Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
|
|
|
- Carlos Van Der Vinne da Rocha
- 7 Há anos
- Visualizações:
Transcrição
1 Matemática CONJUNTOS NUMÉRICOS Professor Dudan
2 Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos.
3 Números Inteiros (Z) Definição Z = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4,... } Subconjuntos Z* = {..., -4, -3, -2, -1, 1, 2, 3, 4,... } inteiros não nulos Z + = { 0, 1, 2, 3, 4,... } inteiros não negativos (naturais) Z* + = { 1, 2, 3, 4,... } inteiros positivos Z - = {..., -4, -3, -2, -1, 0 } inteiros não positivos Z* - = {..., -4, -3, -2, -1} inteiros negativos
4 O módulo de um numero inteiro, ou valor absoluto, é a distancia da origem a esse ponto representado na reta numerada. Resumindo, é a escrita do numero,sem seu sinal. Assim modulo de -4 é 4 e o modulo de 4 é também 4. Exemplo: -4 = 4 = 4 8 = -8 = 8, -5 = 5 = 5
5 Números Racionais (Q) Definição É todo número que pode ser escrito na forma Subconjuntos Q* racionais não nulos Q + racionais não negativos Q* + racionais positivos Q - racionais não positivos Q* - racionais negativos
6 Frações e Decimais
7 Transformação de dizima periódica em fração geratriz 1-Escrever tudo na ordem, sem virgula e sem repetir; 2-Subtrair o que não se repete, na ordem e sem virgula; 3-No denominador: para cada item periódico colocar um algarismo 9 ; para cada intruso colocar um algarismo 0.
8 c) 1, d)3, e)5,
9 Números Irracionais (I) Definição Todo numero cuja representação decimal não é periódica Exemplos 0, ,
10 Números Reais (IR) Definição Conjunto formado pelos números racionais e pelos irracionais. R = Q U I, sendo Q I = Ø Subconjuntos R* = { x R x 0 } reais não nulos R + = { x R x 0 } reais não negativos R* + = { x R x > 0 } reais positivos R - = { x R x 0 } reais não positivos R* - = { x R x < 0 } reais negativos
11 DIAGRAMA DOS CONJUNTOS
12 Definição Números Complexos (C) Todo numero que pode ser escrito na forma a + bi, com a e b reais. Ex: 3 + 2i -3i i 9 1,3 1, Resumindo: Todo número é complexo.
13 TEORIA DOS CONJUNTOS (LINGUAGEM DOS CONJUNTOS) Conjunto é um conceito primitivo, isto é, sem definição, que indica agrupamento de objetos, elementos, pessoas etc. Para nomear os conjuntos, usualmente são utilizadas letras maiúsculas do nosso alfabeto. REPRESENTAÇÕES: Os conjuntos podem ser representados de três formas distintas: I Por enumeração (ou extensão): Nessa representação, o conjunto é apresentado pela citação de seus elementos entre chaves e separados por vírgula. Assim temos: O conjunto A das vogais -> A = {a, e, i, o, u}. O conjunto B dos números naturais menores que 5 -> B = {0,1,2,3,4}. O conjunto C dos estados da região Sul do Brasil -> C = {RS, SC, PR}
14 II Por propriedade (ou compreensão): Nessa representação, o conjunto é apresentado por uma lei de formação que caracteriza todos os seus elementos. Assim, o conjunto A das vogais é dado por: A = {x / x é vogal do alfabeto} -> (Lê-se: A é o conjunto dos elementos x, tal que x é uma vogal) Outros exemplos: B = {x/x é número natural menor que 5} C = {x/x é estado da região Sul do Brasil}
15 III Por Diagrama de Venn Nessa representação, o conjunto é apresentado por meio de uma linha fechada de tal forma que todos os seus elementos estejam no seu interior. Assim, o conjunto A das vogais é dado por:
16 . RELAÇÃO DE PERTINÊNCIA É uma relação estabelecemos entre elemento e conjunto, para ela fazemos uso dos símbolos e. A pergunta que pode nos orientar é: O elemento está dentro do conjunto? Exemplo: Fazendo uso dos símbolos, estabeleça a relação entre elemento e o conjunto:
17 . RELAÇÃO DE INCLUSÃO É uma relação que estabelecemos entre dois conjuntos. Para essa relação fazemos uso dos símbolos A pergunta que pode nos orientar é: O conjunto está dentro do conjunto? Exemplo: Fazendo uso dos símbolos de inclusão, estabeleça a relação entre conjuntos:
18 OBSERVAÇÕES Dizemos que um conjunto B é um subconjunto ou parte do conjunto A se, e somente se, B C A. Dois conjuntos A e B são iguais se, e somente se, A C B e B C A. Dados os conjuntos A, B e C, temos que: se A C B e B C C, então A C C. O total de subconjuntos é dado por 2, onde "e" é o número de elementos do conjunto. Exemplo: o conjunto A = {1,2,3,4} possui 16 4 subconjuntos, pois 2 = 16. e
19 União, Intersecção e Diferença entre Conjuntos
20
21 Conjunto Complementar Considere A um conjunto qualquer e U o conjunto universo. Todos os elementos que não estão em A estão no complementar de A. Veja o diagrama de Venn que representa o complementar de A, indicado por A C Assim o complementar de um subconjunto A se refere a elementos que não estão no conjunto A. Normalmente, o complementar se trata de maneira relativa à um conjunto universo U, sendo o conjunto A C o complementar de A formado pelos elementos de U que não pertencem a A.
22 Conjunto Complementar Vamos exemplificar como o contexto é importante para determinar o conjunto complementar. Considere o conjunto A={0,2,4,6,8,10, } Veja como fica se o conjunto universo no nosso contexto for N (números naturais). A C =N A={1,3,5,7,9 } B) Conjunto universo U=Z Agora, se o conjunto universo no nosso contexto for Z (números inteiros): A C =Z A={, 3, 2, 1,1,3,5,7,9 }
23 Complemento Relativo Se A e B são conjuntos, então o complemento relativo de A em relação a B, também conhecido como diferença de B e A (B A) é o conjunto de elementos de B que não estão em A. A diferença de B para A é geralmente denotada B \ A ou também B-A. Assim: B \ A = { x B/ x A} Exemplos {1,2,3}\{2,3,4}={1} {2,3,4}\{1,2,3}={4}
24 Exemplo Dados os conjuntos A = {1, 3, 5}, B = {2, 3, 5, 7} e C = {2, 5, 10}. Determine: a) A B b) A B c) A B d) B A e) A B C f) A B C
25 1. Assinale V para as verdadeiras e F para as falsas. ( ) 0, Z ( )0 Q* ( ) -3 Q+ ( )-3,2 Z ( )N c Q ( ) 0, Q* ( )0,72 N ( )1, N ( )62 Q ( )Q c Z ( )N c Z ( ) Q
26 2. Entre os conjuntos abaixo, o único formado apenas por números racionais é.
27 3. Observe os seguintes números. I - 7, II - π / 5 III - 1, IV - 1, V - 4 Assinale a alternativa que identifica os números irracionais. a) I e II b) I e IV c) II e III d) II e V e) III e V
28 4. Um grupo de 82 pessoas foi a um restaurante. Sabe-se que : 46 comeram carne; 41 comeram peixe 17 comeram outros pratos que não carne ou peixe. O numero de pessoas que comeram carne e peixe é : a)21 b)22 c)23 d)24 e)25
29 5. Numa sala há n pessoas. Sabendo que 75 pessoas dessa sala gostam de Matemática, 52 gostam de Física, 30 pessoas gostam de ambas as matérias e 13 pessoas não gostam de nenhuma dessas matérias. É correto afirmar que n vale a) 170 b) 160 c) 140 d) 100. e) 110.
30 6. Um cursinho tem 700 alunos matriculados. Sabe-se que 350 leem o jornal Zero Hora, 230 leem o jornal Correio do Povo e 250 não leem jornal algum. Quantos alunos leem os dois jornais? a) 130 b) 220 c) 100 d) 120 e) 230
31 7. Numa escola há n alunos. Sabe-se que 56 alunos leem o jornal A, 21 leem os jornais A e B, 106 leem apenas um dos dois jornais e 66 não leem o jornal B. O valor de n é. a) 249. b) 137. c) 158. d) 127. e) 183.
32 8. Numa pesquisa encomendada sobre a preferência entre rádios numa determinada cidade, obteve o seguinte resultado: 50 pessoas ouvem a rádio Riograndense 27 pessoas escutam tanto a rádio Riograndense quanto a rádio Gauchesca 100 pessoas ouvem apenas uma dessas rádios 43 pessoas não escutam a rádio Gauchesca. O número de pessoas que não escutam nenhuma das duas radios é. a) 23 b) 43 c) 20 d) 30 e) 13
33 9. Uma pesquisa sobre a inscrição em cursos de esportes tinha as seguintes opções: A (Natação), B (Alongamento) e C (Voleibol) e assim foi montada a tabela seguinte: Analise as afirmativas seguintes com base nos dados apresentados na tabela pessoas se inscreveram em pelo menos dois cursos pessoas não se inscreveram no curso A pessoas se inscreveram no curso B. 4.O total de inscritos nos cursos foi de 88 pessoas. A alternativa que contém todas as afirmativas corretas é: a) 1 e 2 b) 1 e 3 c) 3 e 4 d) 1, 2 e 3 e) 2, 3 e 4
34 CONJUNTOS NUMÉRICOS
35 COMO A FEPESE COBRA ISSO?
36 TRT-SC Considere os conjuntos: N dos números naturais, Q dos números racionais, Q+ números racionais não-negativos, R dos números reais. O número que expressa A.a quantidade de habitantes de uma cidade é um elemento de Q+, mas não de N. B.o valor pago, em reais, por um sorvete é um elemento de Q+. C.a medida da altura de uma pessoa é um elemento de N. D.a velocidade média de um veículo é um elemento de Q, mas não de Q+. E.a medida do lado de um triângulo é um elemento de Q.
37 CELESC Seja A o conjunto formado pelos números racionais maiores que 1 e menores do que 1. Seja B o conjunto formado pelos elementos de A que não são números inteiros. Então: a) 2 é um elemento de B. b) O número de elementos em B é igual a 0. c) O número de elementos em B é igual a 1. d) O número de elementos em B é igual a 3. e) Existe uma infinidade de elementos em B.
38 Seja A o conjunto formado pelos seis primeiros números primos e seja B o conjunto formado pelos números naturais maiores do que 1 e menores do que 10. Então o número de elementos na intersecção de A com B é igual a: a) 3. b) 4. c) 5. d) 6. e) 9. CELESC
39 Assinale a alternativa que indica o número de elementos no conjunto dos números primos maiores do que um e menores do que 37/2. a) 4 b) 5 c) 6 d) 7 e) 8 CELESC
40 O número de subconjuntos de três elementos do conjunto dos números inteiros positivos ímpares menores que 12 é: a. 6. b. 18. c. 20. d. 24. e. 32. PREFEITURA DE TIJUCAS
41 Uma empresa com 200 funcionários oferece cursos de capacitação em inglês e em informática a seus funcionários. Sabe-se que 50 funcionários decidem fazer o curso de inglês, 30 decidem fazer ambos os cursos e 110 decidem não fazer nenhum dos cursos. Dessa forma, o número de funcionários que decidem fazer apenas um dos cursos de capacitação é: a) 20. b) 30. c) 40. d) 50. e) 60. CELESC
42 Questões FEPESE : B-E-B-D-C-E GABARITOS
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matemática Teoria dos Conjuntos (Linguagem dos Conjuntos) Conjunto é um conceito primitivo, isto é, sem definição, que indica agrupamento
Pensamento. (Provérbio Chinês) Prof. MSc. Herivelto Nunes
Aula Introdutória Matemática Básica- março 2017 Pensamento Não creio em números, não creio na palavra tudo e nem na palavra nada. São três afirmações exatas e imóveis: o mundo está sempre dando voltas.
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Rafael Carvalho 7º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos Rafael Carvalho 7º Período Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos
Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):
Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto
Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.
MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem
exemplos O conjunto das letras do nosso alfabeto; L= {a, b, c, d,..., z}. O conjunto dos dias da semana: S= {segunda, terça,... domingo}.
CONJUNTOS Conjunto: Representa uma coleção de objetos, geralmente representado por letras MAIÚSCULAS; não interessando a ordem e quantas vezes os elementos estão listados na coleção, e sempre são representados
MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin
MATEMÁTICA Conjuntos Professor Marcelo Gonzalez Badin Alguns símbolos importantes Œ Pertence / Tal que œ Não Pertence : Tal que $ " fi Existe Não existe Qualquer (para todo) Portanto Se, e somente se,...(equivalência)
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. João Victor Tenório Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos João Victor Tenório Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos os estudantes
Matemática. Professor Dudan.
Matemática Professor Dudan www.acasadoconcurseiro.com.br Matemática CONJUNTOS NUMÉRICOS Números Naturais (N) Definição: N = {0, 1, 2, 3, 4,...} Subconjuntos N* = {1, 2, 3, 4,...} naturais não nulos. Números
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Isabelle Araujo 5º período de Engenharia de Produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Conjuntos Isabelle Araujo 5º período de Engenharia de Produção Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto
Raciocínio Lógico. Professor Dudan.
Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Matemática CONJUNTOS NUMÉRICOS Números Naturais (N) Definição: N = {0, 1, 2, 3, 4,...} Subconjuntos N* = {1, 2, 3, 4,...} naturais não nulos.
CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...
ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início
Teoria dos Conjuntos. Prof. Jorge
Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do
Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio.
CONJUNTOS Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. Exemplos: A = {a, e, i, o, u} (conjunto das vogais do
EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS
NOME: TURMA: SANTO ANDRÉ, DE DE EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS Conjunto dos números naturais -Representado pela letra N, este conjunto abrange todos os números inteiros positivos, incluindo
TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.
TEORIA DOS CONJUNTOS Professor: Marcelo Silva [email protected] Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando
Introdução a Teoria de Conjuntos
Aula 01 Introdução a Teoria de Conjuntos A Teoria dos Conjuntos foi criada e desenvolvida pelo Matemático russo George Cantor (1845-1918), trata-se do estudo das propriedades dos conjuntos, relações entre
Matemática I Conjuntos Conjuntos Numéricos. Prof.: Joni Fusinato 1
Matemática I Conjuntos Conjuntos Numéricos Prof.: Joni Fusinato [email protected] [email protected] 1 Teoria dos Conjuntos Teoria matemática dedicada ao estudo da associação entre objetos com
MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.
MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um
Conjuntos e sua Representação
Conjuntos e sua Representação Professor: Nuno Rocha [email protected] Conjuntos Um conjunto é o agrupamento de vários elementos que possuem características semelhantes. Exemplos de conjuntos: Países
Aula 1 Conjuntos Numéricos
1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como 2 1, 1414 e 3 1, 7321, representando na reta real o intervalo
2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.
ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos serão, em geral, indicados por letras maiúsculas do alfabeto: A,B,C,...,
1 Conjunto dos números naturais N
Conjuntos numéricos Os primeiros números concebidos pela humanidade surgiram da necessidade de contar objetos. Porém, outras necessidades, práticas ou teóricas, provocaram a criação de outros tipos de
CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA
CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com
AULA DO CPOG. Teoria dos conjutos
AULA DO CPOG Teoria dos conjutos TEORIA DOS CONJUNTOS Professor Felipe Técnico de Operações P-25 Petrobras Contatos Felipe da Silva Cardoso [email protected] www.professorfelipecardoso.blogspot.com
SuperPro copyright Colibri Informática Ltda.
1. (Fuvest-gv) Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15%
MATEMÁTICA. Aula 2 Teoria dos Conjuntos. Prof. Anderson
MATEMÁTICA Aula 2 Teoria dos Conjuntos Prof. Anderson CONCEITO Na teoria dos conjuntos, um conjunto é descrito como uma coleção de objetos bem definidos. Estes objetos são chamados de elementos ou membros
Teoria dos Conjuntos FBV. Prof. Rossini Bezerra
Teoria dos onjuntos FV Prof. Rossini ezerra Os resultados do trabalho de Georg Ferdinand Ludwing Phillip antor estabeleceram a teoria de conjuntos como uma disciplina matemática completamente desenvolvida
Conjuntos Numéricos Conjunto dos números naturais
Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o conjunto A Z tem sete elementos, os sete elemento são três
Definição: Todo objeto parte de um conjunto é denominado elemento.
1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS
CONJUNTO DOS NÚMEROS NATURAIS... 2 RETA NUMERADA... 2 CONJUNTO DOS NÚMEROS INTEIROS... 4 SUBCONJUNTOS DE Z... 5 NÚMEROS OPOSTOS... 5 VALOR ABSOLUTO DE UM NÚMERO INTEIRO... 6 CONJUNTO DOS NÚMEROS RACIONAIS...
Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos.
Capítulo 1 Conjuntos 1.1 Noção de conjuntos Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos. 1. Uma coleção de revista
Matemática Conjuntos - Teoria
Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar
Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática
Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática 2014 Na teoria dos conjuntos três noções são aceitas sem denição (noção primitiva):: Conjunto;
Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:
CURSO PRF 2017 MATEMÁTICA
AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
EXERCÍCIOS DO CAPÍTULO 1
EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos
PROGRAMA DE NIVELAMENTO 2011 MATEMÁTICA
PROGRAMA DE NIVELAMENTO 0 MATEMÁTICA I - CONJUNTOS NUMÉRICOS Z {..., -, -, -, 0,,,,...} Não há números inteiros em fração ou decimais Q Racionais São os números que representam partes inteiras ou divisões,
a. O conjunto de todos os brasileiros. b. O conjunto de todos os números naturais. c. O conjunto de todos os números reais tal que x²-4=0.
Introdução aos conjuntos No estudo de Conjuntos, trabalhamos com alguns conceitos primitivos, que devem ser entendidos e aceitos sem definição. Para um estudo mais aprofundado sobre a Teoria dos Conjuntos,
Prof. a : Patrícia Caldana
CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos
OFICINA DA PESQUISA. Prof. Msc. Carlos José Giudice dos Santos
OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL APOSTILA 6 TEORIA DOS CONJUNTOS Prof. Msc. Carlos José Giudice dos Santos [email protected] www.oficinadapesquisa.com.br
Descrevendo um conjunto
Conjuntos Veja os seguintes exemplos: Jogadores de um time Lista de compras Números Inteiros Alfabeto Se você está familiarizado com estes exemplos, é claro que você tem a ideia do que é um conjunto, podemos
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco
MATEMÁTICA 1 ARITMÉTICA Professor Matheus Secco MÓDULO 3 Números Racionais e Operações com Frações 1.INTRODUÇÃO Quando dividimos um objeto em partes iguais, uma dessas partes ou a reunião de várias delas
Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos
Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS e CONJUNTOS NUMÉRICOS
INTRODUÇÃO... 2 RELAÇÃO DE PERTINÊNCIA... 3 SUBCONJUNTOS E RELAÇÃO DE INCLUSÃO... 6 CONECTIVOS E e OU... 15 OPERAÇÕES ENTRE CONJUNTOS... 17 QUANTIDADE DE ELEMENTOS... 24 CONJUNTO DOS NÚMEROS NATURAIS...
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane
Professor: Fábio Soares - Disciplina: Métodos Quantitativos ADMINISTRAÇÃO
Unidade 1 - Números Reais: representações O principal motivo para que a maioria dos cursos comecem por um breve estudo dos números reais é o fato de no Cálculo e na Análise, estuda-se o comportamento de
Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares
Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares 1 Preliminares Neste curso não temos a pretensão de apresentar a teoria de conjuntos e seus axiomas, tão somente pretendemos apresentar um pequeno esboço
Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).
O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.
Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros
1. Conjuntos Objetivo: revisar as principais noções de teoria de conjuntos afim de utilizar tais noções para apresentar os principais conjuntos de números. 1.1 Conjunto, elemento e pertinência Conjunto
CONJUNTOS NUMÉRICOS. O que são?
CONJUNTOS NUMÉRICOS O que são? Os Naturais Os números Naturais surgiram da necessidade de contar as coisas. Eles são todos os números inteiros positivos, incluindo o zero. É representado pela letra maiúscula
Introdução à Matemática
Universidade Estadual de Goiás Unidade Universitária de Ciências Sócio-Econômicas e Humanas de Anápolis Introdução à Matemática Conjuntos e Conjuntos Numéricos Introdução A noção de conjunto Propriedades,
ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível
Admitiremos que um conjunto seja uma coleção de objetos chamados elementos e que cada elemento é um dos componentes do conjunto.
TEORIA DOS CONJUNTOS Introdução A Teoria dos conjuntos é a teoria matemática dedicada ao estudo da associação entre objetos com uma mesma propriedade, elaborada no século XIX. Sua origem pode ser encontrada
Matemática e Raciocínio Lógico Prof. Dudan
Técnico Judiciário Área Administrativa Matemática e Raciocínio Lógico Prof. Dudan Matemática e Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Edital MATEMÁTICA E RACIOCÍNIO LÓGICO: Números
Conjuntos. 1 Conceitos primitivos. representação de um conjunto. 2.1 REPRESENTAÇÃO TABULAR. 2.2 Representação por Diagrama de Venn- Euler
MT I Prof. Gustavo dolfo Soares Conjuntos a) 1 Conceitos primitivos Os conceitos que iniciam uma teoria são aceitos sem definição, pois, não existindo ainda a teoria, não há recurso para definí-los; por
Matemática A Extensivo V. 2
GRITO Matemática Extensivo V. Exercícios 0) a) Verdadeira. e são elementos de. b) Verdadeira. Pois {} é elemento de. c) Verdadeira. Pois não é elemento de. d) Verdadeira. Pois {} é um subconjunto de. e)
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem
Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4
0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o
EXERCÍCIOS DE REVISÃO - MATEMÁTICA
EXERCÍCIOS DE REVISÃO - MATEMÁTICA 1) Lucas, Pedro e Tiago contaram os ovos de uma cesta. Lucas contou de 2 em 2 e anotou o numeral 1A01B1, Pedro contou de 3 em 3 e anotou o numeral 1C22 e Tiago, que contou
MATEMÁTICA I. Ana Paula Figueiredo
I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos
Conjunto dos números irracionais (I)
MATEMÁTICA Revisão Geral Aula - Parte 1 Professor Me. Álvaro Emílio Leite Conjunto dos números irracionais (I) {... π; ; ; ; 7; π + } I =... Q Z N I Número pi ( π) Diâmetro Perímetro π =,14196897984664...
III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária.
1 Projeto Jovem Nota 10 1. (Fuvest 2000) Um número inteiro positivo n de 4 algarismos decimais satisfaz às seguintes condições: I) a soma dos quadrados dos 1 e 4 algarismos é 58; II) a soma dos quadrados
Matemática e Raciocínio Lógico Prof. Dudan
Matemática e Raciocínio Lógico Prof. Dudan Matemática e Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Conteúdo MATEMÁTICA E RACIOCÍNIO LÓGICO: Conjuntos Numéricos e Teoria dos Conjuntos.
SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).
SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para
Raciocínio Lógico Prof. Dudan
Escrivão e Agente de Polícia Raciocínio Lógico Prof. Dudan Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Edital RACIOCÍNIO LÓGICO: Princípios de contagem e probabilidade. Operações
Conjuntos Contáveis e Não Contáveis / Contagem
Conjuntos Contáveis e Não Contáveis / Contagem Introdução A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras,
Matemática Prof. Dudan
Policial Rodoviário Federal Matemática Prof. Dudan Matemática Professor Dudan www.acasadoconcurseiro.com.br Edital MATEMÁTICA: Números inteiros, racionais e reais. Problemas de contagem. Sistema legal
Janeiro M A T E M Á T I C A CONJUNTOS TEORIA DOS CONJUNTOS. Sejam bem-vindos ao nosso primeiro dia de Cronograma.
VEST Janeiro @vestmapamental M A T E M Á T I C A CONJUNTOS TEORIA DOS CONJUNTOS Sejam bem-vindos ao nosso primeiro dia de Cronograma. Iniciando pela Matemática, uma disciplina exata, que requer muito compromisso,
Definimos como conjunto uma coleção qualquer de elementos.
Conjuntos Numéricos Conjunto Definimos como conjunto uma coleção qualquer de elementos. Exemplos: Conjunto dos números naturais pares; Conjunto formado por meninas da 6ª série do ensino fundamental de
Extensivo Matemática A VOL 2
Extensivo Matemática VOL 2 01) N = {0, 1, 2, 3, 4,...} Conjunto dos números naturais B = {x N/ 2 x 7} a) V: 7 B = {2, 3, 4, 5, 6, 7} b) F: 5 é um elemento de B c) F: x, com x N, tal que 2 x 7. d) F: os
RLM - PROFESSOR CARLOS EDUARDO AULA 3
AULA 3 Sucessões = sequências(numéricas) São conjuntos de números reais dispostos numa certa ordem. Uma sequência pode ser FINITA ou INFINITA. Ex: a) (3, 6, 9, 12) sequência finita P.A de razão 3 b) (5,
TURMA DO M RIO TEORIA DOS CONJUNTOS
TURM DO M RIO TEORI DOS ONJUNTOS Entes Primitivos onjunto é uma idéia associada à coleção de objetos ou grupo. Não existe uma definição precisa, mas mesmo assim todos os seres racionais possuem intuitivamente
CÁLCULO I. 1 Número Reais. Objetivos da Aula
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral
RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS
Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)
Operações com conjuntos: união, interseção e complementar
PREPARATÓRIO IFRN Cargo: Auxiliar em Administração Disciplina: Matemática Professor: Daniel Almeida Operações com conjuntos: união, interseção e complementar CONJUNTOS Formado pelo agrupamento ou ausência
Professor conteudista: Renato Zanini
Matemática Professor conteudista: Renato Zanini Sumário Matemática Unidade I 1 OS NÚMEROS REAIS: REPRESENTAÇÕES E OPERAÇÕES... EXPRESSÕES LITERAIS E SUAS OPERAÇÕES...6 3 RESOLVENDO EQUAÇÕES...7 4 RESOLVENDO
Raciocínio Lógico Parte 2 Prof. Dudan
Técnico Apoio Técnico-Administrativo Raciocínio Lógico Parte 2 Prof. Dudan Raciocínio Lógico Professor Dudan www.acasadoconcurseiro.com.br Edital RACIOCÍNIO LÓGICO: 5 Princípios de contagem e probabilidade.
INCLUSÃO DE CONJUNTOS OPERAÇÕES COM CONJUNTOS OPERAÇÕES COM CONJUNTOS PARTES DE UM CONJUNTO
INCLUSÃO DE CONJUNTOS PARTES DE UM CONJUNTO OPERAÇÕES COM CONJUNTOS OPERAÇÕES COM CONJUNTOS 10 10 10 10 20 20 20 20 30 30 30 30 40 40 40 40 50 50 50 50 As perguntas da Categoria 1 vêm a seguir Pergunta
1) Seja o conjunto A = (0;1). Quantas relações binárias distintas podem ser definidas sobre o conjunto A?
RESUMO A relação binária é uma relação entre dois elementos, sendo um conjunto de pares ordenados. As relações binárias são comuns em muitas áreas da matemática. Um par ordenado consiste de dois termos,
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação
BIMESTRAL - MATEMÁTICA - 1ºBIMESTRE
BIMESTRAL - MATEMÁTICA - 1ºBIMESTRE Série: 3ªEM Gabarito 1- : (PUC-RIO 2010) Sejam x e y números tais que os conjuntos {0, 7, 1} e {x, y, 1} são iguais. Então, podemos afirmar que: x = 0 e y = 5 x + y
Unidade I MATEMÁTICA APLICADA. Profa. Ana Carolina Bueno
Unidade I MATEMÁTICA APLICADA Profa. Ana Carolina Bueno Números reais Fonte: http://infomaticando.blogspot.com.br/2012/12/numeros-irracionais.html Expressões algébricas São expressões matemáticas que apresentam
Conjuntos. Notações e Símbolos
Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas
Sumário. 1 CAPÍTULO 1 Revisão de álgebra
Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção
