que, para o presente concurso, haja vagas em todas as varas, e um candidato aprovado tenha igual chance de ser alocado em qualquer uma delas. Nessas condições, a probabilidade de um candidato aprovado no concurso ser alocado em uma das varas de Curitiba, ou de Londrina, ou de Jacarezinho é superior a 1/3

84 Total: 82 varas Curitiba: 20 Londrina: 6 Jacarezinho: 2 A probabilidade de um candidato aprovado no concurso ser alocado em uma das varas de Curitiba, ou de Londrina, ou de Jacarezinho é superior a 1/3

85 De 100 processos guardados em um armário, verificou-se que 10 correspondiam a processos com sentenças anuladas, 20 estavam solucionados sem mérito e 30 estavam pendentes, aguardando a decisão de juiz, mas dentro do prazo vigente. Nessa situação, a probabilidade de se retirar desse armário um processo que esteja com sentença anulada, ou que seja um processo solucionado sem mérito, ou que seja um processo pendente, aguardando a decisão de juiz, mas dentro do prazo vigente, é igual a 3/5

86 Total: 100 processos Sentenças anuladas: 10 Solução sem mérito: 20 Pendentes: 30 A probabilidade de se retirar um processo que esteja com sentença anulada, ou que seja um processo solucionado sem mérito, ou que seja um processo pendente é igual a 3/5

87 Um juiz deve analisar 12 processos de reclamações trabalhistas, sendo 4 de médicos, 5 de professores e 3 de bancários. Considere que, inicialmente, o juiz selecione aleatoriamente um grupo de 3 processos para serem analisados. Com base nessas informações, a probabilidade de que, nesse grupo, todos os processos sejam de bancários é inferior a 0,005.

88 Em 2005, a ANCINE coordenou a mostra de filmes brasileiros no Ano do Brasil na França. No 17.º Encontro de Cinematografia da América Latina, que ocorreu entre 11 e 20 de março de 2005, em Toulouse, foi programada a exibição de um lote de 16 filmes de longa metragem brasileiros. Considerando essas informações, julgue os itens que se seguem.

89 Suponha que as cópias de 4 desses 16 filmes estivessem com defeito. Nesse caso, a probabilidade de que 3 outras cópias, retiradas aleatória e sucessivamente desse lote de filmes, não estivessem com defeito é superior a 0,36. CERTO

90 Um investigador, ao chegar ao local de um crime, tem de executar 10 tarefas, entre as quais se incluem: "procurar a arma do crime", "buscar por impressões digitais" e "verificar se houve arrombamento de portas e janelas". O investigador tem autonomia para decidir em que ordem as 10 tarefas serão executadas. Com base nessa situação, julgue os itens seguintes.

91 * A probabilidade de a tarefa "procurar a arma do crime" ser executada em terceiro lugar é inferior a 3!/10!

92 * A probabilidade de a tarefa "verificar se houve arrombamento de portas e janelas" ser executada imediatamente após a tarefa "buscar por impressões digitais" é inferior a 1/12

93 Considere que a tabela a seguir mostra o número de vítimas fatais em acidentes de trânsito ocorridos em quatro estados brasileiros. Estado em que Total de vítimas fatais ocorreu o acidente Sexo masculino Sexo feminino Maranhão Paraíba Paraná Santa Catarina

94 A fim de fazer um estudo de causas, a PRF elaborou relatórios, um para cada uma das vítimas fatais mencionadas na tabela acima, contendo o perfil da vítima e as condições em que ocorreu o acidente. Com base nessas informações, julgue os itens que se seguem, acerca de um relatório escolhido aleatoriamente entre os citados acima.

95 * A probabilidade de que esse relatório corresponda a uma vítima de um acidente ocorrido no estado do Maranhão é superior a 0,2. Estado Total de vítimas fatais masculino feminino Maranhão Total: relatórios

96 * A chance de que esse relatório corresponda a uma vítima do sexo feminino é superior a 23% Estado vítimas masc fem Maranhão Paraíba Paraná Sta Catarina

97 * Considerando que o relatório escolhido corresponda a uma vítima do sexo masculino, a probabilidade de que o acidente nele mencionado tenha ocorrido no estado do Paraná é superior a 0,5. Estado vítimas masc fem Maranhão Paraíba Paraná Sta Catarina Total homens= 1098

98 * Considerando que o relatório escolhido corresponda a uma vítima de um acidente que não ocorreu no Paraná, a probabilidade de que ela seja do sexo masculino e de que o acidente tenha ocorrido no estado do Maranhão é superior a 0,27. Estado vítimas masc fem Maranhão Paraíba Paraná Sta Catarina Não Paraná: = 731

99 * A chance de que o relatório escolhido corresponda a uma vítima do sexo feminino ou a um acidente ocorrido em um dos estados da região Sul do Brasil listados na tabela é inferior a 70%. Estado vítimas masc fem Maranhão Paraíba Paraná Sta Catarina

100 Três pessoas, X, Y e Z, terminaram empatadas em uma competição de um programa de auditório. A produção do programa decide, então, premiar os três ou nenhum deles, dependendo exclusivamente da sorte. Para cada pessoa, é oferecida uma urna com bolinhas idênticas, numeradas de 1 a 5. A pessoa X tira de sua urna uma bolinha com número x, a pessoa Y tira de sua urna uma bolinha com o número y, e a pessoa Z tira de sua urna uma bolinha com o número z. As três pessoas ganham o prêmio se xy + z for par, e todos perdem caso contrário.

101

102 Para cada pessoa, é oferecida uma urna com bolinhas idênticas, numeradas de 1 a 5. A pessoa X tira bolinha com número x, a pessoa Y tira bolinha com o número y, e a pessoa Z tira bolinha com o número z. As três pessoas ganham o prêmio se xy + z for par, e todos perdem caso contrário. Sabendo que x = 3, qual a probabilidade de eles ganharem o prêmio?

103 a) 16% b) 36% c) 48% d) 50% e) 52%

104 Para disputar a final de um torneio internacional de natação, classificaram-se 8 atletas: 3 norteamericanos, 1 australiano, 1 japonês, 1 francês e 2 brasileiros. Considerando que todos os atletas classificados são ótimos e têm iguais condições de receber uma medalha (de ouro, prata ou bronze), a probabilidade de que pelo menos um brasileiro esteja entre os três primeiros colocados é igual a: a) 5/14 b) 3/7 c) 4/7 d) 9/14 e) 5/7

105 PROBABILIDADE EM DADOS DE JOGO

106

107

108 Um dado não viciado, com a forma de um cubo e com as faces numeradas de 1 até 6, foi lançado por 3 vezes. Sabendo-se que a soma dos resultados obtidos foi igual a 5, qual é a probabilidade de o resultado do segundo lançamento do dado ter sido igual a 2? a) 1 18 b) 1 6 c) 1 5 d) 1 3 e) 1 2

109

110 Ao se jogar um determinado dado viciado, a probabilidade de sair o número 6 é de 20%, enquanto as probabilidades de sair qualquer outro número são iguais entre si. Ao se jogar este dado duas vezes, qual o valor mais próximo da probabilidade de um número par sair duas vezes?

111 Ao se jogar este dado duas vezes, qual o valor mais próximo da probabilidade de um número par sair duas vezes? a) 20% b) 27% c) 25% d) 23% e) 50%

112 Ao se jogar um dado honesto três vezes, qual o valor mais próximo da probabilidade de o número 1 sair exatamente uma vez? a) 35% b) 17% c) 7% d) 42% e) 58%

113 PROBABILIDADE EM MOEDAS

114 Uma moeda não tendenciosa é lançada até que sejam obtidos dois resultados consecutivos iguais. Qual a probabilidade de a moeda ser lançada exatamente três vezes? a) 1/8 b) 1/4 c) 1/3 d) 1/2 e) 3/4

115 Um jogador aposta que, em três lançamentos de uma moeda honesta, obterá duas caras e uma coroa. A probabilidade de que ele ganhe a aposta é: A) 1/3 B) 2/3 C) 1/8 D) 3/8 E) 5/8

116 Uma moeda é viciada, de forma que as caras são três vezes mais prováveis de aparecer do que as coroas. Determine a probabilidade de num lançamento sair coroa. A) 25% B) 50% C) 35% D) 70% E) 20%

117 PROBABILIDADE EM CARTAS

118 Paulo e Raul pegaram 10 cartas de baralho para brincar: A, 2, 3, 4, 5, 8, 9, 10, J e Q, todas de copas. Paulo embaralhou as 10 cartas, colocou-as aleatoriamente sobre a mesa, todas voltadas para baixo, e pediu a Raul que escolhesse duas. Considerando-se que todas as cartas têm a mesma chance de serem escolhidas, qual a probabilidade de que, nas duas cartas escolhidas por Raul, estejam escrita as letras A, J ou Q?

119 * 10 cartas de copas : A, 2, 3, 4, 5, 8, 9, 10, J e Q, * Qual a probabilidade de que, nas duas cartas escolhidas por Raul, estejam escrita as letras A, J ou Q? a)1/10 b)3/10 c)1/15 d)2/15 e)1/45

120 Uma carta é retirada de um baralho comum, de 52 cartas, e, sem saber qual é a carta, é misturada com as cartas de um outro baralho idêntico ao primeiro. Retirando, em seguida, uma carta do segundo baralho, a probabilidade de se obter uma dama é: A) 3/51 B) 5/53 C) 5/676 D) 1/13 E) 5/689

121 As cartas de um baralho são amontoadas aleatoriamente. Qual é a probabilidade de a carta de cima ser de copas e a de baixo também? O baralho é formado por 52 cartas de 4 naipes diferentes (13 de cada naipe). A) 1/17 B) 1/25 C) 1/27 D) 1/36 E) 9/45

122

RACIOCÍNIO LÓGICO-MATEMÁTICO 20 AULAS

RACIOCÍNIO LÓGICO-MATEMÁTICO 20 AULAS RACIOCÍNIO LÓGICO-MATEMÁTICO 20 AULAS 1 Números inteiros, racionais e reais. 1.1 Problemas de contagem. 2 Sistema legal de medidas. 3 Razões e proporções; divisão proporcional. 3.1 Regras de três simples

Leia mais

a) 20 b) 16 c) 12 d) 10 e) 4

a) 20 b) 16 c) 12 d) 10 e) 4 Uma loja vende barras de chocolate de diversos sabores. Em uma promoção, era possível comprar três barras de chocolate com desconto, desde que estas fossem dos sabores ao leite, amargo, branco ou com amêndoas,

Leia mais

A partir das proposições Se não tem informações precisas ao tomar decisões, então o policial toma decisões ruins e Se o policial teve treinamento

A partir das proposições Se não tem informações precisas ao tomar decisões, então o policial toma decisões ruins e Se o policial teve treinamento Se as premissas P1 e P2 de um argumento forem dadas, respectivamente, por Todos os leões são pardos e Existem gatos que são pardos, e a sua conclusão P3 for dada por Existem gatos que são leões, então

Leia mais

A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa.

A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa. A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa. Qual é a probabilidade de que um equipamento selecionado aleatoriamente esteja inativo ou seja do tipo A? a) 6/27 b) 14/27

Leia mais

Como identificar essas sentenças especiais sem construir tabela-verdade? 1º - Pensando nas negações/equivalências e nas regras de conectivos

Como identificar essas sentenças especiais sem construir tabela-verdade? 1º - Pensando nas negações/equivalências e nas regras de conectivos Como identificar essas sentenças especiais sem construir tabela-verdade? 1º - Pensando nas negações/equivalências e nas regras de conectivos 2º - Raciocinando sobre a sentença, uma vez que não se enquadra

Leia mais

CESPE. Considerando como valor aproximado para e -5, julgue os próximos itens, relativos à movimentação de clientes acima descrita.

CESPE. Considerando como valor aproximado para e -5, julgue os próximos itens, relativos à movimentação de clientes acima descrita. CESPE. Considerando 7 10-3 como valor aproximado para e -5, julgue os próximos itens, relativos à movimentação de clientes acima descrita. A probabilidade de que, em determinado minuto, cheguem dois ou

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

MATEMÁTICA ANÁLISE DE DADOS (ANÁLISE COMBINATÓRIA) EXERCÍCIOS

MATEMÁTICA ANÁLISE DE DADOS (ANÁLISE COMBINATÓRIA) EXERCÍCIOS MATEMÁTICA ANÁLISE DE DADOS (ANÁLISE COMBINATÓRIA) EXERCÍCIOS Análise Combinatória (exercícios) Professor: Dêner Rocha ANAGRAMAS (Exercícios de Aquecimento!) 1. Considere a palavra VESTIBULAR. Nenhuma

Leia mais

01 - (UEM PR) um resultado "cara sobre casa preta" é (MACK SP)

01 - (UEM PR) um resultado cara sobre casa preta é (MACK SP) ALUNO(A): Nº TURMA: 2º ANO PROF: Claudio Saldan CONTATO: [email protected] LISTA DE EXERCÍCIOS PROBABILIDADE 0 - (UEM PR) Considere a situação ideal na qual uma moeda não-viciada, ao ser lançada sobre

Leia mais

LISTA 29 - PROBABILIDADE 1

LISTA 29 - PROBABILIDADE 1 LISTA 9 - PROBABILIDADE ) Um time de futebol amador ganhou uma taça ao vencer um campeonato. Os jogadores decidiram que o próprio seria guardado na casa de um deles. Todos quiseram guardar a taça em suas

Leia mais

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma

Leia mais

Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.

Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais. p: João Alvaro w: www.matemaniacos.com.br e: [email protected]. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO

Leia mais

CEM. RLM Análise Combinatória

CEM. RLM Análise Combinatória CEM CADERNO DE EXERCÍCIOS MASTER Período 2006 2016 1) FCC - Técnico (BACEN)-2006 Os clientes de um banco contam com um cartão magnético e uma senha pessoal de quatro algarismos distintos entre 1 000 e

Leia mais

c) 17 b) 4 17 e) 17 21

c) 17 b) 4 17 e) 17 21 Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se

Leia mais

Roteiro D. Nome do aluno: Número: Revisão. Combinações;

Roteiro D. Nome do aluno: Número: Revisão. Combinações; Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Roteiro D Nome do aluno: Número: Periodo: Grupo: Revisão Tópicos Tarefa Pesquisar história do Fatorial e outros tipos

Leia mais

n! = n (n 1) (n 2) 1.

n! = n (n 1) (n 2) 1. Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - IFMT Campus Várzea Grande Aula - Análise Combinatória e Probabilidade Prof. Emerson Dutra E-mail: [email protected] Página

Leia mais

Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a

Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a probabilidade se sair bola: a. azul; b. vermelha; c. amarela. 2.

Leia mais

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura

Leia mais

Resposta: Resposta: 4 ou seja, 1.

Resposta: Resposta: 4 ou seja, 1. 1. (Unicamp 2016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a a) 1. 4 b). 8 c) 1. 2 d). 4

Leia mais

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 3 04/14 1 / 20 Alguns Conceitos Básicos de Contagem As ideias de contagem se relacionam com

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

Probabilidade e Estatística Preparação para P1

Probabilidade e Estatística Preparação para P1 robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 6...2 Probabilidade...2 Exercícios...4 Restpostas...9 Capítulo 7... 12 Análise combinatória... 12 Fatorial... 12 Arranjo... 13 Combinação... 16 Exercícios... 17 Respostas... 22 1 Capítulo

Leia mais

PROBABILIDADE. c) 1/4 d) 1/12 e) nda MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS

PROBABILIDADE. c) 1/4 d) 1/12 e) nda MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS PROBABILIDADE 1- (Osec-SP) Foram preparadas noventa empadinhas de camarão, sendo que, a pedido, sessenta delas deveriam ser bem mais apimentadas. Por pressa e confusão

Leia mais

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número. Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem 1. Existem 2 vias de locomoção de uma cidade A para uma cidade B e 3 vias de locomoção da cidade B a uma cidade C. De

Leia mais

Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA

Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA 01. Num saco estão 10 bolas indistinguíveis ao tato, das quais 6 são azuis e 4 são verdes. Retiram-se, sucessivamente e sem reposição duas bolas. Determine

Leia mais

MATEMÁTICA MÓDULO 4 PROBABILIDADE

MATEMÁTICA MÓDULO 4 PROBABILIDADE PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,

Leia mais

COLÉGIO PLÍNIO L EITE MATEMÁTICA 2º Período/2014

COLÉGIO PLÍNIO L EITE MATEMÁTICA 2º Período/2014 COLÉGIO PLÍNIO L EITE MATEMÁTICA 2º Período/2014 2ª SÉRIE ESCOLAR - ENSINO MÉDIO Nome: Turma: nº: Professor : Chiquinho Data: 23/07/2014 ATIVIDADE PONTUADA VALOR: 5,0 pontos... 1) Os 63 novos contratados

Leia mais

Aula 16 - Erivaldo. Probabilidade

Aula 16 - Erivaldo. Probabilidade Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar

Leia mais

Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos?

Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos? LISTA BÁSICA POIA PROBABILIDADES A história da teoria das probabilidades teve início com os jogos de cartas, de dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo

Leia mais

Probabilidade Condicional (grupo 2)

Probabilidade Condicional (grupo 2) page 39 Capítulo 5 Probabilidade Condicional (grupo 2) Veremos a seguir exemplos de situações onde a probabilidade de um evento émodificadapelainformação de que um outro evento ocorreu, levando-nos a definir

Leia mais

AULA 08 Probabilidade

AULA 08 Probabilidade Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

COMENTÁRIO DA PROVA DO BANCO DO BRASIL

COMENTÁRIO DA PROVA DO BANCO DO BRASIL COMENTÁRIO DA PROVA DO BANCO DO BRASIL Prezados concurseiros, segue abaixo os comentários das questões de matemática propostas pela CESPE no último concurso para o cargo de escriturário do Banco do Brasil

Leia mais

Raciocínio Lógico. 06- A quantidade de anagramas que podem ser formados com as letras da palavra MINISTÉRIO é inferior a

Raciocínio Lógico. 06- A quantidade de anagramas que podem ser formados com as letras da palavra MINISTÉRIO é inferior a Raciocínio Lógico 01- Se Carlos é surfista, então Julia não é tenista. Se Julia não é tenista, então Michelle anda de skate. Se Michelle anda de skate, então Lucas não é patinador. Ora, Lucas é patinador.

Leia mais

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. 1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira

Leia mais

Análise Combinatória AULA 1. Métodos Simples de Contagem

Análise Combinatória AULA 1. Métodos Simples de Contagem Análise Combinatória AULA 1 Métodos Simples de Contagem Tales Augusto de Almeida 1. Introdução A primeira ideia que surge no imaginário de qualquer estudante quando ele ouve a palavra contagem seria exatamente

Leia mais

- Na parte de lógica o mais importante são as equivalências e negações de proposições

- Na parte de lógica o mais importante são as equivalências e negações de proposições Dicas Conceitos importantes - Na parte de lógica o mais importante são as equivalências e negações de proposições - Na parte de Análise Combinatória, o candidato devem conhecer bem esses 3 conceitos -

Leia mais

COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 O QUE É COMBINATÓRIA

COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 O QUE É COMBINATÓRIA Matemática Discreta Capítulo 2 SUMÁRIO COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 Newton José Vieira 23 de setembro de 2007 Problemas Básicos de Combinatória As Regras da Soma e do Produto

Leia mais

Lista de exercícios 02. Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 02. Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 02 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes

Leia mais

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão.

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão. 1 MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PIAUÍ CENTRO DE EDUCAÇÃO ABERTA E A DISTÂNCIA CEAD/UFPI-UAB/CAPES CURSO DE LICENCIATURA EM COMPUTAÇÃO 2ª Atividade Probabilidade e Estatística QUESTÕES

Leia mais

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é:

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é: 1. O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. Com as letras da palavra prova, podem ser escritos x anagramas que começam por vogal e

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta PÁGINA 8 0 0 Havendo apenas bolas verdes e azuis na urna, segue que a resposta é dada por Basta dividirmos o número de ocorrências, pelo número total de

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Segunda Lista de Exercícios

UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Segunda Lista de Exercícios UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Segunda Lista de Exercícios Questão 1. Descreva o espaço amostral para cada um dos seguintes

Leia mais

Contagem e Combinatória Elementar

Contagem e Combinatória Elementar Contagem e Combinatória Elementar Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 11 de janeiro de 2013 Motivação (I) Combinatória

Leia mais

Simulado Aula 05 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto

Simulado Aula 05 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto Simulado Aula 05 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Considere que os termos da sucessão seguinte foram obtidos segundo determinado padrão. (20, 21, 19, 22, 18, 23, 17,...)

Leia mais

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática 1 a Lista de Exercícios de Probabilidade e Estatística 1.

Leia mais

Considere a figura, em que estão indicadas as possíveis localizações do cliente.

Considere a figura, em que estão indicadas as possíveis localizações do cliente. 36. [C] Considere a figura, em que estão indicadas as possíveis localizações do cliente. A resposta é 12. 37. [C] Como cada tarefa pode ser distribuída de três modos distintos, podemos concluir, pelo Princípio

Leia mais

Probabilidade em espaços discretos. Prof.: Joni Fusinato

Probabilidade em espaços discretos. Prof.: Joni Fusinato Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade

Leia mais

Análise Combinatória

Análise Combinatória Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por

Leia mais

Estatística Aplicada. Prof. Carlos Alberto Stechhahn EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE. Administração. p(a) = n(a) / n(u)

Estatística Aplicada. Prof. Carlos Alberto Stechhahn EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE. Administração. p(a) = n(a) / n(u) Estatística Aplicada Administração p(a) = n(a) / n(u) EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE Prof. Carlos Alberto Stechhahn 2014 1. Tema: Noções de Probabilidade 1) Considere o lançamento

Leia mais

Probabilidade - EBC I Prof. Douglas Léo

Probabilidade - EBC I Prof. Douglas Léo 1 (ESGRANRIO - PETROBRÁS - ADMINIST- 2010 Em um posto de combustíveis entram, por hora, cerca de 300 clientes. Desses, 210 vão colocar combustível, 130 vão completar o óleo lubrificante e 120 vão calibrar

Leia mais

Matemática. Probabilidade Básica. Professor Dudan.

Matemática. Probabilidade Básica. Professor Dudan. Matemática Probabilidade Básica Professor Dudan www.acasadoconcurseiro.com.br Matemática PROBABILIDADE Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover

Leia mais

ANÁLISE COMBINATÓRIA II E PROBABILIDADE

ANÁLISE COMBINATÓRIA II E PROBABILIDADE 1. (Fac. Albert Einstein - Medicina 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros

Leia mais

Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan

Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matemática Probabilidade Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover num dia de

Leia mais

CAIXA ECONÔMICA FEDERAL

CAIXA ECONÔMICA FEDERAL ESTATISTICA (exercícios) 1.) As alturas dos jogadores de basquete da Seleção Brasileira são 1,98 m; 2,04 m; 2,06 m; 2,02 m e 2,05 m. A média de altura dessa seleção, em m, é de: a.) 2,01 b.) 2,02 c.) 2,03

Leia mais

Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0, 2, 3, 5, 6, 7, 8, 9}?

Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0, 2, 3, 5, 6, 7, 8, 9}? Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0,, 3, 5,, 7, 8, 9}? ) Quantos pares ordenados com elementos distintos podemos formar com os

Leia mais

EXERCÍCIOS REVISIONAIS SOBRE BINÔMIO DE NEWTON SISTEMAS LINEARES PROBABILIDADE 2 ANO

EXERCÍCIOS REVISIONAIS SOBRE BINÔMIO DE NEWTON SISTEMAS LINEARES PROBABILIDADE 2 ANO QUESTÃO 1: Uma urna contém 4 bolas vermelhas, 6 pretas e 5 azuis. Retirando-se dessa urna, ao acaso, uma bola, CALCULE a probabilidade de ela: ser vermelha. ser vermelha ou preta. não ser azul. QUESTÃO

Leia mais

CAIXA ECONOMICA FEDERAL. Prof. Sérgio Altenfelder

CAIXA ECONOMICA FEDERAL. Prof. Sérgio Altenfelder 14.) (ICMS-MG/05) Um empréstimo contraído no início de abril, no valor de R$ 15.000,00 deve ser pago em dezoito prestações mensais iguais, a uma taxa de juros compostos de 2% ao mês, vencendo a primeira

Leia mais

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues Unidade IV ESTATÍSTICA Prof. Fernando Rodrigues Análise combinatória Analise combinatória é a área da Matemática que trata dos problemas de contagem. Ela é utilizada para contarmos o número de eventos

Leia mais

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER FATORIAL Chama-se fatorial de n ou n fatorial o número n!, tal que: - Para n=0: 0!=1 - Para n=1: 1!=1 - Para n=2: 2!=21=2 - Para n=3: 3!=321=6 - Para n=4: 4!=4321=24

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema.

Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. PROBABILIDADE CONDICIONAL E DISTRIBUIÇÃO BINOMINAL 1. PROBABILIDADE CONDICIONAL Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. Suponha que um redator

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Rodrigo Molinari)

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Rodrigo Molinari) 15 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos

Leia mais

RACIOCÍNIO LÓGICO. 04. Se dois dados, um azul e um branco, forem lançados, a probabilidade de sair 5 no azul ou 3 no branco é superior a 2/3.

RACIOCÍNIO LÓGICO. 04. Se dois dados, um azul e um branco, forem lançados, a probabilidade de sair 5 no azul ou 3 no branco é superior a 2/3. RACIOCÍNIO LÓGICO 01. Anagramas são agrupamentos de letras que são obtidos ao se mudar a ordem destas em uma palavra. Cada vez que se muda a ordem das letras, obtém-se um novo anagrama. A quantidade de

Leia mais

b) 35 c) 14 d) 35 Gab: D

b) 35 c) 14 d) 35 Gab: D 0 - (PUC SP/006) Em um ônibus há apenas bancos vazios, cada qual com lugares. Quatro rapazes e quatro moças entram nesse ônibus e devem ocupar os bancos vagos. Se os lugares forem escolhidos aleatoriamente,

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Exercícios de Probabilidade

Exercícios de Probabilidade Exercícios de Probabilidade Fernando Loureiro 7 de Junho de 06 Exercícios Resolvidos. (ESGRANRIO/PETROBRAS 0) Um jogo consiste em lançar uma moeda honesta até obter duas caras consecutivas ou duas coroas

Leia mais

CAPÍTULO 3 PROBABILIDADE

CAPÍTULO 3 PROBABILIDADE CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém

Leia mais

Questões Comentadas. Em cada um dos itens subsequentes, é apresentada uma situação hipotética, seguida de uma assertiva a ser julgada.

Questões Comentadas. Em cada um dos itens subsequentes, é apresentada uma situação hipotética, seguida de uma assertiva a ser julgada. 288 Em cada um dos itens subsequentes, é apresentada uma situação hipotética, seguida de uma assertiva a ser julgada. 718. (Cespe) Uma concessionária oferece aos clientes as seguintes opções para a aquisição

Leia mais

(a) Se a escolha for feita com reposição? (b) Se a escolha for feita sem reposição?

(a) Se a escolha for feita com reposição? (b) Se a escolha for feita sem reposição? MAT Lista 3 Data da lista: 01/04/2019 Preceptores: Gabriele Braz Cursos: Administração, Ciências Econômicas e Tec. Biotecnologia Coordenadora: Luciene 1. Um homem vai a um restaurante disposto a comer

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis

Leia mais

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística Probabilidades Aluna(o): Aluna(o): Turma: Responsável: Prof. Silvano Cesar da Costa L O N D R I N A Estado do Paraná

Leia mais

2) Existem três suspeitos de um assalto a banco, que podem ou não ter agido em. (A) Lenin e Rasputin não existiram. (B) Lenin não existiu.

2) Existem três suspeitos de um assalto a banco, que podem ou não ter agido em. (A) Lenin e Rasputin não existiram. (B) Lenin não existiu. www.exatasconcursos.mat.br 1) Se Rasputin não tivesse existido, Lenin também não existiria. Lenin existiu. Logo, (A) Lenin e Rasputin não existiram. (B) Lenin não existiu. (C) Rasputin existiu. (D) Rasputin

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 2 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 2 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2 a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 3 o Bimestre de 2016 Data / / Escola Aluno A B C D E 1 2 3 4 5

Leia mais

Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda)

Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda) Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda) 1. (Famerp 2018) Lucas possui 6 livros diferentes e Milton possui 8 revistas diferentes. Os dois pretendem fazer uma troca

Leia mais

Lista de Exercícios Extra Prof. Dudan

Lista de Exercícios Extra Prof. Dudan Escrivão e Agente de Polícia Lista de Exercícios Extra Prof. Dudan Raciocínio Lógico 1. (35137) CESPE 2013 Maria tem dez anos de idade e já se decidiu: quer ser ou advogada ou bióloga ou veterinária,

Leia mais

Prof. Dr. Lucas Santana da Cunha de abril de 2018 Londrina

Prof. Dr. Lucas Santana da Cunha de abril de 2018 Londrina Análise Combinatória Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 18 de abril de 2018 Londrina 1 / 11 Análise Combinatória A Análise Combinatória é a parte

Leia mais

2ª série do Ensino Médio Turma 3º Bimestre de 2017 Data / / Escola Aluno

2ª série do Ensino Médio Turma 3º Bimestre de 2017 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 2ª série do Ensino Médio Turma 3º Bimestre de 2017 Data / / Escola Aluno 23 1 2 3 4 5 6 7 8 9 10 11 12 Avaliação da Aprendizagem em Processo Prova do Aluno

Leia mais

Lista - Matemática. w: e: Princípio Multiplicativo. Princípio Multiplicativo e permutações.

Lista - Matemática. w:  e: Princípio Multiplicativo. Princípio Multiplicativo e permutações. p: João Alvaro w: www.matemaniacos.com.br e: [email protected] Princípio Multiplicativo e permutações. 1. Dispondo das letras A, B e C e dos algarismos 1, 2, 3, 4 e 5, quantas placas de automóveis

Leia mais

Ficha de trabalho - Combinatória. a) De quantas maneiras distintas se podem colocar os sete sabores no recipiente?

Ficha de trabalho - Combinatória. a) De quantas maneiras distintas se podem colocar os sete sabores no recipiente? 12º Ano - Matemática A Ficha de trabalho - Combinatória 1. No balcão de uma geladaria existe um recipiente com dez compartimentos, cinco à frente e cinco atrás, para colocar gelado. Em cada compartimento

Leia mais

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE TRABALHO N.º2 DE MATEMÁTICA Data: Outubro de 2009 Turmas: 12ºA e 12ºB TÉCNICAS DE CONTAGEM: Arranjos com repetição ; Arranjos sem repetição;

Leia mais

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Probabilidade Tópicos Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Conjuntos Conjunto: Na matemática, um conjunto é uma coleção de elementos com características

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como

Leia mais

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência

Leia mais

Permutação; Fatorial; Resolução de exercícios de contagem. Assuntos:

Permutação; Fatorial; Resolução de exercícios de contagem. Assuntos: Assuntos: Permutação; Fatorial; Resolução de exercícios de contagem. Prof. Hudson Sathler Delfino Exercícios Ciclo 5 N1 1º ENCONTRO. Exercício 1. (a) Quantos são os anagramas da palavra BOLA? (b)e quantos

Leia mais

Lista 10 Análise Combinatória e Probabilidade

Lista 10 Análise Combinatória e Probabilidade Lista 10 Análise Combinatória e Probabilidade 1) Dada a palavra AMORECO, responda as seguintes questões: a) Quantos são seus anagramas? = 2520 b) Quantas são os anagramas que começam e terminam por consoante?.

Leia mais

Prof.: Joni Fusinato

Prof.: Joni Fusinato Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso

Leia mais

4. Seja A o acontecimento associado a uma experiência aleatória em que o espaço amostral é Quais as igualdades necessariamente falsas?

4. Seja A o acontecimento associado a uma experiência aleatória em que o espaço amostral é Quais as igualdades necessariamente falsas? mata. Lançou-se 70 vezes um dado em forma de tetraedro com as faces numeradas de a e obteve-se vezes a face, 0 vezes a face, vezes a face e as restantes a face. Determine a frequência relativa dos acontecimentos:

Leia mais

1. (Meyer,2000) Suponha que o conjunto fundamental seja formado pelos inteiros positivos

1. (Meyer,2000) Suponha que o conjunto fundamental seja formado pelos inteiros positivos Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Disciplina: LCE0211-Estatística Geral Prof. Idemauro Antonio Rodrigues de Lara 4 a lista de exercícios 1. (Meyer,2000) Suponha que

Leia mais