Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
|
|
|
- Luna Anjos Rico
- 7 Há anos
- Visualizações:
Transcrição
1 Matemática CONJUNTOS NUMÉRICOS Professor Dudan
2 Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos.
3 Números Inteiros (Z) Definição Z = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4,... } Subconjuntos Z* = {..., -4, -3, -2, -1, 1, 2, 3, 4,... } inteiros não nulos Z + = { 0, 1, 2, 3, 4,... } inteiros não negativos (naturais) Z* + = { 1, 2, 3, 4,... } inteiros positivos Z - = {..., -4, -3, -2, -1, 0 } inteiros não positivos Z* - = {..., -4, -3, -2, -1} inteiros negativos
4 O módulo de um numero inteiro, ou valor absoluto, é a distancia da origem a esse ponto representado na reta numerada. Resumindo, é a escrita do numero,sem seu sinal. Assim modulo de -4 é 4 e o modulo de 4 é também 4. Exemplo: -4 = 4 = 4 8 = -8 = 8, -5 = 5 = 5
5 Números Racionais (Q) Definição É todo número que pode ser escrito na forma Subconjuntos Q* racionais não nulos Q + racionais não negativos Q* + racionais positivos Q - racionais não positivos Q* - racionais negativos
6 Frações e Decimais
7 Transformação de dizima periódica em fração geratriz 1-Escrever tudo na ordem, sem virgula e sem repetir; 2-Subtrair o que não se repete, na ordem e sem virgula; 3-No denominador: para cada item periódico colocar um algarismo 9 ; para cada intruso colocar um algarismo 0.
8 c) 1, d)3, e)5,
9 Números Irracionais (I) Definição Todo numero cuja representação decimal não é periódica Exemplos 0, ,
10 Números Reais (IR) Definição Conjunto formado pelos números racionais e pelos irracionais. R = Q U I, sendo Q I = Ø Subconjuntos R* = { x R x 0 } reais não nulos R + = { x R x 0 } reais não negativos R* + = { x R x > 0 } reais positivos R - = { x R x 0 } reais não positivos R* - = { x R x < 0 } reais negativos
11 DIAGRAMA DOS CONJUNTOS
12 Definição Números Complexos (C) Todo numero que pode ser escrito na forma a + bi, com a e b reais. Ex: 3 + 2i -3i i 9 1,3 1, Resumindo: Todo número é complexo.
13 TEORIA DOS CONJUNTOS (LINGUAGEM DOS CONJUNTOS) Conjunto é um conceito primitivo, isto é, sem definição, que indica agrupamento de objetos, elementos, pessoas etc. Para nomear os conjuntos, usualmente são utilizadas letras maiúsculas do nosso alfabeto. REPRESENTAÇÕES: Os conjuntos podem ser representados de três formas distintas: I Por enumeração (ou extensão): Nessa representação, o conjunto é apresentado pela citação de seus elementos entre chaves e separados por vírgula. Assim temos: O conjunto A das vogais -> A = {a, e, i, o, u}. O conjunto B dos números naturais menores que 5 -> B = {0,1,2,3,4}. O conjunto C dos estados da região Sul do Brasil -> C = {RS, SC, PR}
14 II Por propriedade (ou compreensão): Nessa representação, o conjunto é apresentado por uma lei de formação que caracteriza todos os seus elementos. Assim, o conjunto A das vogais é dado por: A = {x / x é vogal do alfabeto} -> (Lê-se: A é o conjunto dos elementos x, tal que x é uma vogal) Outros exemplos: B = {x/x é número natural menor que 5} C = {x/x é estado da região Sul do Brasil}
15 III Por Diagrama de Venn Nessa representação, o conjunto é apresentado por meio de uma linha fechada de tal forma que todos os seus elementos estejam no seu interior. Assim, o conjunto A das vogais é dado por:
16 . RELAÇÃO DE PERTINÊNCIA É uma relação estabelecemos entre elemento e conjunto, para ela fazemos uso dos símbolos e. A pergunta que pode nos orientar é: O elemento está dentro do conjunto? Exemplo: Fazendo uso dos símbolos, estabeleça a relação entre elemento e o conjunto:
17 . RELAÇÃO DE INCLUSÃO É uma relação que estabelecemos entre dois conjuntos. Para essa relação fazemos uso dos símbolos A pergunta que pode nos orientar é: O conjunto está dentro do conjunto? Exemplo: Fazendo uso dos símbolos de inclusão, estabeleça a relação entre conjuntos:
18 OBSERVAÇÕES Dizemos que um conjunto B é um subconjunto ou parte do conjunto A se, e somente se, B C A. Dois conjuntos A e B são iguais se, e somente se, A C B e B C A. Dados os conjuntos A, B e C, temos que: se A C B e B C C, então A C C. O total de subconjuntos é 4 dado por 2, onde "e" é o número de elementos do conjunto. Exemplo: o conjunto A = {1,2,3,4} possui 16 subconjuntos, pois 2 = 16. e
19 União, Intersecção e Diferença entre Conjuntos
20
21 Conjunto Complementar Considere A um conjunto qualquer e U o conjunto universo. Todos os elementos que não estão em A estão no complementar de A. Veja o diagrama de Venn que representa o complementar de A, indicado por A C Assim o complementar de um subconjunto A se refere a elementos que não estão no conjunto A. Normalmente, o complementar se trata de maneira relativa à um conjunto universo U, sendo o conjunto A C o complementar de A formado pelos elementos de U que não pertencem a A.
22 Conjunto Complementar Vamos exemplificar como o contexto é importante para determinar o conjunto complementar. Considere o conjunto A={0,2,4,6,8,10, } Veja como fica se o conjunto universo no nosso contexto for N (números naturais). A C =N A={1,3,5,7,9 } B) Conjunto universo U=Z Agora, se o conjunto universo no nosso contexto for Z (números inteiros): A C =Z A={, 3, 2, 1,1,3,5,7,9 }
23 Complemento Relativo Se A e B são conjuntos, então o complemento relativo de A em relação a B, também conhecido como diferença de B e A (B A) é o conjunto de elementos de B que não estão em A. A diferença de B para A é geralmente denotada B \ A ou também B-A. Assim: B \ A = { x B/ x A} Exemplos {1,2,3}\{2,3,4}={1} {2,3,4}\{1,2,3}={4}
24 Exemplo Dados os conjuntos A = {1, 3, 5}, B = {2, 3, 5, 7} e C = {2, 5, 10}. Determine: a) A B b) A B c) A B d) B A e) A B C f) A B C
25 1. Assinale V para as verdadeiras e F para as falsas. ( ) 0, Z ( )0 Q* ( ) -3 Q+ ( )-3,2 Z ( )N c Q ( ) 0, Q* ( )0,72 N ( )1, N ( )62 Q ( )Q c Z ( )N c Z ( ) Q
26 2. Entre os conjuntos abaixo, o único formado apenas por números racionais é.
27 3. Observe os seguintes números. I - 7, II - π / 5 III - 1, IV - 1, V - 4 Assinale a alternativa que identifica os números irracionais. a) I e II b) I e IV c) II e III d) II e V e) III e V
28 4. Um grupo de 82 pessoas foi a um restaurante. Sabe-se que : 46 comeram carne; 41 comeram peixe 17 comeram outros pratos que não carne ou peixe. O numero de pessoas que comeram carne e peixe é : a)21 b)22 c)23 d)24 e)25
29 5. Numa sala há n pessoas. Sabendo que 75 pessoas dessa sala gostam de Matemática, 52 gostam de Física, 30 pessoas gostam de ambas as matérias e 13 pessoas não gostam de nenhuma dessas matérias. É correto afirmar que n vale a) 170 b) 160 c) 140 d) 100. e) 110.
30 6. Um cursinho tem 700 alunos matriculados. Sabe-se que 350 leem o jornal Zero Hora, 230 leem o jornal Correio do Povo e 250 não leem jornal algum. Quantos alunos leem os dois jornais? a) 130 b) 220 c) 100 d) 120 e) 230
31 7. Numa escola há n alunos. Sabe-se que 56 alunos leem o jornal A, 21 leem os jornais A e B, 106 leem apenas um dos dois jornais e 66 não leem o jornal B. O valor de n é. a) 249. b) 137. c) 158. d) 127. e) 183.
32 8. Numa pesquisa encomendada sobre a preferência entre rádios numa determinada cidade, obteve o seguinte resultado: 50 pessoas ouvem a rádio Riograndense 27 pessoas escutam tanto a rádio Riograndense quanto a rádio Gauchesca 100 pessoas ouvem apenas uma dessas rádios 43 pessoas não escutam a rádio Gauchesca. O número de pessoas que não escutam nenhuma das duas radios é. a) 23 b) 43 c) 20 d) 30 e) 13
33 9. Uma pesquisa sobre a inscrição em cursos de esportes tinha as seguintes opções: A (Natação), B (Alongamento) e C (Voleibol) e assim foi montada a tabela seguinte: Analise as afirmativas seguintes com base nos dados apresentados na tabela pessoas se inscreveram em pelo menos dois cursos pessoas não se inscreveram no curso A pessoas se inscreveram no curso B. 4.O total de inscritos nos cursos foi de 88 pessoas. A alternativa que contém todas as afirmativas corretas é: a) 1 e 2 b) 1 e 3 c) 3 e 4 d) 1, 2 e 3 e) 2, 3 e 4
34 CONJUNTOS NUMÉRICOS
35 COMO A FCC COBRA ISSO?
36 Em um grupo de 54 pessoas, 32 falam inglês, 33 espanhol, 25 francês e 5 falam os três idiomas. Se todos do grupo falam pelo menos um idioma, o número de pessoas que falam exatamente dois idiomas é igual a a) 24. b) 26. c) 25. d) 23. e) 27. CETAM
37 DPE Analisando a carteira de vacinação de 112 crianças, um posto de saúde verificou que 74 receberam a vacina A, 48 receberam a vacina B, e 25 não foram vacinadas. Do total das 112 crianças, receberam as duas vacinas (A e B) apenas a) 32,75%. b) 28,75%. c) 31,25%. d) 34,25%. e) 29,75%.
38 Em um grupo de 90 funcionários de uma repartição pública sabe-se que: 12 têm conhecimentos jurídicos, contábeis e de informática; 56 têm conhecimentos de informática; 49 têm conhecimentos contábeis. Além disso, todos que têm conhecimentos jurídicos também conhecem informática, e 8 funcionários não têm conhecimento jurídico, nem de informática e nem contábil. Nas condições dadas, o número de funcionários que têm conhecimentos de informática e de contabilidade (simultaneamente), mas que não têm conhecimentos jurídicos, é igual a a) 25. b) 18. c) 11. d) 7. e) 26. AL
39 Dos 46 técnicos que estão aptos para arquivar documentos 15 deles também estão aptos para classificar processos e os demais estão aptos para atender ao público. Há outros 11 técnicos que estão aptos para atender ao público, mas não são capazes de arquivar documentos. Dentre esses últimos técnicos mencionados, 4 deles também são capazes de classificar processos. Sabe-se que aqueles que classificam processos são, ao todo, 27 técnicos. Considerando que todos os técnicos que executam essas três tarefas foram citados anteriormente, eles somam um total de a) 58. b) 65. c) 76. d) 53. e) 95. TRT
40 TRF Em uma construtora, há pelo menos um eletricista que também é marceneiro e há pelo menos um eletricista que também é pedreiro. Nessa construtora, qualquer eletricista é também marceneiro ou pedreiro, mas não ambos. Ao todo são 9 eletricistas na empresa e, dentre esses, são em maior número aqueles eletricistas que são também marceneiros. Há outros 24 funcionários que não são eletricistas. Desses, 15 são marceneiros e 13 são pedreiros. Nessa situação, o maior número de funcionários que podem atuar como marceneiros é igual a: a) 15. b) 23. c) 33. d) 19. e) 24.
41 Questões FCC : B-C-C-B-B GABARITOS
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
TRT Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z =
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matemática Teoria dos Conjuntos (Linguagem dos Conjuntos) Conjunto é um conceito primitivo, isto é, sem definição, que indica agrupamento
Pensamento. (Provérbio Chinês) Prof. MSc. Herivelto Nunes
Aula Introdutória Matemática Básica- março 2017 Pensamento Não creio em números, não creio na palavra tudo e nem na palavra nada. São três afirmações exatas e imóveis: o mundo está sempre dando voltas.
Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):
Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto
Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.
MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem
Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira:
Conjuntos Introdução Lembramos que conjunto, elemento e relação de pertinência são considerados conceitos primitivos, isto é, não aceitam definição. Intuitivamente, sabemos que conjunto é uma lista, coleção
CONJUNTOS CONJUNTOS NUMÉRICOS
ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por
Matemática. Professor Dudan.
Matemática Professor Dudan www.acasadoconcurseiro.com.br Matemática CONJUNTOS NUMÉRICOS Números Naturais (N) Definição: N = {0, 1, 2, 3, 4,...} Subconjuntos N* = {1, 2, 3, 4,...} naturais não nulos. Números
Raciocínio Lógico. Professor Dudan.
Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Matemática CONJUNTOS NUMÉRICOS Números Naturais (N) Definição: N = {0, 1, 2, 3, 4,...} Subconjuntos N* = {1, 2, 3, 4,...} naturais não nulos.
MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin
MATEMÁTICA Conjuntos Professor Marcelo Gonzalez Badin Alguns símbolos importantes Œ Pertence / Tal que œ Não Pertence : Tal que $ " fi Existe Não existe Qualquer (para todo) Portanto Se, e somente se,...(equivalência)
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Rafael Carvalho 7º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos Rafael Carvalho 7º Período Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos
CEM CADERNO DE EXERCÍCIOS MASTER. RLM Conjuntos. Período
CEM CADERNO DE EXERCÍCIOS MASTER Período 2014 2016 1) FCC - Auditor Fiscal RE RJ/SEFAZ RJ-2014 Em uma grande empresa, 50% dos empregados são assinantes da revista X, 40% são assinantes da revista Y e 60%
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos
exemplos O conjunto das letras do nosso alfabeto; L= {a, b, c, d,..., z}. O conjunto dos dias da semana: S= {segunda, terça,... domingo}.
CONJUNTOS Conjunto: Representa uma coleção de objetos, geralmente representado por letras MAIÚSCULAS; não interessando a ordem e quantas vezes os elementos estão listados na coleção, e sempre são representados
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...
ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA 1º ANO Conjuntos Numéricos PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net MATEMÁTICA, 9º Ano Pontos no plano cartesiano/pares ordenados
Raciocínio Lógico Prof. Dudan
Técnico do Seguro Social Raciocínio Lógico Prof. Dudan Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Edital RACIOCÍNIO LÓGICO: 3 Operação com conjuntos. 4 Cálculos com porcentagens.
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. João Victor Tenório Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos João Victor Tenório Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos os estudantes
Matemática I Conjuntos Conjuntos Numéricos. Prof.: Joni Fusinato 1
Matemática I Conjuntos Conjuntos Numéricos Prof.: Joni Fusinato [email protected] [email protected] 1 Teoria dos Conjuntos Teoria matemática dedicada ao estudo da associação entre objetos com
EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS
NOME: TURMA: SANTO ANDRÉ, DE DE EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS Conjunto dos números naturais -Representado pela letra N, este conjunto abrange todos os números inteiros positivos, incluindo
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Isabelle Araujo 5º período de Engenharia de Produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Conjuntos Isabelle Araujo 5º período de Engenharia de Produção Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto
MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.
MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um
Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio.
CONJUNTOS Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. Exemplos: A = {a, e, i, o, u} (conjunto das vogais do
TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.
TEORIA DOS CONJUNTOS Professor: Marcelo Silva [email protected] Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando
Fundamentos de Matemática
Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,
Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).
O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos
Teoria dos Conjuntos. Prof. Jorge
Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº PROFESSORA:
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº TURMA: TURNO: ANO: PROFESSORA: 1 1. Noção básica de conjuntos numéricos 1.1 Conceito de Conjunto Segundo
Admitiremos que um conjunto seja uma coleção de objetos chamados elementos e que cada elemento é um dos componentes do conjunto.
TEORIA DOS CONJUNTOS Introdução A Teoria dos conjuntos é a teoria matemática dedicada ao estudo da associação entre objetos com uma mesma propriedade, elaborada no século XIX. Sua origem pode ser encontrada
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como 2 1, 1414 e 3 1, 7321, representando na reta real o intervalo
Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números
Por meio de uma figura fechada, dentro da qual podem-se escrever seus elementos. Diagrama de Venn-Euler.
REPRESENTAÇÕES Um conjunto pode ser representado da seguinte maneira: Enumerando seus elementos entre chaves, separados por vírgulas; Exemplos: A = { 1, 0, 1} N = {0, 1, 2, 3, 4,...} Indicando, entre chaves,
Aula 1 Conjuntos Numéricos
1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º
Matemática é a ciência das regularidades.
Matemática é a ciência das regularidades. Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Conjunto
Introdução a Teoria de Conjuntos
Aula 01 Introdução a Teoria de Conjuntos A Teoria dos Conjuntos foi criada e desenvolvida pelo Matemático russo George Cantor (1845-1918), trata-se do estudo das propriedades dos conjuntos, relações entre
1 Conjunto dos números naturais N
Conjuntos numéricos Os primeiros números concebidos pela humanidade surgiram da necessidade de contar objetos. Porém, outras necessidades, práticas ou teóricas, provocaram a criação de outros tipos de
OFICINA DA PESQUISA. Prof. Msc. Carlos José Giudice dos Santos
OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL APOSTILA 6 TEORIA DOS CONJUNTOS Prof. Msc. Carlos José Giudice dos Santos [email protected] www.oficinadapesquisa.com.br
2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.
ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma
RACIOCÍNIO LÓGICO. Aula 1 - Introdução a Teoria de Conjuntos. Prof.: Jorge Junior
RACIOCÍNIO LÓGICO Aula 1 - Introdução a Teoria de Conjuntos Prof.: Jorge Junior Conteúdo Programático desta aula Conjuntos e Elementos Representações Subconjuntos Pertinência e Inclusão Tipos de Conjunto
EXERCÍCIOS DO CAPÍTULO 1
EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o conjunto A Z tem sete elementos, os sete elemento são três
Conjuntos e sua Representação
Conjuntos e sua Representação Professor: Nuno Rocha [email protected] Conjuntos Um conjunto é o agrupamento de vários elementos que possuem características semelhantes. Exemplos de conjuntos: Países
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos serão, em geral, indicados por letras maiúsculas do alfabeto: A,B,C,...,
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se logicamente como um termo não definido. Um conjunto se pode entender
Teoria dos conjuntos
Matemática I Teoria dos conjuntos UNE - Universidade do Estado da ahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Teoria dos conjuntos Prof. MSc. Rebeca Dourado
A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.
Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos
Descrevendo um conjunto
Conjuntos Veja os seguintes exemplos: Jogadores de um time Lista de compras Números Inteiros Alfabeto Se você está familiarizado com estes exemplos, é claro que você tem a ideia do que é um conjunto, podemos
Conjuntos. 1 Conceitos primitivos. representação de um conjunto. 2.1 REPRESENTAÇÃO TABULAR. 2.2 Representação por Diagrama de Venn- Euler
MT I Prof. Gustavo dolfo Soares Conjuntos a) 1 Conceitos primitivos Os conceitos que iniciam uma teoria são aceitos sem definição, pois, não existindo ainda a teoria, não há recurso para definí-los; por
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS
CONJUNTO DOS NÚMEROS NATURAIS... 2 RETA NUMERADA... 2 CONJUNTO DOS NÚMEROS INTEIROS... 4 SUBCONJUNTOS DE Z... 5 NÚMEROS OPOSTOS... 5 VALOR ABSOLUTO DE UM NÚMERO INTEIRO... 6 CONJUNTO DOS NÚMEROS RACIONAIS...
Definição: Todo objeto parte de um conjunto é denominado elemento.
1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção
Teoria dos Conjuntos FBV. Prof. Rossini Bezerra
Teoria dos onjuntos FV Prof. Rossini ezerra Os resultados do trabalho de Georg Ferdinand Ludwing Phillip antor estabeleceram a teoria de conjuntos como uma disciplina matemática completamente desenvolvida
Capítulo 1 Números Reais
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS e CONJUNTOS NUMÉRICOS
INTRODUÇÃO... 2 RELAÇÃO DE PERTINÊNCIA... 3 SUBCONJUNTOS E RELAÇÃO DE INCLUSÃO... 6 CONECTIVOS E e OU... 15 OPERAÇÕES ENTRE CONJUNTOS... 17 QUANTIDADE DE ELEMENTOS... 24 CONJUNTO DOS NÚMEROS NATURAIS...
Ciências da Natureza e Matemática
Ciências da Natureza e 1 CEDAE Acompanhamento Escolar Ciências da Natureza e 1. Num colégio, onde estudavam 250 alunos, houve, no final do ano, recuperação nas disciplinas de e Português. 10 alunos fizeram
Matemática Conjuntos - Teoria
Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar
PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA
PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,
Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares
Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares 1 Preliminares Neste curso não temos a pretensão de apresentar a teoria de conjuntos e seus axiomas, tão somente pretendemos apresentar um pequeno esboço
Raciocínio Lógico-Matemático Prof. Dudan
Analista Área Processual Raciocínio Lógico-Matemático Prof. Dudan Raciocínio Lógico-Matemático Professor Dudan www.acasadoconcurseiro.com.br Edital RACIOCÍNIO LÓGICO-MATEMÁTICO: Conjuntos numéricos:
CURSO DE MATEMÁTICA. Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha
CURSO DE MATEMÁTICA Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha Qual a importância de conhecer os CONJUNTOS NUMÉRICOS? Meu querido aluno,
COLÉGIO EQUIPE DE JUIZ DE FORA
1. Os conjuntos não-vazios M, N e P estão, isoladamente, representados abaixo. Considere a seguinte figura que estes conjuntos formam. A região hachurada pode ser representada por: a) M (N P) b) M (N P)
AULA DO CPOG. Teoria dos conjutos
AULA DO CPOG Teoria dos conjutos TEORIA DOS CONJUNTOS Professor Felipe Técnico de Operações P-25 Petrobras Contatos Felipe da Silva Cardoso [email protected] www.professorfelipecardoso.blogspot.com
1 ano do ensino médio Segue algumas das questões do curso de reforço de matemática 1 ano do ensino médio.
Segue algumas das questões do curso de reforço de matemática. 1. Dado o conjunto A = {1, 2, [3, 4], [5]} Verifique se os itens são verdadeiros (V) ou falsos (F) a) 2 A ( ) b) 2 A ( ) c) {2} A( ) d) 5 A
EXERCÍCIOS DE REVISÃO - MATEMÁTICA
EXERCÍCIOS DE REVISÃO - MATEMÁTICA 1) Lucas, Pedro e Tiago contaram os ovos de uma cesta. Lucas contou de 2 em 2 e anotou o numeral 1A01B1, Pedro contou de 3 em 3 e anotou o numeral 1C22 e Tiago, que contou
Raciocínio Lógico Prof. Dudan
Escrivão e Agente de Polícia Raciocínio Lógico Prof. Dudan Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Edital RACIOCÍNIO LÓGICO: Princípios de contagem e probabilidade. Operações
OPERAÇÕES COM CONJUNTOS
OPERAÇÕES COM CONJUNTOS Vamos estudar agora problemas envolvendo as operações entre conjuntos que serão solucionados utilizando-se os diagramas de Venn. 01. Uma escola oferece reforço escolar em todas
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /
1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 05-06 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br
MATEMÁTICA. Aula 2 Teoria dos Conjuntos. Prof. Anderson
MATEMÁTICA Aula 2 Teoria dos Conjuntos Prof. Anderson CONCEITO Na teoria dos conjuntos, um conjunto é descrito como uma coleção de objetos bem definidos. Estes objetos são chamados de elementos ou membros
Matemática e Raciocínio Lógico Prof. Dudan
Matemática e Raciocínio Lógico Prof. Dudan Matemática e Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Conteúdo MATEMÁTICA E RACIOCÍNIO LÓGICO: Conjuntos Numéricos e Teoria dos Conjuntos.
Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:
CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA
CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não
CAPÍTULO 1 - Teoria dos conjuntos
TEORI DOS CONJUNTOS 1. CONCEITO DE CONJUNTOS teoria dos conjuntos tem inicio com o matemático Georg Cantor ( 1845-1918). Como na Geometria Euclidiana adota-se ponto, reta e plano como conceitos primitivos
a. O conjunto de todos os brasileiros. b. O conjunto de todos os números naturais. c. O conjunto de todos os números reais tal que x²-4=0.
Introdução aos conjuntos No estudo de Conjuntos, trabalhamos com alguns conceitos primitivos, que devem ser entendidos e aceitos sem definição. Para um estudo mais aprofundado sobre a Teoria dos Conjuntos,
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane
Prof. a : Patrícia Caldana
CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos
Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos
Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e
Professor B - Matemática
Secretaria de Estado da Educação do Estado do Espírito Santo SEDU-ES Edital Nº 01/2018 - Seger/SEDU, de 11 de Janeiro de 2018 JN065-2018 DADOS DA OBRA Título da obra: Secretaria de Estado da Educação
Matemática Prof. Dudan
Policial Rodoviário Federal Matemática Prof. Dudan Matemática Professor Dudan www.acasadoconcurseiro.com.br Edital MATEMÁTICA: Números inteiros, racionais e reais. Problemas de contagem. Sistema legal
Matemática e Raciocínio Lógico Prof. Dudan
Técnico Judiciário Área Administrativa Matemática e Raciocínio Lógico Prof. Dudan Matemática e Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Edital MATEMÁTICA E RACIOCÍNIO LÓGICO: Números
ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível
Raciocínio Lógico Parte 2 Prof. Dudan
Técnico Apoio Técnico-Administrativo Raciocínio Lógico Parte 2 Prof. Dudan Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Edital RACIOCÍNIO LÓGICO: 5 Princípios de contagem e probabilidade.
Matemática Prof. Dudan
Assistente Técnico Administrativo Matemática Prof. Dudan Matemática Professor Dudan www.acasadoconcurseiro.com.br Edital MATEMÁTICA: Numeração; Números naturais: múltiplos, divisores, divisibilidade
Raciocínio Lógico Prof. Dudan
Técnico Administrativo Raciocínio Lógico Prof. Dudan Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Edital RACIOCÍNIO LÓGICO: Princípios de contagem e probabilidade. Operações com conjuntos.
Conjuntos Numéricos Conjunto dos números naturais
Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto
