Números Complexos. Conceito, formas algébrica e trigonométrica e operações.
|
|
|
- Cristiana Fagundes Aragão
- 8 Há anos
- Visualizações:
Transcrição
1 Números Complexos Conceto, formas algébrca e trgonométrca e operações.
2 Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos: Qual o resultado da operação X² + = 0? X² = - X = -
3 Conceto (parte II) Por sso, fo crado um número especal, que denomnamos algebrcamente como, que elevado ao quadrado resulte em -, matematcamente: I² = - = - Esse novo conceto possbltou a resolução da equação mostrada anterormente
4 Conceto (parte III) Desse modo: X² + = 0 X = - (como = -) X =
5 Conclusão do conceto Assm, fo crado um novo conjunto numérco denomnado conjunto dos números complexos ou conjunto dos números magnáros, que representamos pela letra C. Conjunto dos números complexos = C
6 Relação fundamental O conjunto dos números complexos possu, desse modo, a relação fundamental onde: I² = - Ou = -
7 Exemplos - = (-) -4 = 4(-) Aplcando a relação fundamental: Aplcando a relação fundamental: - = -4 =
8 Forma algébrca (parte I) O número complexo possu uma parte real e outra magnára. Como a parte magnára conta com a presença do, sua forma algébrca é a + b Parte real Parte magnára
9 Forma algébrca (parte II) Um número complexo que não possu parte real (a = 0) é denomnado número complexo puro. Um número complexo que não possua a parte magnára (b = 0) é denomnado número real e os números magnáros que possu ambas as partes são smplesmente chamados de números complexos.
10 Exemplos + 4 número complexo 8 - número complexo 6 número magnáro puro 4 número real - número magnáro puro ² número real
11 Conjugado de um número complexo Um número complexo z = a + b possu um conjugado que é representado por z, onde: z = a b (lê-se conjugado de z)
12 Exemplos Dados os números complexos, encontrar seus respectvos conjugados: z = 4 z = + 4 z = z = - z = + z = - z = z = z = -3 8 z =
13 Operações com números complexos na forma algébrca Como os números reas possuem forma real e magnára separadas, as operações de adção, subtração, multplcação, dvsão e potencação dferem um pouco das habtuas com números reas.
14 Adção e subtração com números complexos na forma algébrca Para somar e subtrar números complexos deve-se efetuar as operações na parte real e magnára separadamente. (a + b) + (c + d) = (a + c) + (b + d) (a + b) - (c + d) = (a - c) + (b - d)
15 Exemplos ( + 4) + (3 + ) = ( + 3) + (4 + ) = ( + 4) ( +7) = ( - ) + (4-7) = - -3 (3 + ) (4 + ) = (3-4) + ( - ) = - + ( + 4) = + ( + 4) = + 5
16 Multplcação com números complexos na forma algébrca Para efetuar a multplcação aplca-se smplesmente a dstrbutva: (a + b)(c + d) = ac + ad + bc + bd² (a + b)(c + d) = ac + ad + bc bd (a + b)(c + d) = a(c + d) + b(-d + c)
17 Exemplos ( + 3)( + ) = ² = = ( + ) = + ( - )(-3 + ) = ² =
18 Dvsão com números complexos na forma algébrca Para se dvdr números complexos, deve-se multplcar ambos os números pelo conjugado do complexo do denomnador. z z z z. z. z
19 Exemplo ) )( ( ) )( (3 3
20 Potêncas de (parte I) Nas potêncas de notam-se regulardades de quatro em quatro no expoente:
21 Potêncas de (parte II) Desse modo, para encontrar o resultado de qualquer potênca, dvdmos o expoente por 4 e resolvemos a potênca utlzando como expoente o resto da dvsão.
22 Exemplo = 3 = -
23 Número complexo no plano de Argand-Gauss Os números complexos podem ser representados num plano, onde a reta das abscssas é a reta dos números reas e a das ordenadas é a reta dos números complexos. Esse plano é denomnado plano de Argand-Gauss.
24 Exemplo Colocar no plano de Argand-Gauss o número complexo z = 3 + y (reta magnára) 4 3 z = x (reta dos reas)
25 Módulo e argumento de um número complexo (parte I) No gráfco, o módulo de um número complexo z = a + b é o segmento de reta que va do ponto orgem O(0,0) até o ponto do P(a, b) do número complexo z. O argumento de z é o ângulo que esta forma com o exo das abscssas em sentdo ant-horáro. = arg(z) z = a + b
26 Módulo e argumento de um número complexo (parte II) a a b =arg(z) z = a + b b sn cos b a tan b a
27 Forma trgonométrca Utlzando as relações dadas no slde anteror e aplcando-as à forma algébrca, obtemos a forma trgonométrca de um número complexo. sn cos b b a a sn cos z a b z z cos (cos sn sn )
28 Exemplo Passar para a forma trgonométrca o número complexo z = sn 3 cos ) sn (cos 3 ) arg( cos 3 sn z z z x x
29 Operações com números complexos na forma trgonométrca - Multplcação Para multplcar números complexos na forma trgonométrca utlzamos a fórmula: z z cos( ) sn( )
30 Operações com números complexos na forma trgonométrca - Dvsão A fórmula para efetuar a dvsão entre dos números complexos na forma trgonométrca é a segunte: z z cos sn
31 Operações com números complexos na forma trgonométrca - Potencação Para efetuar a potencação entre números complexos na forma trgonométrca utlzamos esta fórmula: z n z n cos n snn
32 Operações com números complexos na forma trgonométrca Radcação De forma análoga à potencação, para efetuar a radcação com números complexos na forma trgonométrca utlzamos a formula: k k w n z cos sn n n
ELETROTÉCNICA (ENE078)
UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenhara Cvl ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mal: [email protected] Aula Número: 19 Importante... Crcutos com a corrente
Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Autor: Gilmar Bornatto
Números Complexos Conceto, formas algébrca e trgonométrca e operações. Autor: Glmar Bornatto Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos:
NÚMEROS COMPLEXOS. Prof.ª Mª João Mendes Vieira
Prof.ª Mª João Mendes Vera Os Bablónos em 1700 AC já conhecam regras para resolver Equações do º grau. Os Gregos demonstraram essas regras e conseguram, por processos geométrcos, obter raízes rraconas.
NÚMEROS COMPLEXOS (C)
Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6
06) (PUC-MG) O número complexo z tal que 5z + z = i é igual a: a) 2 + 2i b) 2 3i c) 1 + 2i d) 2 + 4i e) 3 + i
concetos báscos, adção, subtração, multplcação, gualdade e conjugado 0) (Insper) A equação x 5 = 8x possu duas raíes magnáras, cuja soma é:. b). c) 0.. e). 0) (Mack) O conjunto solução da equação + 3 =
EXERCÍCIOS DE MATEMÁTICA Prof. Mário
EXERCÍCIOS DE MATEMÁTICA Prof. Máro e-mal: [email protected] 0 Conjuntos dos Números Complexos 0. Undade magnára º) Determne as raíes magnáras da equação x + 75 = 0 º) Encontre as raíes magnáras da
01) (Insper) A equação x 5 = 8x 2 possui duas raízes imaginárias, cuja soma é: a) 2. b) 1. c) 0. d) 1. e) 2.
Lsta 8 Números complexos Resoluções Prof Ewerton Números Complexos (concetos báscos, adção, subtração, multplcação, gualdade e conjugado) 0) (Insper) A equação x 5 = 8x possu duas raíes magnáras, cuja
{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro?
Matemátca Prof.: Joaqum Rodrgues NÚMEROS COMPLEXOS INTRODUÇÃO Questão 0 Resolver as equações: a x = 0 + S = {, } + 6 S = {, } x + S = { +, } 6x + 0 S = { +, } b x = 0 c x = 0 d x = 0 e x x + = 0 f x 8x
Álgebra ( ) ( ) Números complexos.
Números complexos Resolva as equações no campo dos a) x² 49 = 0 x² - x = 0 x² - x = 0 d) x² - x = 0 Dado = (4a ) - (a - ) determne o número real a tal que seja: a) magnáro puro real Sendo = (4m -) (n -),
MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS
MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: [email protected] PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)
MATEMÁTICA MÓDULO 8 COMPLEXOS NA FORMA TRIGONOMÉTRICA 1. FORMA TRIGONOMÉTRICA DE COMPLEXOS PROBIZU
COMPLEXOS NA FORMA TRIGONOMÉTRICA. FORMA TRIGONOMÉTRICA DE COMPLEXOS Seja z = (a, b) = a + b r a b módulo do complexo z. a b cos = ; sen = a rcos e b = rsen r r z r (cos sen ) r cs. Com [0, ], é o argumento
Página 293. w1 w2 a b i 3 bi a b i 3 bi. 2w é o simétrico do dobro de w. Observemos o exemplo seguinte, em que o afixo de 2w não
Preparar o Exame 0 0 Matemátca A Págna 9. Se 5 5 é o argumento de z, é argumento de z e 5 5. Este ângulo é gual ao ângulo de ampltude 5 é argumento de z.. Resposta: D w w a b b a b b. a b a a b b b bem
TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS
TE0 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS Números Complexos Introdução hstórca. Os números naturas, nteros, raconas, rraconas e reas. A necessdade dos números complexos. Sua relação com o mundo
Lista de Matemática ITA 2012 Números Complexos
Prof Alex Perera Beerra Lsta de Matemátca ITA 0 Números Complexos 0 - (UFPE/0) A representação geométrca dos números complexos que satsfaem a gualdade = formam uma crcunferênca com rao r e centro no ponto
Conjunto dos Números Complexos
Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela
MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Potêncas e raízes Propostas de resolução Exercícos de exames e testes ntermédos 1. Smplfcando a expressão de z na f.a., como 5+ ) 5 1 5, temos: z 1 + 1 ) + 1 1 1
a) 3 c) 5 d) 6 b) i d) i
Colégo Marsta Docesano de Uberaba ª Lsta de eercícos de Compleos Prof. Maluf Se é a undade magnára, para que a b seja um número real, a relação c d entre a, b, c e d deve satsfaer: 0 - (UNESP SP/00) a)
Números Complexos na Forma Algébrica
Colégo Adventsta Portão EIEFM MATEMÁTICA Números Complexos º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardm Dscplna: Matemátca Lsta º Bmestre Aluno(a): Número: Turma: Números Complexos na Forma Algébrca
Eletrotécnica II Números complexos
Eletrotécnica II Números complexos Prof. Danilo Z. Figueiredo Curso Superior de Tecnologia em Instalações Elétricas Faculdade de Tecnologia de São Paulo Tópicos Aspectos históricos: a solução da equação
PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS
Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS [email protected] Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com
Números Complexos na Forma Algébrica
Colégo Adventsta Portão EIEFM MATEMÁTICA Números Complexos º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardm Dscplna: Matemátca Lsta º Bmestre/0 Aluno(a): Número: Turma: Números Complexos na Forma Algébrca
Números Complexos. Matemática Básica. Números Complexos. Números Complexos: Um Pouco de História. Humberto José Bortolossi.
Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Números Complexos Parte 8 Parte 08 Matemática Básica 1 Parte 08 Matemática Básica 2 Números
Introdução: Um pouco de História
Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas
Matemática. Resolução das atividades complementares. M22 Números Complexos. 1 Resolva as equações no campo dos números complexos.
Resolução das atvdades comlementares Matemátca M Números Comleos. Resolva as equações no camo dos números comleos. a 0 {, } b 8 0 a 0 D?? D 8 D Cálculo das raíes? S {, } b 8 0 D?? 8 Cálculo das raíes D
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.
ESCOL DE PLICÇÃO DR. LFREDO JOSÉ LI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m n é qualquer conunto de m. n elementos dspostos
TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz)
GUIA DE ESTUDO NÚMEROS COMPLEXOS TURMA:12.ºA/12.ºB 2017/2018 (ABRIL/MAIO) Números Complexos O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) A famosa igualdade de Euler i e 10 A
1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:
Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números
Aulas Particulares on-line
MATEMÁTICA PRÉ-VESTIBULAR LIVRO DO PROFESSOR 006-009 IESDE Brasl S.A. É probda a reprodução, mesmo parcal, por qualquer processo, sem autoração por escrto dos autores e do detentor dos dretos autoras.
Instituto Latino-Americano de Ciências da Vida e Da Natureza Curso 6 + B 1 ALUNO: 5. Se mnp1 = 3 2mnp, calcule m + n + p.
os esportes? três esportes, quantos pratcam só dos o total de esportstas é 76 e 10 deles pratcam posconados nos círculos pntados 8 pratcam Encontre ofutebol, valor de 3Sbasquete na segunte e 40expressão:
Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)
Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números
AULA Espaços Vectoriais Estruturas Algébricas.
Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os
A origem de i ao quadrado igual a -1
A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações
LISTA DE REVISÃO DE MATEMÁTICA 3º ANO 2º TRIMESTRE PROF. JADIEL
LISTA DE REVISÃO DE MATEMÁTICA º ANO 2º TRIMESTRE PROF. JADIEL 1) O valor de z sabendo que 6 z é: z A) 6 B) 6 C) 8 + D) 8 E) 8 2) Qual o valor de z para que z z 2? A) z 2 B) z 1 2 C) z D) z E) z 1 ) Consdere
ESCOLA TÉCNICA ESTADUAL FREDERICO GUILHERME SCHMIDT
PRODUTOS NOTÁVEIS Quadrado da soma de dois termos (a + b) 2 = a 2 + 2ab + b 2 quadrado do segundo termo primeiro termo 2 x (primeiro termo) x (segundo termo) quadrado do primeiro termo segundo termo Quadrado
Revisão números Complexos
ELETRICIDADE Revisão números Complexos Prof. Marcio Kimpara Universidade Federal de Mato Grosso do Sul Números complexos No passado, os matemáticos esbarraram em uma situação oriunda da resolução de uma
Disciplina: MATEMÁTICA Série: 3º ANO ATIVIDADES DE REVISÃO PARA O REDI (4º BIMESTRE) ENSINO MÉDIO
Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: MATEMÁTICA Série: º ANO ATIVIDADES DE REVISÃO PARA O REDI (º BIMESTRE) ENSINO MÉDIO Data: /0/0. x y Questão 0) Dados os sistemas S : e x y
Mestrado em Ensino da Matemática. Ensino da Matemática II. Ensino da Matemática II - Tânia Lopes
Mestrado em Ensino da Matemática Ensino da Matemática II Conceito de números: Naturais; Inteiros; Racionais; Reais; E agora, Complexos. Equações de 2º grau Equações do 3º grau No século XVI, em Itália,
Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.
Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta
IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO
IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;
(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado
X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)
Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado
ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS
ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS APÊNDICE Maria do Rosário de Pinho e Maria Margarida Ferreira Setembro 1998 Faculdade de Engenharia da Universidade do Porto Licenciatura em Engenharia Electrotécnica
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.
ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos
m c k 0 c 4mk 4mk <0 (radicando NÚMEROS E FUNÇÕES COMPLEXAS CONTEXTUALIZAÇÃO
CONTEXTUALIZAÇÃO NÚMEROS E FUNÇÕES COMPLEXAS Números complexos ocorrem frequentemente na análise de vibrações, vindos da solução de equações diferenciais através de suas equações características. Em particular,
Capítulo 2. APROXIMAÇÕES NUMÉRICAS 1D EM MALHAS UNIFORMES
Capítulo. Aproxmações numércas 1D em malhas unformes 9 Capítulo. AROXIMAÇÕS NUMÉRICAS 1D M MALHAS UNIFORMS O prncípo fundamental do método das dferenças fntas (MDF é aproxmar através de expressões algébrcas
Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306)
Trabalho feito e apresentado para a disciplina de matemática em: Instituto Estadual de Educação - 3º ano(306) Colocado na internet Estude e se baseie nesse trabalho para os seus, mas não copie. Plágio
Eletrotécnica AULA Nº 1 Introdução
Eletrotécnca UL Nº Introdução INTRODUÇÃO PRODUÇÃO DE ENERGI ELÉTRIC GERDOR ESTÇÃO ELEVDOR Lnha de Transmssão ESTÇÃO IXDOR Equpamentos Elétrcos Crcuto Elétrco: camnho percorrdo por uma corrente elétrca
SE18 - Matemática. LMAT 6B1-1 - Números Complexos: Forma T rigonométrica. Questão 1
SE18 - Matemática LMAT 6B1-1 - Números Complexos: Forma T rigonométrica Questão 1 (Mackenzie 1996) Na figura a seguir, P e Q são, respectivamente, os afixos de dois complexos z 1 e z 2. Se a distância
XXVII Olimpíada Brasileira de Matemática GABARITO Primeira Fase
Soluções Nível Unverstáro XXVII Olmpíada Braslera de Matemátca GABARITO Prmera Fase SOLUÇÃO DO PROBLEMA : Pelo enuncado, temos f(x) = (x )(x + )(x c) = x 3 cx x + c, f'(x) = 3x cx, f '( ) = ( + c) e f
Lista 1 - Métodos Matemáticos II Respostas
Lista 1 - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele
1 Princípios da entropia e da energia
1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção
Flambagem. Cálculo da carga crítica via MDF
Flambagem Cálculo da carga crítca va MDF ROF. ALEXANDRE A. CURY DEARTAMENTO DE MECÂNICA ALICADA E COMUTACIONAL Flambagem - Cálculo da carga crítca va MDF Nas aulas anterores, vmos como avalar a carga crítca
POLINÔMIOS. 1. Função polinomial. 2. Valor numérico. 3. Grau de um polinômio. 4. Polinômios idênticos
POLINÔMIOS 1. Função polinomial É a função P() = a 0 + a 1 + a + a +... + a n n, onde a 0, a 1, a,..., a n são os coeficientes e os termos do polinômio são : a 0 ; a 1 ; a ; a ;... ; a n n. Valor numérico
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. Como a multiplicação de um número complexo por i corresponde
Análise de Circuitos I I
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE SÃO JOSÉ CURSO TÉCNICO INTEGRADO EM TELECOMUNICAÇÕES
NOTA II TABELAS E GRÁFICOS
Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.
AS COMPONENTES SIMÉTRICAS INSTANTÂNEAS E A MÁQUINA SIMÉTRICA
CAPÍTULO 5 A COMPONENTE IMÉTICA INTANTÂNEA E A MÁQUINA IMÉTICA 5. INTODUÇÃO O emprego das componentes smétrcas nstantâneas permte a obtenção de modelos mas smples que aqueles obtdos com a transformação
SC de Física I Nota Q Nota Q2 Nota Q3 NOME: DRE Teste 1
SC de Físca I - 2017-2 Nota Q1 88888 Nota Q2 Nota Q3 NOME: DRE Teste 1 Assnatura: Questão 1 - [3,5 pontos] Uma partícula de massa m se move sobre uma calha horzontal lsa com velocdade constante de módulo
MATEMÁTICA A - 12o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Operações e simplificação de expressões Propostas de resolução Exercícios de exames e testes intermédios 1. A operação multiplicar por i corresponde a fazer uma
Pré-Cálculo ECT2101 Slides de apoio Funções II
Pré-Cálculo ECT2101 Slides de apoio Funções II Prof. Ronaldo Carlotto Batista 8 de abril de 2017 Funções Trigonométricas As funções trigonométricas são denidas no círculo unitário: sen (θ) = y r, cos (θ)
PLANO DE ENSINO E APRENDIZAGEM
SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE LICENCIATURA PLENA EM MATEMÁTICA PARFOR PLANO DE ENSINO E APRENDIZAGEM I IDENTIFICAÇÃO: PROFESSOR (A)
NÚMEROS COMPLEXOS (TUTORIAL: BÁSICO 01)
MATEMÁTICA: Números Complexos - C; - Maior dos conjuntos - engloba todos os outros e acrescenta recursos especiais como raiz quadrada de número negativo; - Para darmos interpretação às raízes quadradas
1º Exame de Mecânica Aplicada II
1º Exame de Mecânca Aplcada II Este exame é consttuído por 4 perguntas e tem a duração de três horas. Justfque convenentemente todas as respostas apresentando cálculos ntermédos. Responda a cada pergunta
1, o valor de (x + y) 2 é. (1 i) é: z= i i é igual a a) 2. b) 0. c) 3. d) 1. 1 i. π. 3. z 1 é igual a
1 (Unicamp 014) O módulo do número complexo 014 1987 z= i i é igual a a) b) 0 c) d) 1 (Unicamp 01) Chamamos de unidade imaginária e denotamos por i o número complexo tal que i = 1 Então i 0 + i 1 + i +
MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução
MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Analisando cada uma das afirmações temos (A) z z = z z é uma afirmação verdadeira
Exercício Obtenha, em cada caso, o módulo, o argumento e a forma trigonométrica de z: a) z = 1 + i. setor Aula 31. ρ = 1 2 +( 3 ) 2 ρ= 2.
setor 0 00408 Aula NÚMEROS COMPLEXOS: PLANO DE ARGAND-GAUSS Até este ponto, usamos, para representar um número complexo a expressão a + b i, em que a e b são números reais e i é a unidade imaginária Com
ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. Tema III Trigonometria e Números Complexos. Tarefa intermédia nº 9
ESCOLA SECUNDÁRIA COM º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Complexos Tarefa intermédia nº 9 1. Considere os números complexos z = + i, w = 1 i e t =
Números Complexos 2017
Números Complexos 07. (Eear 07) Se i é a unidade imaginária, então i i i é um número complexo que pode ser representado no plano de Argand-Gauss no quadrante. a) primeiro b) segundo c) terceiro d) quarto.
CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)
PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra
Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2
Números Complexos 1. (Epcar (Afa) 01) Considerando os números complexos z 1 e z, tais que: z 1 é a raiz cúbica de 8i que tem afixo no segundo quadrante z é raiz da equação x x 1 0 Pode-se afirmar que z1
Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :
Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence
Conjunto dos números complexos
NÚMEROS COMPLEXOS Conjunto dos números complexos I C R Q Z N Número imaginário x² + 1 = 0 x² = 1 x = ± 1 Número imaginário i x = ± i x² + 4 = 0 x² = 4 x = ± 4 x = ± 1 4 x = ± 2i Número imaginário i = 1
AEP FISCAL ESTATÍSTICA
AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras ([email protected]) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 3º ano Números Complexos Tarefa 01 Cursista: Maria Amelia de Moraes Corrêa Tutora: Maria Cláudia Padilha Tostes 1 S u m á
Matemática - Semelhança e Congruência de Triângulos
Matemática - Semelhança e Congruência de Triângulos André Koga 1 Introdução Diante de vários problemas de geometria nas olimppíadas científicas de matemática, é importante ter uma base forte para dominar
MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3)
Primeira Parte. Acesso de Maiores de 23 anos Prova escrita de Matemática 9 de junho de 2016 Duração da prova: 150 minutos. Tolerância: 30 minutos.
Acesso de Maiores de 23 anos Prova escrita de Matemática 9 de junho de 2016 Duração da prova: 150 minutos. Tolerância: 30 minutos. Primeira Parte As oito questões desta primeira parte são de escolha múltipla.
