Descrevendo um conjunto
|
|
|
- Eliza Carvalhal Caiado
- 9 Há anos
- Visualizações:
Transcrição
1 Conjuntos Veja os seguintes exemplos: Jogadores de um time Lista de compras Números Inteiros Alfabeto Se você está familiarizado com estes exemplos, é claro que você tem a ideia do que é um conjunto, podemos dizer que: Um conjunto é uma coleção de objetos e tais objetos são chamados de elementos. Costumamos representar os conjuntos com letras maiúsculas letras minúsculas. e seus elementos com Se é um elemento de escrevemos, se não pertence à, escrevemos. Descrevendo um conjunto Se um conjunto possui poucos elementos, então o conjunto pode ser representado, simplesmente enumerando seus membros, logo é um conjunto cujos elementos são 1, 2 e 3. A ordem dos elementos não importa, portanto pode ser descrito como ou por exemplo. Alguns conjuntos possuem muitos elementos, como por exemplo, os naturais ímpares menores que 100 e podem ser representados desta forma } onde... indica os ímpares maiores que 3 e menores que 99, já outros conjuntos, como os naturais pares, que é infinito, pode ser representado como agora... significa que os elementos continuam infinitamente. Se o conjunto não possui elementos representamos por é tal conjunto é chamado de vazio. Frequentemente conjuntos consistem de elementos que satisfazem alguma condição ou possuem determinada propriedade, neste caso, podemos definir tais conjuntos como Exemplos
2 Na Matemática alguns conjuntos aparecem tão frequentemente que possuem uma notação especial, estes conjuntos são os dos números: Naturais representados por ; Inteiros representados por ; Racionais representados por ; Reais representados por ; Complexos representados por. Subconjuntos Um conjunto A é chamado de subconjunto de B, se todo elemento de A também pertencem a B. Se A é um subconjunto de B, escrevemos Se um conjunto C não é um subconjunto de D, escrevemos. Se e então temos. Qualquer que seja A, temos e. O conjunto que consiste de todos os subconjuntos de é chamado de conjunto das partes de. Por exemplo: Se }, então. Quando A possui elementos possuirá elementos. Operaço es entre Conjuntos A união de dois conjuntos A e B, denotada por pertencem à ou., é o conjunto de todos os elementos que
3 A intersecção de dois conjuntos A e B, denotada por pertencem a ambos A e B., é o conjunto de todos os elementos Se dois conjuntos A e B, não possuem elementos em comum, então de conjuntos disjuntos. e A e b são chamados A diferença de dois conjuntos A e B (também denotada por ) é definida por: Suponha que estejamos trabalhando com certo conjunto universo conjunto A, denotado por, é:. O complemento de um
4 A diferença simétrica de dois conjuntos A e B, denotada por, é definida por: Princí pio da Inclusa o-exclusa o A cardinalidade do conjunto, denotada por, é a quantidade de elementos que o elemento possui. Por exemplo Se, então, Temos que: e O princípio da Inclusão exclusão é uma fórmula para contar o número de elementos que pertencem à união de vários conjuntos. Veremos esta fórmula para dois e três conjuntos:
5 Sí mbolos
6 Questo es 01 - Num grupo de 120 pessoas sabe-se que 72 gostam de jogar basquete, 65 gostam de jogar futebol e 53 gostam dos dois. Nessas circunstâncias, é correto afirmar que: a) 21 pessoas gostam somente de jogar basquete. b) 14 pessoas gostam de jogar somente futebol. c) O total de pessoas que gostam de somente um dos dois é igual a 33. d) 36 pessoas não gostam nem de basquete e nem de futebol Um Órgão ofertou para seus funcionários cursos de Editor de Texto, Planilha Eletrônica e Editor de Imagem. O resultado das inscrições foi o seguinte: Quantos funcionários farão, apenas, um curso? a) 130 b) 149 c) 150 d) 217 e) De um grupo de 42 visitantes em um museu, 35 compraram pinturas, 20, esculturas, e 5 não compraram nem pintura nem escultura. Quantos compraram, apenas, pinturas? a) 2 b) 7 c) 15 d) 17 e) 30
7 04 - Considere os seguintes conjuntos: A = { pessoas que praticam esportes } B = { pessoas que são inteligentes } C = { pessoas que são saudáveis } A afirmação toda pessoa que pratica esporte é inteligente e saudável é mais bem representada pelo seguinte diagrama: a) b) c) d) 05 - Em relação aos conjuntos A, B e C e a um total de 58 elementos que pertencem a eles, sabe-se: que nenhum elemento pertence simultaneamente aos três conjuntos; que 13 elementos pertencem simultaneamente aos conjuntos A e B; que 3 elementos pertencem simultaneamente aos conjuntos A e C; que 2 elementos pertencem simultaneamente aos conjuntos B e C; que o número de elementos que pertencem apenas ao conjunto C é 5 unidades a mais do que aqueles que pertencem apenas ao conjunto B; que o número de elementos que pertencem apenas ao conjunto A é 1 unidade a menos do que aqueles que pertencem apenas ao conjunto B. O número de elementos que pertencem apenas ao conjunto C é igual a a) 46. b) 31. c) 24. d) 17. e) 12.
8 06 - Os doutores de Barsan são médicos, advogados ou engenheiros, mas nunca são os três ao mesmo tempo. São 8 os engenheiros que também são advogados, e um a menos do que esses 8 são os médicos que também são engenheiros. Três doutores são especialistas em apenas uma das áreas, um em cada uma das áreas. Sabendo-se que em Barsan há 27 doutores, o número de advogados supera o número de engenheiros em a) 1. b) 2. c) 3. d) 4. e) Uma pesquisa sobre o acesso à informação, feita com 999 pessoas de uma cidade, identificou que 700 usavam rádio, 400, jornal e 250, internet. Entre as pessoas que usavam duas dessas três fontes de acesso, foi identificado que o número delas era igual nas três combinações possíveis. Sabendo-se que 50 dessas pessoas não utilizam nenhum dos meios citados, e que 70 pessoas dessa pesquisa usam os três meios, o número dessas pessoas que acessam informação pelo rádio, mas não a acessam nem pela internet e nem pelo jornal, é igual a a) 456. b) 460. c) 474. d) 488. e) Em um colégio com 300 alunos, 180 estudam inglês e 160 estudam espanhol. Quantos alunos estudam simultaneamente os dois idiomas? a) 20. b) 40. c) 60. d) Em uma pequena cidade, circulam apenas dois jornais diferentes. O jornal A e o jornal B. Uma pesquisa realizada com os moradores dessa cidade mostrou que 33% lê o jornal A, 45% lê o jornal B, e 7% leem os jornais A e B. Sendo assim, quantos por cento não leem nenhum dos dois jornais? a) 15% b) 25% c) 27% d) 29% e) 35%
9 10 - Em uma escola de 100 alunos, há três recuperações durante o ano, sendo uma em cada trimestre. Em certo ano, 55 alunos ficaram em recuperação no 1º trimestre, 48 no 2º e 40 no 3º. Somente com esses dados, é correto concluir que naquele ano, necessariamente, a) pelo menos 3 alunos ficaram em recuperação no 1º e também no 2º trimestre. b) todos os alunos da escola ficaram em recuperação em, pelo menos, um trimestre. c) 40 alunos ficaram em recuperação em dois trimestres e os demais em um único. d) pelo menos um aluno da escola ficou em recuperação em somente dois trimestres. e) no mínimo 5 e no máximo 40 alunos ficaram em recuperação nos três trimestres O total de alunos de uma escola é igual a 1500, que, em uma pesquisa, afirmaram gostar de matemática ou geografia. Qual é o número de alunos que gostam de matemática, sabendo-se que 800 alunos gostam apenas de geografia e 200 alunos gostam das 2 disciplinas (matemática e geografia) ao mesmo tempo? a) 700 b) 500 c) 900 d) 1300 e) Em uma entrevista para saber se as pessoas utilizariam os produtos A, B ou C, chegou-se a seguinte conclusão: 229 pessoas utilizariam o produto A, 223 utilizariam o produto B, 196 utilizariam o produto C, 79 utilizariam os produtos A e B, 89 os produtos A e C, 69 os produtos B e C, 37 os três produtos e 53 nenhum dos três. Nessas condições, é correto afirmar que: a) 275 pessoas utilizariam somente um dos produtos. b) 112 pessoas utilizariam somente o produto C. c) 225 pessoas utilizariam os produtos A e C, mas não utilizariam o produto B d) 500 pessoas foram entrevistadas
10 13 - No diagrama, observe os conjuntos A, B e C, as intersecções entre A e B e entre B e C, e a quantidade de elementos que pertencem a cada uma das intersecções. Sabe-se que pertence apenas ao conjunto A o dobro do número de elementos que pertencem à intersecção entre A e B. Sabe-se que pertence, apenas ao conjunto C, o dobro do número de elementos que pertencem à intersecção entre B e C. Sabe-se que o número de elementos que pertencem apenas ao conjunto B é igual à metade da soma da quantidade de elementos que pertencem à intersecção de A e B, com a quantidade de elementos da intersecção entre B e C. Dessa maneira, pode-se afirmar corretamente que o número total de elementos dos conjuntos A, B e C é igual a a) 90. b) 108. c) 126. d) 162. e) O diagrama a seguir apresenta três conjuntos, A, B e C, assim como suas respectivas intersecções. Todas as regiões do diagrama estão numeradas e possuem elementos. A região I possui 5 elementos, a região II possui 10 elementos, a região III possui 15 elementos, a região IV possui 20 elementos, a região V possui 25 elementos, a região VI possui 30 elementos e a região VII possui 35 elementos. O número de elementos de C, que não são elementos de A, supera o número de elementos de A, que não são elementos de B, em uma quantidade igual a a) 25. b) 20. c) 15. d) 10. e) 5.
11 15- O diagrama mostra a distribuição dos amigos de Leônidas, dos amigos do Friaça e dos amigos do Almir. São 3 os amigos apenas do Almir. São 6 os amigos do Almir que também são amigos do Friaça. Amigos apenas do Friaça são 3 a mais que todos os amigos do Almir. Amigos do Friaça e do Leônidas são o dobro daqueles que só são amigos do Friaça. Amigos apenas do Leônidas são a metade dos amigos que são apenas amigos do Friaça. Veja a figura. Com base nessas informações, pode-se afirmar corretamente que a) Leônidas é o que tem mais amigos. b) os amigos que Friaça tem a mais do que Leônidas são 6. c) a quantidade total desses amigos é de 81. d) a quantidade de amigos apenas do Leônidas é o dobro da quantidade de amigos apenas do Almir. e) a quantidade de todos os amigos do Almir somada com a quantidade de todos os amigos do Leônidas equivale exatamente à metade de todos os amigos do Friaça Considere verdadeiras todas as afirmações a seguir sobre os grupos A, B e C de profissionais de um estabelecimento bancário: I. O Grupo A tem 12 elementos. II. O Grupo B tem 11 elementos. III. O grupo C tem 10 elementos. IV. Apenas Ana Lúcia faz parte dos três Grupos, e todos os demais profissionais fazem parte exatamente de um Grupo. Decorre dessas afirmações que o número total de elementos da união desses três Grupos é a) 31. b) 33. c) 32. d) 30. e) 34.
12 17 - Observe os conjuntos abaixo: A = {1,5,6,7} B = {2,5,6,8} C = {1,5,6} Os conjuntos (A B) e (A a) {5,6} e {1,5,6,7} b) {1,5,6} e {1,2,5,6,7} c) {7} e {1,5,6,7} d) {1,5,6,7} e {1,5,7} e) {1,2,5,6,7,8} e {1,5,6} C) valem, respectivamente: 18 - Foi realizada uma pesquisa, com um grupo de pessoas, envolvendo a preferência por até duas marcas de carros dentre as marcas C 1, C 2 e C 3. A pesquisa apresentou os seguintes dados: - 59 preferem a marca C preferem a marca C preferem a marca C preferem as marcas C 1 e C preferem as marcas C 1 e C 3-23 preferem as marcas C 2 e C 3-49 não preferem nenhuma das três marcas. O número de pessoas que preferem apenas a marca C 2 é igual a: a) 0. b) 15. c) 25. d) 40.
13 19 - Considere-se que os livros X, Y, Z e W foram indicados como referência bibliográfica para a matéria de raciocínio lógico em determinado concurso. Uma pesquisa realizada com 500 candidatos que se preparavam para esse concurso mostrou que: 40 candidatos usaram apenas o livro X 60 candidatos usaram apenas o livro Y 75 candidatos usaram apenas o livro Z 20 candidatos usaram apenas o livro W 70 candidatos usaram os livros X e Y 70 candidatos usaram os livros X e Z 100 candidatos usaram os livros Y e Z 5 candidatos usaram os livros Y e W 100 candidatos não usaram nenhum dos 4 livros Sabendo-se que os candidatos que usaram o livro W não usaram os livros X e Z, então o número de candidatos que se prepararam utilizando os três livros X, Y e Z é de: a) 10 b) 15 c) 20 d) Um colégio oferece a seus alunos a prática de um ou mais dos seguintes esportes: futebol, basquete e vôlei. Sabe-se que, no atual semestre, - 20 alunos praticam vôlei e basquete; - 60 alunos praticam futebol e 65 praticam basquete; - 21 alunos não praticam nem futebol nem vôlei; - o número de alunos que praticam só futebol é idêntico ao número dos alunos que praticam só vôlei; - 17 alunos praticam futebol e vôlei; - 45 alunos praticam futebol e basquete; 30, entre os 45, não praticam vôlei. O número total de alunos do colégio, no atual semestre, é igual a a) 93. b) 110. c) 103. d) 99. e) 114.
14 Gabarito 01:d 02:c 03:d 04:a 05:d 06:b 07:a 08:b 09:d 10:a 11:a 12:c 13:c 14:d 15:d 16:a 17:a 18:a 19:c 20:d
MATEMÁTICA PAULO ROBERTO
I CONJUNTOS não seja elementos de B. (A e não B). 1) Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. 2) Relação
Admitiremos que um conjunto seja uma coleção de objetos chamados elementos e que cada elemento é um dos componentes do conjunto.
TEORIA DOS CONJUNTOS Introdução A Teoria dos conjuntos é a teoria matemática dedicada ao estudo da associação entre objetos com uma mesma propriedade, elaborada no século XIX. Sua origem pode ser encontrada
Capítulo 2 Noções de conjuntos
THE BRIDGEMAN/KEYSTONE Capítulo 2 Noções de conjuntos X SAIR Para representar o conjunto A formado pelos números naturais de 0 a 10, podem-se utilizar três possibilidades: 1ª forma: pela citação dos elementos.
RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS
Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)
Aula 1 Conjuntos Numéricos
1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º
Prof.ª Dr.ª Donizete Ritter. MÓDULO III PARTE I: Conjuntos e Diagramas Lógicos
Bacharelado em Sistemas de Informação Disciplina: Lógica Prof.ª Dr.ª Donizete Ritter MÓDULO III PARTE I: Conjuntos e Diagramas Lógicos 1 Teoria de Conjuntos Conceitos Primitivos (não-definidos): Conjuntos
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):
Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem
Matemática I Conjuntos Conjuntos Numéricos. Prof.: Joni Fusinato 1
Matemática I Conjuntos Conjuntos Numéricos Prof.: Joni Fusinato [email protected] [email protected] 1 Teoria dos Conjuntos Teoria matemática dedicada ao estudo da associação entre objetos com
CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA
CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com
Conjuntos. 1 Conceitos primitivos. representação de um conjunto. 2.1 REPRESENTAÇÃO TABULAR. 2.2 Representação por Diagrama de Venn- Euler
MT I Prof. Gustavo dolfo Soares Conjuntos a) 1 Conceitos primitivos Os conceitos que iniciam uma teoria são aceitos sem definição, pois, não existindo ainda a teoria, não há recurso para definí-los; por
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona ntônia Valadares MTEMÁTIC 1º NO TEORI DOS CONJUNTOS PROFESSOR: LEXSNDRO DE SOUS http://donaantoniavaladares.comunidades.net Conjuntos: Não existe uma definição formalizada do que vem a ser um
Teoria dos Conjuntos. Prof. Jorge
Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do
a. O conjunto de todos os brasileiros. b. O conjunto de todos os números naturais. c. O conjunto de todos os números reais tal que x²-4=0.
Introdução aos conjuntos No estudo de Conjuntos, trabalhamos com alguns conceitos primitivos, que devem ser entendidos e aceitos sem definição. Para um estudo mais aprofundado sobre a Teoria dos Conjuntos,
Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS. Prof.: Marcelo Maraschin de Souza
Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS Prof.: Marcelo Maraschin de Souza 3. Conjuntos Definição: Um conjunto é uma coleção desordenada de zero ou mais objetos, denominados
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matemática Teoria dos Conjuntos (Linguagem dos Conjuntos) Conjunto é um conceito primitivo, isto é, sem definição, que indica agrupamento
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem
CEM CADERNO DE EXERCÍCIOS MASTER. RLM Conjuntos. Período
CEM CADERNO DE EXERCÍCIOS MASTER Período 2014 2016 1) FCC - Auditor Fiscal RE RJ/SEFAZ RJ-2014 Em uma grande empresa, 50% dos empregados são assinantes da revista X, 40% são assinantes da revista Y e 60%
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Matemática é a ciência das regularidades.
Matemática é a ciência das regularidades. Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Conjunto
CONJUNTOS lista 1. O número de alunos que gosta dos sucos de manga e acerola é: a) 40. b) 60. c) 120. d) 50. e) 100.
1. (Ueg 2016) Dados os conjuntos A {x 2 x 4} e B {x x 0}, a intersecção entre eles é dada pelo conjunto a) {x 0 x 4} b) {x x 0} c) {x x 2} d) {x x 4} 2. (Ime 2016) Dados três conjuntos quaisquer F, G e
Introdução à Matemática
Universidade Estadual de Goiás Unidade Universitária de Ciências Sócio-Econômicas e Humanas de Anápolis Introdução à Matemática Conjuntos e Conjuntos Numéricos Introdução A noção de conjunto Propriedades,
MATEMÁTICA. Aula 2 Teoria dos Conjuntos. Prof. Anderson
MATEMÁTICA Aula 2 Teoria dos Conjuntos Prof. Anderson CONCEITO Na teoria dos conjuntos, um conjunto é descrito como uma coleção de objetos bem definidos. Estes objetos são chamados de elementos ou membros
RACIOCÍNIO LÓGICO. Aula 1 - Introdução a Teoria de Conjuntos. Prof.: Jorge Junior
RACIOCÍNIO LÓGICO Aula 1 - Introdução a Teoria de Conjuntos Prof.: Jorge Junior Conteúdo Programático desta aula Conjuntos e Elementos Representações Subconjuntos Pertinência e Inclusão Tipos de Conjunto
1 Operações com conjuntos
Notas sobre Conjuntos (2) Anjolina Grisi de Oliveira 1 Operações com conjuntos Definição 1 (União) Sejam A e B dois conjuntos arbitrários. A união dos conjuntos A e B, denotada por A B, é o conjunto que
Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.
MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa
TAUTOLOGIA, CONTRADIÇÃO E CONTINGÊNCIA
TAUTOLOGIA, CONTRADIÇÃO E CONTINGÊNCIA Numa determinada escola de idiomas, todos os alunos estudam alemão ou italiano. Sabe-se que aqueles que estudam inglês estudam espanhol e os que estudam alemão
Operações com conjuntos: união, interseção e complementar
PREPARATÓRIO IFRN Cargo: Auxiliar em Administração Disciplina: Matemática Professor: Daniel Almeida Operações com conjuntos: união, interseção e complementar CONJUNTOS Formado pelo agrupamento ou ausência
TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.
TEORIA DOS CONJUNTOS Professor: Marcelo Silva [email protected] Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando
Por meio de uma figura fechada, dentro da qual podem-se escrever seus elementos. Diagrama de Venn-Euler.
REPRESENTAÇÕES Um conjunto pode ser representado da seguinte maneira: Enumerando seus elementos entre chaves, separados por vírgulas; Exemplos: A = { 1, 0, 1} N = {0, 1, 2, 3, 4,...} Indicando, entre chaves,
Matemática. Resolução das atividades complementares. M3 Conjuntos
Resolução das atividades complementares 1 Matemática M3 Conjuntos p. 52 1 Considere os conjuntos A 5 {x M* x é par e x. 6}, 5 {x M* x é ímpar e x, 21} e C 5 {x M* x é par}. Então: a) A tem 2 elementos
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 2 a Lista de Exercícios
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I 2 a Lista de Exercícios Tópico: Conjuntos, Elementos, Subconjuntos e Conjuntos
ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível
Fundamentos de Matemática
Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se logicamente como um termo não definido. Um conjunto se pode entender
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira:
Conjuntos Introdução Lembramos que conjunto, elemento e relação de pertinência são considerados conceitos primitivos, isto é, não aceitam definição. Intuitivamente, sabemos que conjunto é uma lista, coleção
Lógica e Matemática Discreta
Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 04 de Junho de 2010 Curso de Ciência da Computação Noções básicas Um conjunto designa-se geralmente por uma letra latina maiúscula:
GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /
1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 05-06 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br
CONJUNTOS CONJUNTOS NUMÉRICOS
ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por
Teoria dos conjuntos
Matemática I Teoria dos conjuntos UNE - Universidade do Estado da ahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Teoria dos conjuntos Prof. MSc. Rebeca Dourado
Teoria Ingênua dos Conjuntos (naive set theory)
Teoria Ingênua dos Conjuntos (naive set theory) MAT 131-2018 II Pouya Mehdipour 5 de outubro de 2018 Pouya Mehdipour 5 de outubro de 2018 1 / 22 Referências ALENCAR FILHO, E. Iniciação à Lógica Matemática,
OFICINA DA PESQUISA. Prof. Msc. Carlos José Giudice dos Santos
OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL APOSTILA 6 TEORIA DOS CONJUNTOS Prof. Msc. Carlos José Giudice dos Santos [email protected] www.oficinadapesquisa.com.br
Teoria dos Conjuntos FBV. Prof. Rossini Bezerra
Teoria dos onjuntos FV Prof. Rossini ezerra Os resultados do trabalho de Georg Ferdinand Ludwing Phillip antor estabeleceram a teoria de conjuntos como uma disciplina matemática completamente desenvolvida
matematicautodidata.com
Exercite! Data: Nota: Nome: Tópico: Médio 01 - Conjuntos 1. Dê os elementos dos seguintes conjuntos: (a) A = {x x é a letra da palavra autodidata } (b) B = {x x é o estado do sudeste do Brasil } (c) C
OPERAÇÕES COM CONJUNTOS
OPERAÇÕES COM CONJUNTOS Vamos estudar agora problemas envolvendo as operações entre conjuntos que serão solucionados utilizando-se os diagramas de Venn. 01. Uma escola oferece reforço escolar em todas
Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).
O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.
Instituto Galeno Raciocínio Lógico / Prof.: George Fontenelle 1
Instituto Galeno Raciocínio Lógico / Prof.: George Fontenelle 1 Prof. George Fontenelle RACIONCINIO LÓGICO Unidade II: Operações com Conjuntos c/ 25 questões de provas do CESPE Se as proposições p e q
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº PROFESSORA:
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº TURMA: TURNO: ANO: PROFESSORA: 1 1. Noção básica de conjuntos numéricos 1.1 Conceito de Conjunto Segundo
Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG.
Matemática Discreta Teoria dos Conjuntos - Parte I Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Letras maiúsculas: conjuntos. Letras minúsculas: elementos do conjunto. Pertinência: o símbolo
Bases Matemáticas. Definição ingênua de conjunto. Aula 3 Conjuntos. Rodrigo Hausen
1 ases Matemáticas ula 3 Conjuntos Rodrigo Hausen v. 2012-9-26 1/14 Definição ingênua de conjunto 2 Um conjunto é uma qualquer coleção de objetos, concretos ou abstratos, sem repetição. Dado um conjunto,
Disciplina: Matemática Data da entrega: 14/03/2015.
Lista de Exercícios - 01 Aluno (a): Nº. Professor: Flávio Turma: 1ª série: (ensino médio) Disciplina: Matemática Data da entrega: 14/03/2015. Observação: A lista deverá apresentar capa, enunciados e as
EXERCÍCIOS PARA RECUPERAÇÃO EM MATEMÁTICA 2º TRIMESTRE
EXERCÍCIOS PARA RECUPERAÇÃO EM MATEMÁTICA 2º TRIMESTRE Nome: nº: Ano: 7ºA/B E.F. Realizou-se uma pesquisa de opinião com 2.000 pessoas para saber quantas vezes elas tinham viajado de avião. Veja os dados
1) Seja o conjunto A = (0;1). Quantas relações binárias distintas podem ser definidas sobre o conjunto A?
RESUMO A relação binária é uma relação entre dois elementos, sendo um conjunto de pares ordenados. As relações binárias são comuns em muitas áreas da matemática. Um par ordenado consiste de dois termos,
c) 35. d) 37. e) 45.
LISTA DE EXERCÍCIOS CONJUNTOS PROF: Paulo Vinícius Questão 1) Em uma determinada turma, há alunos que praticam futebol (conjunto A), que praticam basquetebol (conjunto B) e que praticam futebol e basquetebol
Aulas 10 e 11 / 18 e 20 de abril
1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar
ACLÉSIO MOREIRA RACIOCÍNIO LÓGICO
ACLÉSIO MOREIRA RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL 01. (IBFC 2016) A conjunção entre duas proposições compostas é verdadeira se: a) os valores lógicos de ambas as proposições forem falsos b) se o valor
Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos.
Capítulo 1 Conjuntos 1.1 Noção de conjuntos Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos. 1. Uma coleção de revista
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos
CONJUNTOS EXERCÍCIOS DE MATEMÁTICA
CONJUNTOS EXERCÍCIOS DE MATEMÁTICA 1. (G1 - ifpe 2016) Em uma cooperativa de agricultores do município de Vitória de Santo Antão, foi realizada uma consulta em relação ao cultivo da cultura da cana-de-açúcar
Teoria Elementar dos Conjuntos
Teoria Elementar dos Conjuntos Última revisão em 27 de fevereiro de 2009 Este texto é uma breve revisão sobre teoria elementar dos conjuntos. Em particular, importam-nos os aspectos algébricos no estudo
Aula 4: Elementos da Teoria de Conjuntos
1 / 20 Elementos da Teoria de Conjuntos Bases Matemáticas - 3 o /2018 Dahisy Lima Aula 4: Elementos da Teoria de Conjuntos 2 / 20 Conjuntos Elementos da Teoria de Conjuntos Do ponto de vista ingênuo, um
Teoria Elementar dos Conjuntos
Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da
CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...
ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início
Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros
1. Conjuntos Objetivo: revisar as principais noções de teoria de conjuntos afim de utilizar tais noções para apresentar os principais conjuntos de números. 1.1 Conjunto, elemento e pertinência Conjunto
INCLUSÃO DE CONJUNTOS OPERAÇÕES COM CONJUNTOS OPERAÇÕES COM CONJUNTOS PARTES DE UM CONJUNTO
INCLUSÃO DE CONJUNTOS PARTES DE UM CONJUNTO OPERAÇÕES COM CONJUNTOS OPERAÇÕES COM CONJUNTOS 10 10 10 10 20 20 20 20 30 30 30 30 40 40 40 40 50 50 50 50 As perguntas da Categoria 1 vêm a seguir Pergunta
Ciências da Natureza e Matemática
Ciências da Natureza e 1 CEDAE Acompanhamento Escolar Ciências da Natureza e 1. Num colégio, onde estudavam 250 alunos, houve, no final do ano, recuperação nas disciplinas de e Português. 10 alunos fizeram
INTRODUÇÃO À TEORIA DOS CONJUNTOS1
INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto
TEORIA DOS CONJUNTOS. Inclusão: Obs: A, A. a) A B e) D B i) B D. b) B C f) C A j) C B. c) C D g) C B k) A C d) D A h) B A l) D A
TEORI DOS CONJUNTOS Representação 1. Por extensão: Ex: = {1, 2, 4,7} = {a, b, c, d} 2. Por compreensão: Ex: = {x x é vogal} = {x N x é par} C = {x x é divisor de 5} 3. Por diagrama: Ex: Tipos de conjuntos:
INTRODUÇÃO À TEORIA DOS CONJUNTOS
1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1
MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.
MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um
a) Quantos estudantes não estudam nenhum desses idiomas? b) Quantos estudantes estudam apenas um desses idiomas?
Conjuntos 1- Conjuntos A, B e C são tais que A possui 10 elementos; A U B, 16 elementos; A U C, 15 elementos; A B, 5 elementos; A C, 2 elementos; B C, 6 elementos; e A B C, 2 elementos. Calcule o número
Generalidades sobre conjuntos
Generalidades sobre conjuntos E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos
Generalidades sobre conjuntos
Generalidades sobre conjuntos E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos
A afirmação Todo jovem gosta de matemática adora esportes e festas pode ser representada segundo o diagrama:
Questão 01) A afirmação Todo jovem gosta de matemática adora esportes e festas pode ser representada segundo o diagrama: ={jovens que gostam de matemática} = {jovens que adoram esportes} = {jovens que
Sumário. 2 Índice Remissivo 9
i Sumário 1 Teoria dos Conjuntos e Contagem 1 1.1 Teoria dos Conjuntos.................................. 1 1.1.1 Comparação entre conjuntos.......................... 2 1.1.2 União de conjuntos...............................
Lista de exercícios 01. Aluno (a): Turma: 1ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 01 Aluno (a): Turma: 1ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes
Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos
Pode-se dizer que a é em grande parte trabalho de um único matemático: Georg Cantor (1845-1918). noção de conjunto não é suscetível de definição precisa a partir d noções mais simples, ou seja, é uma noção
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS e CONJUNTOS NUMÉRICOS
INTRODUÇÃO... 2 RELAÇÃO DE PERTINÊNCIA... 3 SUBCONJUNTOS E RELAÇÃO DE INCLUSÃO... 6 CONECTIVOS E e OU... 15 OPERAÇÕES ENTRE CONJUNTOS... 17 QUANTIDADE DE ELEMENTOS... 24 CONJUNTO DOS NÚMEROS NATURAIS...
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
TRT Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z =
Conjunto, elemento e pertinência entre elemento e conjunto são noções primitivas, ou seja, conceitos iniciais para os quais não há definição.
CONJUNTOS 1. NOÇÕES PRIMITIVAS E NOTAÇÃO Conjunto, elemento e pertinência entre elemento e conjunto são noções primitivas, ou seja, conceitos iniciais para os quais não há definição. Um conjunto costuma
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos serão, em geral, indicados por letras maiúsculas do alfabeto: A,B,C,...,
I. Conjunto Elemento Pertinência
TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que
NOÇÕES. 04- (F. Santo André-SP) Seja A um conjunto com 7 elementos. O número total de subconjuntos de A é: a) 16 b) 128 c) 56 d) 100 e) 256
MATQUEST CONJUNTOS PROF.: JOSÉ LUÍS NOÇÕES 01- (CATANDUVA-SP) Dado o conjunto A = {, {a}, b} com {a} b a 0, pode-se afirmar que: a) {, {b}} A b) {, {a}} A c) {, a} A d) {a, b} A e) A 02- (CEFET) Considerando
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos
2 - Explicite os conjuntos indicados: (1) { x N x 5 } (3) { x N x 2 < 5 } (2) { x N x 2 = 4 } (4) { x Z x 2 < 5 }
Lista de Conjuntos Numéricos Revisão para o Simulado Nacional Rumoaoita (Ciclo Zero) 1 - Considere os conjuntos: A - conjunto dos números pares positivos; B - conjunto dos números ímpares positivos; C
n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS
n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS Uma relação é um conjunto de pares ordenados, ou seja, um subconjunto de A B. Utilizando pares ordenados podemos definir relações por meio da linguagem de conjuntos.
MAT105 - Fundamentos de Matemática Elementar I
MAT105 - Fundamentos de Matemática Elementar I Prof. Dr. Diogo Machado ([email protected]) 1o semestre de 2016 Universidade Federal de Viçosa - UFV Departamento de Matemática Um dos mais importantes
3 NOÇÕES DE PROBABILIDADE
3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação
2 a Lista de Exercícios 2001/I
1 Universidade Federal de Viçosa Departamento de Matemática MAT 131 Introdução à Álgebra a Lista de xercícios 001/I Tópico: onjuntos e elementos 1) Definir, pela enumeração dos seus elementos, cada um
Matemática Discreta - 07
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Introdução a Teoria de Conjuntos
Aula 01 Introdução a Teoria de Conjuntos A Teoria dos Conjuntos foi criada e desenvolvida pelo Matemático russo George Cantor (1845-1918), trata-se do estudo das propriedades dos conjuntos, relações entre
14/03/2014. Tratamento de Incertezas TIC Aula 1. Conteúdo Espaços Amostrais e Probabilidade. Revisão de conjuntos. Modelos Probabilísticos
Tratamento de Incertezas TIC-00.176 Aula 1 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176
