Teoria dos Conjuntos FBV. Prof. Rossini Bezerra
|
|
|
- Eric Castel-Branco Correia
- 8 Há anos
- Visualizações:
Transcrição
1 Teoria dos onjuntos FV Prof. Rossini ezerra
2 Os resultados do trabalho de Georg Ferdinand Ludwing Phillip antor estabeleceram a teoria de conjuntos como uma disciplina matemática completamente desenvolvida e de profundos efeitos de ensino. Esta teoria baseia-se em três noções primitivas que são: onjuntos, Elementos e Relação de pertinência. Introdução
3 Noções Primitivas 2.1. ONJUNTOS: oleções, classes ou agrupamentos de objetos. Obs: devemos indicar um conjunto por uma letra maiúscula de nosso alfabeto (,,, D, E,...) 2.2. ELEMENTOS: é cada objeto de uma coleção. Obs: devemos indicar um elemento por uma letra minúscula de nosso alfabeto (a, b, c, d, e,...) 2.3. RELÇÃO DE PERTINÊNI: (Pertence) Obs: Os símbolos ao lado, são usados para relacionar apenas elementos com conjuntos. (Não pertence)
4 Representação de onjuntos 3.1. Forma Tabular ou Enumerativa: Escrevemos os elementos entre chaves e separados por vírgulas. Exemplo: a) onjunto V das vogais. V {a, e, i, o,u} (conjunto finito) b) onjunto P dos números primos positivos. P {2, 3, 5, 7, 11,...} (conjunto infinito) c) onjunto U dos números pares primos positivos. U {2} d) onjunto G das cores da bandeira brasileira que começam com a letra m. G { }
5 Representação de onjuntos 3.2. Diagrama de Venn: Escrevemos os elementos no interior de uma figura geométrica. Exemplo: a) onjunto V das vogais. V a e o u i b) onjunto P dos números primos positivos. P
6 Representação de onjuntos 3.3. Propriedade aracterística: Representamos o conjunto através de uma propriedade característica de seus elementos. Exemplo: a) onjunto V das vogais. V { x x é vogal} { a, e, i, o, u} b) onjunto P dos números primos positivos. P { x xé número primo positivo} {2,3,5,7,11,...} c) onjunto U dos números pares primos positivos. U { x x é número par primo positivo} {2} d) onjunto Solução S da equação do 1º grau 5x S { x R 5x 10 0} S {2}
7 Dizemos que dois ou mais conjuntos são iguais se eles possuem os mesmos elementos. Exemplo: onjuntos Iguais U { x x é número par primo positivo} {2} S { x R 5x 10 0} S {2} repetição de elementos não altera um conjunto. ssim: {b, c, c, c, d, e, e} {b, c, d, e} ordem dos elementos não altera um conjunto. ssim: {g, o, l} {l, o, g, o} e {f, i, a, t} {f, a, t, i, a}
8 5.1. onjunto Unitário: Tipos de onjuntos É aquele que apresenta um único elemento. Exemplo: a ) V { x R 3x 12 0} {4} b ) U { x x é número par positivo e primo} {2} 5.2. onjunto Vazio: É aquele que não apresenta elemento algum e é indicado por { } ou
9 Tipos de onjuntos Exemplo: D { x N x > 0 e x < 0} { } Um conjunto vazio sempre é dado por uma propriedade logicamente falsa. O conjunto { } representa um conjunto unitário e não um conjunto vazio.
10 onjuntos Universo É aquele que limita os elementos que podem ser soluções de um determinado problema. Exemplo: 2 2 Verifique se os conjuntos { x R 2x 5x + 2 0} e { x N 2x 5x + 2 são iguais. 0}
11 Subconjuntos Dados dois conjuntos e, dizemos que é um subconjunto de se, e somente se, para todo elemento x pertencente ao conjunto, x pertence também a. Podemos dizer a mesma coisa de quatro maneiras diferentes. é subconjunto de. é parte de. está contido em. contém.
12 Subconjuntos Exemplo: Escrever todos os subconjuntos do conjunto {0, 5, 7, 9}. -Subconjunto com nenhum elemento: -Subconjuntos com um elemento: {0}; {5}; {7}; {9} -Subconjuntos com dois elementos: {0,5}; {0,7}; {0,9}; {5,7}; {5,9}; {7;9} -Subconjuntos com três elementos: {0,5,7}; {0,5,9}; {0,7,9}; {5,7,9} -Subconjuntos com quatro elementos: {0,5,7,9} O número total de subconjuntos é igual a 16.
13 onjuntos das Partes onjunto das partes de um conjunto, indicado por P(), é aquele formado por todos subconjuntos que se pode formar a partir do conjunto. Exemplo: Escrever o conjunto das partes de cada conjunto a seguir. a) {a, b, c}. b) F
14 Exercícios Sendo {{1}, {2}, {1,2}} podemos afirmar que: ( ) {1}. ( ) {1}. ( ) {1} {2}. ( D) 2. ( E){1} {2}.
15 ) ( ) ( ) ( } { ) ( ) ( : E D então Temos y x y x sistema do soluções das conjunto o e y x y x sistema do soluções das conjunto o Seja Exercícios
16 Operações entre onjuntos 9.1. União: Dados dois conjuntos e chama-se união (ou reunião) entre e ao conjunto formado pelos elementos de ou. { x x ou x } Exemplo: {0, 2, 4, 6, 7, 8} {3, 4, 6, 9} {0, 2, 3, 4, 6, 7, 8, 9}
17 Operações entre onjuntos Diagramas de Venn representativos da união entre e. log o, log o,
18 Operações entre onjuntos 9.2. Intersecção: Dados dois conjuntos e chama-se intersecção entre e ao conjunto formado pelos elementos comuns entre e, isto é, pelos elementos que Pertencem ao conjunto e ao conjunto. { x x e x } Exemplo: {0, 2, 4, 6, 7, 8} {3, 4, 6, 9} {4, 6}
19 Operações entre onjuntos Diagramas de Venn representativos da intersecção entre e. log o, log o,
20 Operações entre onjuntos 9.3. Diferença: Dados dois conjuntos e chama-se diferença entre e ao conjunto formado pelos elementos do conjunto que não pertencem ao conjunto. { x x e x } { x x e x } Exemplo: {0, 2, 4, 6, 7, 8} {3, 4, 6, 9} {0, 2, 7, 8} {3, 9}
21 Operações entre onjuntos Diagramas de Venn representativos de -. log o,
22 Operações entre onjuntos Diagramas de Venn representativos de -. log o,
23 Operações entre onjuntos omplementar: Sejam dois conjuntos e tais que, chama se complementar de em relação a ao conunto., se Exemplo: {0, 2, 4, 6, 7, 8} {4, 6, 7} {0, 2, 8}
24 Operações entre onjuntos Exemplo: {3, 5, 7, 9} {5, 6, 7} omo o conjunto não está contido no conjunto dizemos que o complementar de em relação a não existe. Se Se, dizemos que o complementar, o complementar é vazio : não existe. { }. Se, podemos indicar o complementar de em relação a por..
25 Operações entre onjuntos Diagrama de Venn para
26 Problema envolvendo onjuntos ardinal de um onjunto Fórmula para a Resolução de Problemas. n( ) n( ) + n( ) n( )
27 Problema envolvendo onjuntos Problemas Envolvendo onjuntos. Exemplos: s provas de recuperação em matemática e física de uma escola foram feitas no mesmo dia e durante a prova, observou-se a presença de 42 alunos. Sabendo-se que 25 alunos fizeram a prova de matemática e 32 fizeram a de física, determine: a) O número de alunos que fizeram as duas provas; b) O número de alunos que fizeram apenas a prova de matemática; c) O número de alunos que fizeram apenas a prova de física.
28 Problema envolvendo onjuntos Numa pesquisa sobre a qualidade dos serviços oferecidos pelas empresas de fornecimento de água (), energia elétrica (E) e TV por assinatura (T) de um bairro, obteve-se um grande número de reclamações. tabela a seguir expressa o número de reclamações de 300 entrevistados durante a pesquisa. om base na tabela, determine: a) O número de pessoas que não reclamaram de nenhum serviço; b) O número de entrevistados que reclamaram apenas do serviço oferecido pela empresa de fornecimento de água; c) O número de entrevistados que reclamaram de apenas um serviço; d) O número de entrevistados que reclamaram de pelo menos dois serviços.
Teoria dos conjuntos
Matemática I Teoria dos conjuntos UNE - Universidade do Estado da ahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Teoria dos conjuntos Prof. MSc. Rebeca Dourado
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona ntônia Valadares MTEMÁTIC 1º NO TEORI DOS CONJUNTOS PROFESSOR: LEXSNDRO DE SOUS http://donaantoniavaladares.comunidades.net Conjuntos: Não existe uma definição formalizada do que vem a ser um
Matemática I Conjuntos Conjuntos Numéricos. Prof.: Joni Fusinato 1
Matemática I Conjuntos Conjuntos Numéricos Prof.: Joni Fusinato [email protected] [email protected] 1 Teoria dos Conjuntos Teoria matemática dedicada ao estudo da associação entre objetos com
Introdução a Teoria de Conjuntos
Aula 01 Introdução a Teoria de Conjuntos A Teoria dos Conjuntos foi criada e desenvolvida pelo Matemático russo George Cantor (1845-1918), trata-se do estudo das propriedades dos conjuntos, relações entre
Teoria dos Conjuntos. Prof. Jorge
Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matemática Teoria dos Conjuntos (Linguagem dos Conjuntos) Conjunto é um conceito primitivo, isto é, sem definição, que indica agrupamento
Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos.
Capítulo 1 Conjuntos 1.1 Noção de conjuntos Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos. 1. Uma coleção de revista
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos serão, em geral, indicados por letras maiúsculas do alfabeto: A,B,C,...,
Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira:
Conjuntos Introdução Lembramos que conjunto, elemento e relação de pertinência são considerados conceitos primitivos, isto é, não aceitam definição. Intuitivamente, sabemos que conjunto é uma lista, coleção
Prof.ª Dr.ª Donizete Ritter. MÓDULO III PARTE I: Conjuntos e Diagramas Lógicos
Bacharelado em Sistemas de Informação Disciplina: Lógica Prof.ª Dr.ª Donizete Ritter MÓDULO III PARTE I: Conjuntos e Diagramas Lógicos 1 Teoria de Conjuntos Conceitos Primitivos (não-definidos): Conjuntos
Pensamento. (Provérbio Chinês) Prof. MSc. Herivelto Nunes
Aula Introdutória Matemática Básica- março 2017 Pensamento Não creio em números, não creio na palavra tudo e nem na palavra nada. São três afirmações exatas e imóveis: o mundo está sempre dando voltas.
MAT105 - Fundamentos de Matemática Elementar I
MAT105 - Fundamentos de Matemática Elementar I Prof. Dr. Diogo Machado ([email protected]) 1o semestre de 2016 Universidade Federal de Viçosa - UFV Departamento de Matemática Um dos mais importantes
CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...
ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início
MATEMÁTICA. Aula 2 Teoria dos Conjuntos. Prof. Anderson
MATEMÁTICA Aula 2 Teoria dos Conjuntos Prof. Anderson CONCEITO Na teoria dos conjuntos, um conjunto é descrito como uma coleção de objetos bem definidos. Estes objetos são chamados de elementos ou membros
Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio.
CONJUNTOS Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. Exemplos: A = {a, e, i, o, u} (conjunto das vogais do
Matemática é a ciência das regularidades.
Matemática é a ciência das regularidades. Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Conjunto
ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível
a. O conjunto de todos os brasileiros. b. O conjunto de todos os números naturais. c. O conjunto de todos os números reais tal que x²-4=0.
Introdução aos conjuntos No estudo de Conjuntos, trabalhamos com alguns conceitos primitivos, que devem ser entendidos e aceitos sem definição. Para um estudo mais aprofundado sobre a Teoria dos Conjuntos,
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane
Fundamentos de Matemática
Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,
MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin
MATEMÁTICA Conjuntos Professor Marcelo Gonzalez Badin Alguns símbolos importantes Œ Pertence / Tal que œ Não Pertence : Tal que $ " fi Existe Não existe Qualquer (para todo) Portanto Se, e somente se,...(equivalência)
CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA
CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com
Teoria dos Conjuntos 1. Definição Hora do Exemplo:
1. Definição 2. Denotação 3. Representação 4. Diagrama de Venn 5. Relação de Pertinência 6. Família de Conjuntos 7. Igualdade de Conjuntos 8. Desigualdade de Conjuntos 2 1. Definição: Intuitivamente, por
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos
MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.
1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem
exemplos O conjunto das letras do nosso alfabeto; L= {a, b, c, d,..., z}. O conjunto dos dias da semana: S= {segunda, terça,... domingo}.
CONJUNTOS Conjunto: Representa uma coleção de objetos, geralmente representado por letras MAIÚSCULAS; não interessando a ordem e quantas vezes os elementos estão listados na coleção, e sempre são representados
Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros
1. Conjuntos Objetivo: revisar as principais noções de teoria de conjuntos afim de utilizar tais noções para apresentar os principais conjuntos de números. 1.1 Conjunto, elemento e pertinência Conjunto
Definição: Todo objeto parte de um conjunto é denominado elemento.
1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção
Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG.
Matemática Discreta Teoria dos Conjuntos - Parte I Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Letras maiúsculas: conjuntos. Letras minúsculas: elementos do conjunto. Pertinência: o símbolo
Por meio de uma figura fechada, dentro da qual podem-se escrever seus elementos. Diagrama de Venn-Euler.
REPRESENTAÇÕES Um conjunto pode ser representado da seguinte maneira: Enumerando seus elementos entre chaves, separados por vírgulas; Exemplos: A = { 1, 0, 1} N = {0, 1, 2, 3, 4,...} Indicando, entre chaves,
Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):
Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto
Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).
O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.
Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática
Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática 2014 Na teoria dos conjuntos três noções são aceitas sem denição (noção primitiva):: Conjunto;
RACIOCÍNIO LÓGICO. Aula 1 - Introdução a Teoria de Conjuntos. Prof.: Jorge Junior
RACIOCÍNIO LÓGICO Aula 1 - Introdução a Teoria de Conjuntos Prof.: Jorge Junior Conteúdo Programático desta aula Conjuntos e Elementos Representações Subconjuntos Pertinência e Inclusão Tipos de Conjunto
Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS. Prof.: Marcelo Maraschin de Souza
Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS Prof.: Marcelo Maraschin de Souza 3. Conjuntos Definição: Um conjunto é uma coleção desordenada de zero ou mais objetos, denominados
Conjuntos. 1 Conceitos primitivos. representação de um conjunto. 2.1 REPRESENTAÇÃO TABULAR. 2.2 Representação por Diagrama de Venn- Euler
MT I Prof. Gustavo dolfo Soares Conjuntos a) 1 Conceitos primitivos Os conceitos que iniciam uma teoria são aceitos sem definição, pois, não existindo ainda a teoria, não há recurso para definí-los; por
Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.
MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa
TURMA DO M RIO TEORIA DOS CONJUNTOS
TURM DO M RIO TEORI DOS ONJUNTOS Entes Primitivos onjunto é uma idéia associada à coleção de objetos ou grupo. Não existe uma definição precisa, mas mesmo assim todos os seres racionais possuem intuitivamente
RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS
Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Rafael Carvalho 7º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos Rafael Carvalho 7º Período Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos
Lógica e Matemática Discreta
Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 04 de Junho de 2010 Curso de Ciência da Computação Noções básicas Um conjunto designa-se geralmente por uma letra latina maiúscula:
Teoria dos conjuntos
Teoria dos conjuntos Zenão de Eléia, filósofo grego que viveu por volta de 45 a C., já se preocupava com o conceito de infinito ao propor a questão a seguir, conhecida como paradoxo de Zenão. Em meados
Linguagem Básica de Conjuntos
Capítulo 1 Linguagem Básica de Conjuntos 1.1 A Noção de Conjunto A teoria dos conjuntos surgiu com os trabalhos de George Cantor no século XIX. Entretanto, tal teoria não se preocupava com muito rigor
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se logicamente como um termo não definido. Um conjunto se pode entender
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
1) Verifique as afirmativas abaixo e responda, qual é a correspondente ao conjunto infinito?
Resumo Os conjuntos podem ser finitos ou infinitos. Intuitivamente um conjunto é finito se consiste de um número específico de elementos diferentes, isto é, se ao contarmos os diferentes membros do conjunto
Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos
Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não
AULA DO CPOG. Teoria dos conjutos
AULA DO CPOG Teoria dos conjutos TEORIA DOS CONJUNTOS Professor Felipe Técnico de Operações P-25 Petrobras Contatos Felipe da Silva Cardoso [email protected] www.professorfelipecardoso.blogspot.com
1) Seja o conjunto A = (0;1). Quantas relações binárias distintas podem ser definidas sobre o conjunto A?
RESUMO A relação binária é uma relação entre dois elementos, sendo um conjunto de pares ordenados. As relações binárias são comuns em muitas áreas da matemática. Um par ordenado consiste de dois termos,
CONJUNTOS CONJUNTOS NUMÉRICOS
ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por
Introdução à Matemática
Universidade Estadual de Goiás Unidade Universitária de Ciências Sócio-Econômicas e Humanas de Anápolis Introdução à Matemática Conjuntos e Conjuntos Numéricos Introdução A noção de conjunto Propriedades,
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. João Victor Tenório Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos João Victor Tenório Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos os estudantes
Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos
Pode-se dizer que a é em grande parte trabalho de um único matemático: Georg Cantor (1845-1918). noção de conjunto não é suscetível de definição precisa a partir d noções mais simples, ou seja, é uma noção
Aplicações da teoria de conjuntos álgebra booleana. Pontifícia Universidade Católica de Goiás Msc. Gustavo Siqueira Vinhal 2016/1
Aplicações da teoria de conjuntos álgebra booleana Pontifícia Universidade Católica de Goiás Msc. Gustavo Siqueira Vinhal 2016/1 CONJUNTOS Conjuntos são fundamentais para formalização de qualquer teoria.
Conjuntos e sua Representação
Conjuntos e sua Representação Professor: Nuno Rocha [email protected] Conjuntos Um conjunto é o agrupamento de vários elementos que possuem características semelhantes. Exemplos de conjuntos: Países
Sumário. 1 CAPÍTULO 1 Revisão de álgebra
Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção
Matemática Aplicada à Informática
Matemática Aplicada à Informática Unidade 1.1 Teoria de Conjuntos Curso Técnico em Informática Aline Maciel Zenker SUMÁRIO INTRODUÇÃO À MATEMÁTICA APLICADA À INFORMÁTICA... 3 1 INTRODUÇÃO... 3 2 OBJETIVO
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Prof. a : Patrícia Caldana
CONJUNTOS ESPECIAIS Conjunto Vazio O Conjunto vazio é o conjunto que não possui elementos. Para representarmos o conjunto vazio usaremos os símbolos: { } ou. Atenção: Quando os símbolos { } ou, aparecerem
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Isabelle Araujo 5º período de Engenharia de Produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Conjuntos Isabelle Araujo 5º período de Engenharia de Produção Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
EXERCÍCIOS DO CAPÍTULO 1
EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos
Generalidades sobre conjuntos
Generalidades sobre conjuntos E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos
Tópicos de Matemática. Teoria elementar de conjuntos
Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática
Generalidades sobre conjuntos
Generalidades sobre conjuntos E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos
Admitiremos que um conjunto seja uma coleção de objetos chamados elementos e que cada elemento é um dos componentes do conjunto.
TEORIA DOS CONJUNTOS Introdução A Teoria dos conjuntos é a teoria matemática dedicada ao estudo da associação entre objetos com uma mesma propriedade, elaborada no século XIX. Sua origem pode ser encontrada
TÍTULO: Plano de Aula TIPOS DE CONJUNTOS. Ensino Fundamental/Anos Iniciais. 4 Ano. Matemática. Conjuntos e operações envolvendo conjuntos
Org.: Claudio André - 1 TÍTULO: TIPOS DE CONJUNTOS Nível de Ensino: Ensino Fundamental/Anos Iniciais Ano/Semestre de Estudo Componente Curricular: Tema: Duração da Aula: 4 Ano Matemática Conjuntos e operações
Matemática A Extensivo V. 2
GRITO Matemática Extensivo V. Exercícios 0) a) Verdadeira. e são elementos de. b) Verdadeira. Pois {} é elemento de. c) Verdadeira. Pois não é elemento de. d) Verdadeira. Pois {} é um subconjunto de. e)
Aulas 10 e 11 / 18 e 20 de abril
1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar
Em matemática definimos e estudamos conjuntos de números, pontos, retas curvas, funções etc.
INTRODUÇÃO Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 02 - Introdução, Plano Cartesiano, Pontos e Retas
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
TRT Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z =
MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.
MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
Revisão de conceitos Matemáticos. Matemática e Fundamentos de Informática
Revisão de conceitos Matemáticos Matemática e Fundamentos de Informática 1 1 Conjuntos Teoria dos conjuntos Em Matemática, conjunto é uma coleção de objetos (chamados elementos). Os elementos podem representar
IBM1088 Linguagens Formais e Teoria da Computação
IBM1088 Linguagens Formais e Teoria da Computação Conceitos fundamentais sobre Teoria dos Conjuntos Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 26 Frase
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº PROFESSORA:
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº TURMA: TURNO: ANO: PROFESSORA: 1 1. Noção básica de conjuntos numéricos 1.1 Conceito de Conjunto Segundo
I. Conjunto Elemento Pertinência
TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que
Hewlett-Packard CONJUNTOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard CONJUNTOS Aulas 01 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano 2016 Sumário CONJUNTOS... 2 CONCEITOS PRIMITIVOS... 2 REPRESENTAÇÃO DE UM CONJUNTO... 2 RELAÇÃO DE PERTINÊNCIA...
Aula 4: Elementos da Teoria de Conjuntos
1 / 20 Elementos da Teoria de Conjuntos Bases Matemáticas - 3 o /2018 Dahisy Lima Aula 4: Elementos da Teoria de Conjuntos 2 / 20 Conjuntos Elementos da Teoria de Conjuntos Do ponto de vista ingênuo, um
TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.
TEORIA DOS CONJUNTOS Professor: Marcelo Silva [email protected] Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando
Teoria Ingênua dos Conjuntos (naive set theory)
Teoria Ingênua dos Conjuntos (naive set theory) MAT 131-2018 II Pouya Mehdipour 5 de outubro de 2018 Pouya Mehdipour 5 de outubro de 2018 1 / 22 Referências ALENCAR FILHO, E. Iniciação à Lógica Matemática,
Descrevendo um conjunto
Conjuntos Veja os seguintes exemplos: Jogadores de um time Lista de compras Números Inteiros Alfabeto Se você está familiarizado com estes exemplos, é claro que você tem a ideia do que é um conjunto, podemos
Operações com conjuntos: união, interseção e complementar
PREPARATÓRIO IFRN Cargo: Auxiliar em Administração Disciplina: Matemática Professor: Daniel Almeida Operações com conjuntos: união, interseção e complementar CONJUNTOS Formado pelo agrupamento ou ausência
Matemática Conjuntos - Teoria
Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar
Gabarito da lista de Exercícios sobre Conjuntos
Universidade Federal Fluminense Curso: Sistemas de Informação Disciplina: Fundamentos Matemáticos para Computação Professora: Raquel Bravo Gabarito da lista de Exercícios sobre Conjuntos 1. Determine quais
FUNDAMENTOS DA MATEMÁTICA B
VICE-REITORI DE ENSINO DE GRDUÇÃO E CORPO DISCENTE COORDENÇÃO DE EDUCÇÃO DISTÂNCI FUNDMENTOS D MTEMÁTIC Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVDOS À UNIVERSIDDE CSTELO RNCO Copyright 2006 Universidade
Notas de Aula de Probabilidade A
I- CONCEITOS INICIAIS. 1.1- INTRODUÇÃO. PROBABILIDADE POPULAÇÃO AMOSTRA ESTATÍSTICA 1.2- CONJUNTOS. 1.2.1- DEFINIÇÃO. Conjunto é uma coleção de objetos chamados de elementos do conjunto. Em geral denota-se
Matemática Computacional
Matemática Computacional SLIDE V Professor Júlio Cesar da Silva [email protected] site: http://eloquium.com.br/ twitter: @profjuliocsilva facebook: https://www.facebook.com/paginaeloquium Google+:
RLM - PROFESSOR CARLOS EDUARDO AULA 3
AULA 3 Sucessões = sequências(numéricas) São conjuntos de números reais dispostos numa certa ordem. Uma sequência pode ser FINITA ou INFINITA. Ex: a) (3, 6, 9, 12) sequência finita P.A de razão 3 b) (5,
