Conjuntos Contáveis e Não Contáveis / Contagem
|
|
|
- Rafael Galvão Canário
- 9 Há anos
- Visualizações:
Transcrição
1 Conjuntos Contáveis e Não Contáveis / Contagem
2 Introdução A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em que procurava abstrair a natureza por meio de processos de determinação de quantidades.
3 Introdução Essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos. E é sobre eles a aula de hoje.
4 Conjunto do números Naturais - N Como decorrência da necessidade de contar objetos surgiram os números naturais que é simbolizado pela letra N e é formado pelos números 0, 1, 2, 3,, ou seja: N = {0; 1; 2; 3; }
5 Conjunto do números Naturais - N O conjunto N pode ser representado geometricamente por meio de uma reta numerada: unidade Um ponto de origem (correspondente ao número zero) uma orientação (geralmente para a direita)
6 Conjunto do números Naturais - N Um subconjunto de N muito usado é o conjunto dos números naturais menos o zero, ou seja: N {0} = conjuntos dos números naturais positivos, que é representado por N*: N * ={1, 2, 3, 4, 5,..., n,...}
7 Conjunto do números Naturais - N Outros subconjuntos: O conjunto dos números naturais pares: N p ={0, 2, 4, 6,..., 2n,...} n N O conjunto dos números naturais ímpares: N i ={1, 3, 5, 7,..., 2n+1,...} n N
8 Conjunto do números Naturais - N Outros subconjuntos: O conjunto dos números primos: P i ={2, 3, 5, 7, 11, 13...}
9 Conjunto do números Naturais - N Operações: No conjunto dos números naturais estão definidas duas operações: adição e multiplicação. se a e b são dois números naturais, então: a + b e a.b são também números naturais.
10 Conjunto do números Naturais - N Operações: adição e multiplicação Em símbolos: m,n N, (m+n) N e (m*n) N Para todo m e n que pertencem a N, m + n pertence a N e m. n pertence a N.
11 Conjunto dos Números Inteiros Z Chama-se o conjunto dos números inteiros, representado pela letra Z, o seguinte conjunto: Z = {, -3; -2; -1; 0; 1; 2; 3; } Introdução dos números negativos!
12 Conjunto dos Números Inteiros Z Os números inteiros podem ser representados por pontos de uma reta orientada ou eixo, onde temos um ponto de origem, o zero, e à sua esquerda associam-se ordenadamente os inteiros negativos e à sua direita os inteiros positivos, separados por intervalos de mesmo comprimento.
13 Conjunto dos Números Inteiros Z Cada ponto da reta orientada é denominado de abcissa
14 Conjunto dos Números Inteiros Z Módulo ou valor absoluto: Em Z podemos introduzir o conceito de módulo ou valor absoluto: x = x se x 0 e x = -x se x < 0, para todo x pertencente a Z. Como decorrência da definição temos que x 0 para qualquer número inteiro.
15 Conjunto dos Números Inteiros Z Módulo ou valor absoluto: Exemplo: Quando x = 2, I2I = 2; Quando x = -2, I-2I = 2
16 Conjunto dos Números Inteiros Z Todos os elementos de N pertencem também a Z, o que vale dizer que N é subconjunto de Z: N Z
17 Conjunto dos Números Inteiros Z No conjunto Z distinguimos alguns subconjuntos notáveis que possuem notação própria para representá-los: Conjunto dos inteiros não negativos: Z + = {0; 1; 2; 3; } Conjunto dos inteiros não positivos: Z - = { ; -3; -2; -1; 0}
18 Conjunto dos Números Inteiros Z Conjunto dos inteiros não nulos: Z* = {, -3; -2; -1; 1; 2; 3; } Conjunto dos inteiros positivos: Z + * = {1; 2; 3; } Conjunto dos inteiros negativos: Z - * = { ; -3; -2; -1}
19 Conjunto dos Números Inteiros Z Operações: Além das operações de soma e multiplicação definas para N, podemos definir a operação de subtração em Z: a b = a + (-b) para todo a e b pertencente a Z
20 Conjunto dos Números Racionais Q O conjunto dos números racionais, simbolizado pela letra Q, é o conjunto dos números que podem ser escritos na forma de uma fração p/q, com p e q inteiros quaisquer e q diferente de zero:
21 Conjunto dos Números Racionais Q Como todo número inteiro pode ser escrito na forma p/1, então Z é um subconjunto de Q. N Z Q
22 Conjunto dos Números Racionais Q Para o conjuntos dos números racionais também valem as notações: Q* (conjunto dos números racionais não nulos), Q + (conjunto dos números racionais não negativos) e Q - (conjunto dos números racionais não positivos).
23 Conjunto dos Números Racionais Q Todo número racional p/q pode ser escrito como um número decimal exato ou como uma dízima periódica. Exemplos: 1/2 = 0,5 1/3 = 0,333 1/4 = 0,25
24 Conjunto dos Números Irracionais I Os números irracionais são decimais infinitas não periódicas, ou seja, os números que não podem ser escritos na forma de fração (divisão de dois inteiros). Exemplos: O número 0, não é dízima periódica, pois os algarismos após a vírgula não se repetem periodicamente.
25
26 Conjunto dos Números Reais R O conjunto dos números reais, simbolizado pela letra R, é o formado por todos os números racionais e por todos os números irracionais: R = {x x é racional ou x é irracional}
27 Conjunto dos Números Reais R Desse modo todos os conjuntos numéricos (N, Z e Q), bem como o conjunto dos números irracionais são subconjuntos de R. Q I N Z R
28 Conjunto dos Números Reais R Além desses (N, Z, Q, I), o conjunto dos números reais apresenta outros subconjuntos importantes: R* = {x R x 0} - conjunto dos números reais não nulos R + = {x R x 0} - conjunto dos números reais não negativos R = {x R x > 0} - conjunto dos números reais positivos
29 Conjunto dos Números Reais R R- ={x R x 0} - conjunto dos números reais não positivos R = {x R x < 0} - conjunto dos números reais negativos
30 Cardinalidade de um Conjunto Define-se a cardinalidade de um conjunto A como ao número de elementos que pertencem ao conjunto A. Denotamos a cardinalidade de um conjunto A por card(a) ou o(a), e se lê cardinalidade de A ou número de elementos de A.
31 Cardinalidade de um Conjunto Exemplos: Seja o conjunto A = { 1, 0, 3 }, então o(a) = 3 Seja B = { -1, 0, 1, 3, 8 } então o(b) = 5 Seja A = { }, então o(a) = 0 Seja A = { 1, 2, 3, 4, 5, 6,..., n }, então o(a) = n Seja A = { Φ }, então o(a) = 1
32 Cardinalidade de um Conjunto Exemplos: Seja o conjunto A = { 1, 0, 3 }, então o(a) = 3 Seja B = { -1, 0, 1, 3, 8 } então o(b) = 5 Seja A = { }, então o(a) = 0 Seja A = { 1, 2, 3, 4, 5, 6,..., n }, então o(a) = n Seja A = { Φ }, então o(a) = 1
33 Princípio da Adição de Conjuntos Um consumidor deseja comprar um veículo em uma concessionária, onde tem 18 automóveis de passeio e 15 utilitários. Calcule quantas escolhas possíveis o consumidor tem.
34 Princípio da Adição de Conjuntos O consumidor pode escolher um automóvel de passeio ou um utilitário. O conjunto automóveis de passeio não possui nenhum elemento comum com o conjunto automóveis utilitários, ou seja, são disjuntos. Neste caso, pelo princípio da adição, a escolha de um veículo tem = 33 possibilidades.
35 Princípio Multiplicação Uma lanchonete oferece a seus clientes apenas dois tipos de sanduíches: hot dog e hambúrger. Como sobremesa, há três opções: sorvete, torta ou salada de frutas. Pergunta-se: quantas são as possibilidades de uma pessoa fazer uma refeição incluindo um sanduíche e uma sobremesa?
36 Princípio Multiplicação Podemos listar as possibilidades: - Hambuguer + Sorvete - Hambuguer + torta - Hambuguer + salada - Hot dog + Sorvete - Hot dog + torta - Hot dog + salada
37 Princípio Multiplicação A determinação de tais possibilidades pode ser simplificada através de um diagrama, em que, na 1ª coluna, representaremos as possibilidades de escolha do sanduíche e, na 2ª coluna, as possibilidades de escolha da sobremesa.
38 Princípio Multiplicação
39 Princípio Multiplicação Este esquema é conhecido como diagrama de árvore. Fazendo a leitura de todas as ramificações da árvore, obtemos as possíveis refeições.
40 Princípio Fundamental da Contagem - PFC Suponhamos que uma ação seja constituída de duas etapas sucessivas. - A primeira etapa pode ser realizada de p maneiras distintas. Para cada uma dessas possibilidades, a 2ª etapa pode ser realizada de q maneiras distintas. Então, o número de possibilidades de se efetuar a ação completa é dado por p x q.
41 Princípio Fundamental da Contagem - PFC Este princípio pode ser generalizado para ações constituídas de mais de duas etapas sucessivas.
42 Princípio Fundamental da Contagem Exemplo: Um número de telefone é uma seqüência de 8 dígitos, mas o primeiro dígito deve ser diferente de 0 ou 1. Quantos números de telefone distintos existem?
43 Princípio Fundamental da Contagem Para cada dígito temos a possibilidade de 10 números, com exceção do 1º, onde só poderão existir 8 números: X X X X X X X X Assim: = vezes
44 Princípio Fundamental da Contagem Se um determinado evento ocorre em várias etapas sucessivas e independentes, onde: P1 é o número de possibilidades de ocorrer a 1ª etapa, P2 o número de possibilidades de ocorrer a 2ª etapa, P3 o número de possibilidades de ocorrer a 3ª etapa, Pn o número de possibilidades de ocorrer a n-ésima etapa
45 Princípio Fundamental da Contagem O número total de possibilidades de ocorrer esse evento é dado por P = P1. P2.P3.. Pn
46 Princípio Fundamental da Contagem Exemplo: Qual o número máximo de veículos que poderá ser licenciado no Brasil, sabendo que as placas dos veículos possuem 3 letras e 4 algarismos?
47 Princípio Fundamental da Contagem Placa: L1 L2 L3 N1 N2 N3 N4 Para cada letra temos 26 possibilidades (26 letras do alfabeto) e para cada número 10 possibilidades (0-9). L1 L2 L3 N1 N2 N3 N = = placas diferentes = número máximo de veículos
48 Princípio Fundamental da Contagem Exemplo: A mãe de uma criança permitiu que esta comprasse uma bala e um chiclete. Chegando à loja, a criança viu que existiam balas nas cores rosa e azul e, ainda, chicletes nas cores amarela, verde e vermelha. Quantos conjuntos diferentes formados por uma bala e um chiclete, a criança pode escolher?
49 Princípio Fundamental da Contagem Teremos que formar conjuntos de uma bala e um chiclete. Podemos utilizar diferentes maneiras: CHICLETES BALAS AMARELO ROSA VERDE VERMELHO AZUL 3 possibilidades 2 possibilidades 3 x 2 = = 6
50 Princípio Fundamental da Contagem Podemos utilizar o diagrama de árvores: 1 Escolha da bala: 2 Escolha do chiclete: Rosa Azul Verde Amarelo Vermelho Verde Amarelo Vermelho
51 Princípio Fundamental da Contagem Rosa Azul Verde Amarelo Vermelho Verde Amarelo Vermelho (R,V) (R,A) (R,Vo) (A,V) (A,A) (A,Vo)
52 Princípio da casa dos Pombos Teorema : Se n + 1 pombos voam em direção a n casas e todos os pombos entram em uma casa, haverá pelo menos uma casa com pelo menos dois pombos.
53 Princípio da casa dos pombos Exemplo: Em uma festa com mais de 12 crianças, há pelo menos duas que nasceram no mesmo mês.
54 Princípio da casa dos pombos Pelo teorema: Se uma criança nasce em cada mês do ano, teremos 12 crianças, pois temos 12 meses no ano. Para que existam duas que nasceram no mesmo mês, terão que existir mais que 12 crianças!
55 Princípio da casa dos pombos Exemplo: Entre um grupo de 367 pessoas, pelo menos duas possuem o mesmo dia de nascimento, pois existem apenas 366 possibilidades.
56 Princípio da casa dos pombos Exemplo: Em uma festa de aniversário com 37 crianças, no mínimo, quantas nasceram no mesmo mês? Número de meses: 12 (casas) Distribuindo as crianças (pombos): Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez crianças
57 Princípio da casa dos pombos Distribuindo as crianças: +12. Total = 24 Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez
58 Princípio da casa dos pombos Distribuindo as crianças: +12. Total = 36 Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez
59 Princípio da casa dos pombos Distribuindo as crianças: +1. Total = 37 Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez No mínimo, 4 crianças nasceram no mesmo mês!
60 Princípio da casa dos pombos Generalizando: - 37 crianças - 12 meses 37/12 = 3 com resto 1 = 4
61 Princípio da casa dos pombos Exemplo: Em um grupo de 20 pessoas, pelo menos quantas nasceram no mesmo dia da semana? - 20 Pessoas (pombos) - 7 dias da semana (casas) 20/7 = 2 com resto seis Seg Ter Qua Qui Sex Sab Dom
62 Princípio da casa dos pombos Seg Ter Qua Qui Sex Sab Dom Seg Ter Qua Qui Sex Sab Dom No mínimo, 3 pessoas nasceram no mesmo dia!
63 Princípio da casa dos pombos Exemplo: Se uma urna contem 4 bolas vermelhas, 7 verdes, 9 azuis e 6 amarelas, qual é o menor número de bolas que devemos retirar (sem olhar) par a que possamos ter certeza de termos tirado pelo menos 3 bolas da mesma cor? - Bolas (pombos) - 4 Cores (casas)
64 Princípio da casa dos pombos Cor 1 Cor 2 Cor 3 Cor bolas!
8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno
8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno ANÁLISE COMBINATÓRIA Introdução Consideremos o seguinte problema: Uma lanchonete
TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.
TEORIA DOS CONJUNTOS Professor: Marcelo Silva [email protected] Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando
E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos
A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona Antônia Valadares MATEMÁTICA 1º ANO Conjuntos Numéricos PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net MATEMÁTICA, 9º Ano Pontos no plano cartesiano/pares ordenados
Conjuntos Numéricos Conjunto dos números naturais
Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto
Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos
Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números
Fundamentos de Matemática
Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,
DELEGACIA REGIONAL TRIBUTÁRIA DE
Fatores válidos para recolhimento em 01/08/2016 JANEIRO 3,3714 3,2396 3,0166 2,8566 2,6932 2,5122 2,3076 2,1551 1,9790 1,8411 1,7203 1,5947 FEVEREIRO 3,3614 3,2158 3,0021 2,8464 2,6807 2,4939 2,2968 2,1429
TABELA PRÁTICA PARA CÁLCULO DOS JUROS DE MORA ICMS ANEXA AO COMUNICADO DA-46/12
JANEIRO 2,7899 2,6581 2,4351 2,2751 2,1117 1,9307 1,7261 1,5736 1,3975 1,2596 1,1388 1,0132 FEVEREIRO 2,7799 2,6343 2,4206 2,2649 2,0992 1,9124 1,7153 1,5614 1,3860 1,2496 1,1288 1,0032 MARÇO 2,7699 2,6010
Chama-se conjunto dos números naturais símbolo N o conjunto formado pelos números. OBS: De um modo geral, se A é um conjunto numérico qualquer, tem-se
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Conjuntos Numéricos Prof.:
GDOC INTERESSADO CPF/CNPJ PLACA
Fatores válidos para recolhimento em 01/02/2017 JANEIRO 3,4634 3,3316 3,1086 2,9486 2,7852 2,6042 2,3996 2,2471 2,0710 1,9331 1,8123 1,6867 FEVEREIRO 3,4534 3,3078 3,0941 2,9384 2,7727 2,5859 2,3888 2,2349
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Os números irracionais Ao longo
INTRODUÇÃO À TEORIA DOS CONJUNTOS
1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1
DEMONSTRATIVO DE CÁLCULO DE APOSENTADORIA - FORMAÇÃO DE CAPITAL E ESGOTAMENTO DAS CONTRIBUIÇÕES
Página 1 de 28 Atualização: da poupança jun/81 1 133.540,00 15,78 10,00% 13.354,00 10,00% 13.354,00 26.708,00-0,000% - 26.708,00 26.708,00 26.708,00 jul/81 2 133.540,00 15,78 10,00% 13.354,00 10,00% 13.354,00
MATEMÁTICA I. Ana Paula Figueiredo
I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
PRÓ-TRANSPORTE - MOBILIDADE URBANA - PAC COPA 2014 - CT 318.931-88/10
AMPLIAÇÃO DA CENTRAL DE Simpl Acum Simpl Acum jul/10 a jun/11 jul/11 12 13 (%) (%) (%) (%) 1.72.380,00 0,00 0,00 0,00 361.00,00 22,96 22,96 1/11 AMPLIAÇÃO DA CENTRAL DE ago/11 Simpl Acum Simpl Acum Simpl
PRÓ-TRANSPORTE - MOBILIDADE URBANA - PAC COPA 2014 - CT 318.931-88/10
AMPLIAÇÃO DA CENTRAL DE Simpl Acum Simpl Acum jul/10 a jun/11 jul/11 12 13 (%) (%) (%) (%) 0,00 0,00 0,00 0,00 0,00 0,00 1/11 AMPLIAÇÃO DA CENTRAL DE ago/11 Simpl Acum Simpl Acum Simpl Acum 14 set/11 15
Curso de Matemática Aplicada.
Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo
Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO AULA 05
RACIOCÍNIO LÓGICO AULA 05 NÚMEROS NATURAIS O sistema aceito, universalmente, e utilizado é o sistema decimal, e o registro é o indo-arábico. A contagem que fazemos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, e assim
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números
INTRODUÇÃO À TEORIA DOS CONJUNTOS1
INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto
Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio.
CONJUNTOS Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. Exemplos: A = {a, e, i, o, u} (conjunto das vogais do
CURSO DE MATEMÁTICA. Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha
CURSO DE MATEMÁTICA Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha Qual a importância de conhecer os CONJUNTOS NUMÉRICOS? Meu querido aluno,
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Rafael Carvalho 7º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos Rafael Carvalho 7º Período Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos
Conjuntos e sua Representação
Conjuntos e sua Representação Professor: Nuno Rocha [email protected] Conjuntos Um conjunto é o agrupamento de vários elementos que possuem características semelhantes. Exemplos de conjuntos: Países
A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.
Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Isabelle Araujo 5º período de Engenharia de Produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Conjuntos Isabelle Araujo 5º período de Engenharia de Produção Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto
SISTEMA DECIMAL. No sistema decimal o símbolo 0 (zero) posicionado à direita implica em multiplicar a grandeza pela base, ou seja, por 10 (dez).
SISTEMA DECIMAL 1. Classificação dos números decimais O sistema decimal é um sistema de numeração de posição que utiliza a base dez. Os dez algarismos indo-arábicos - 0 1 2 3 4 5 6 7 8 9 - servem para
DATA DIA DIAS DO FRAÇÃO DATA DATA HORA DA INÍCIO DO ANO JULIANA SIDERAL T.U. SEMANA DO ANO TRÓPICO 2450000+ 2460000+
CALENDÁRIO, 2015 7 A JAN. 0 QUARTA -1-0.0018 7022.5 3750.3 1 QUINTA 0 +0.0009 7023.5 3751.3 2 SEXTA 1 +0.0037 7024.5 3752.3 3 SÁBADO 2 +0.0064 7025.5 3753.3 4 DOMINGO 3 +0.0091 7026.5 3754.3 5 SEGUNDA
2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.
ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma
Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.
MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa
Dízimas e intervalos encaixados.
Dízimas e intervalos encaixados. Recorde que uma dízima com n casas decimais é um número racional da forma a 0.a a 2...a n = a 0 + a 0 + a 2 0 2 + + a n n 0 n = a j 0 j em que a 0,a,...,a n são inteiros
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano. Prof. Ulisses Lima Parente
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Potenciação Oitavo Ano Prof Ulisses Lima Parente 1 Potência de expoente inteiro positivo Antes de estudar potências, é conveniente relembrar
Portal da OBMEP. Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Oitavo Ano
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Potenciação Oitavo Ano Autor: Prof Angelo Papa Neto Revisor: Prof Antonio Caminha M Neto 1 Potência de expoente inteiro positivo Antes de estudar
Análise Combinatória. Matemática Discreta. Prof Marcelo Maraschin de Souza
Análise Combinatória Matemática Discreta Prof Marcelo Maraschin de Souza Introdução Combinatória é o ramo da matemática que trata de contagem. Esses problema são importantes quando temos recursos finitos,
CONJUNTOS NUMÉRICOS. O que são?
CONJUNTOS NUMÉRICOS O que são? Os Naturais Os números Naturais surgiram da necessidade de contar as coisas. Eles são todos os números inteiros positivos, incluindo o zero. É representado pela letra maiúscula
Conjuntos: Noções Básicas Parte I
http://www.blogviche.com.br/2007/02/02/conjuntos-numericos/ em 05/02/2011 Conjuntos: Noções Básicas Parte I Publicado por Newton de Góes Horta Apresenta as principais propriedades da Teoria dos Conjuntos,
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. João Victor Tenório Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos João Victor Tenório Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos os estudantes
1 Conjunto dos números naturais N
Conjuntos numéricos Os primeiros números concebidos pela humanidade surgiram da necessidade de contar objetos. Porém, outras necessidades, práticas ou teóricas, provocaram a criação de outros tipos de
Exemplos: -5+7=2; 12-5=7; -4-3=-7; -9+5=-4; -8+9=1; -4-2=-6; -6+10=4
0 - OPERAÇÕES NUMÉRICAS ) Adição algébrica de números inteiros envolve dois casos: os números têm sinais iguais: soma-se os números e conserva-se o sinal; os números têm sinais diferentes: subtrai-se o
CONJUNTOS CONJUNTOS NUMÉRICOS
ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Matemática Básica. Capítulo Conjuntos
Capítulo 1 Matemática Básica Neste capítulo, faremos uma breve revisão de alguns tópicos de Matemática Básica necessários nas disciplinas de cálculo diferencial e integral. Os tópicos revisados neste capítulo
MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari
MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari [email protected] www.fcav.unesp.br/amanda MATEMÁTICA I AULA 1: PRÉ-CÁLCULO Profa. Dra. Amanda L. P. M. Perticarrari CONJUNTOS NUMÉRICOS
Direto do concurso. Comentário CONJUNTOS NUMÉRICOS
CONJUNTOS NUMÉRICOS Conjuntos dos números naturais, inteiros, racionais e irracionais (propriedades e operações). Qual a importância de conhecer os CONJUNTOS NUMÉRICOS? Como existem vários tipos de conjuntos,
CÁLCULO I. 1 Número Reais. Objetivos da Aula
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral
TABELA PRÁTICA PARA CÁLCULO DOS JUROS DE MORA ICMS ANEXA AO COMUNICADO DA-87/12
JANEIRO 2,8451 2,7133 2,4903 2,3303 2,1669 1,9859 1,7813 1,6288 1,4527 1,3148 1,1940 1,0684 FEVEREIRO 2,8351 2,6895 2,4758 2,3201 2,1544 1,9676 1,7705 1,6166 1,4412 1,3048 1,1840 1,0584 MARÇO 2,8251 2,6562
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não
Prof. a : Patrícia Caldana
CONJUNTOS NUMÉRICOS Podemos caracterizar um conjunto como sendo uma reunião de elementos que possuem características semelhantes. Caso esses elementos sejam números, temos então a representação dos conjuntos
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS
CONJUNTO DOS NÚMEROS NATURAIS... 2 RETA NUMERADA... 2 CONJUNTO DOS NÚMEROS INTEIROS... 4 SUBCONJUNTOS DE Z... 5 NÚMEROS OPOSTOS... 5 VALOR ABSOLUTO DE UM NÚMERO INTEIRO... 6 CONJUNTO DOS NÚMEROS RACIONAIS...
Planificação anual- 8.º ano 2014/2015
Agrupamento de Escolas de Moura Escola Básica nº 1 de Moura (EB23) Planificação anual- 8.º ano 2014/2015 12 blocos Tópico: Números Números e operações/ Álgebra Dízimas finitas e infinitas periódicas Caracterização
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane
1.1. Numéricos. Conjuntos MATEMÁTICA. Conjunto dos Números Naturais (N) Conjunto dos Números Inteiros (Z)
CAPÍTULO 1 Capítulo 1 1.1 Conjuntos Numéricos Conjunto dos Números Naturais (N) Os números naturais são em geral associados à ideia de contagem, e o conjunto que os representa é indicado por N. N = {0,
1 TEOREMA DE PITÁGORAS
AGRUPAMENTO DE ESCOLAS DE MARTIM DE FREITAS ESCOLA BÁSICA 2/3 MARTIM DE FREITAS 8ºano-Ano letivo 2017/2018 PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA Conteúdos Objetivo geral Metas/ descritores Nº de 1 TEOREMA
Professor: Fábio Soares - Disciplina: Métodos Quantitativos ADMINISTRAÇÃO
Unidade 1 - Números Reais: representações O principal motivo para que a maioria dos cursos comecem por um breve estudo dos números reais é o fato de no Cálculo e na Análise, estuda-se o comportamento de
III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária.
1 Projeto Jovem Nota 10 1. (Fuvest 2000) Um número inteiro positivo n de 4 algarismos decimais satisfaz às seguintes condições: I) a soma dos quadrados dos 1 e 4 algarismos é 58; II) a soma dos quadrados
AULA 02 CONJUNTOS NUMÉRICOS. Figura 1 Conjuntos numéricos
AULA 02 CONJUNTOS NUMÉRICOS Figura 1 Conjuntos numéricos AULA 01 CONJUNTOS NUMÉRICOS Para trabalharmos com números, devemos primeiramente ter um conhecimento básico de quais são os conjuntos ("tipos")
AULA 01 CONJUNTOS NUMÉRICOS
AULA 01 CONJUNTOS NUMÉRICOS Apostila M1 página: 34 Para trabalharmos com números, devemos primeiramente ter um conhecimento básico de quais são os conjuntos ("tipos") de números existentes atualmente.
AULA DO CPOG. Teoria dos conjutos
AULA DO CPOG Teoria dos conjutos TEORIA DOS CONJUNTOS Professor Felipe Técnico de Operações P-25 Petrobras Contatos Felipe da Silva Cardoso [email protected] www.professorfelipecardoso.blogspot.com
Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)
Escola E.B.,3 Eng. Nuno Mergulhão Portimão Ano Letivo 01/013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 9 de abril de 013 Nome: N.º Turma: Classificação:
MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04
MA11 - Unidade 4 Representação Decimal dos Reais Semana 11/04 a 17/04 Para efetuar cálculos, a forma mais eciente de representar os números reais é por meio de expressões decimais. Vamos falar um pouco
Matemática I Conjuntos Conjuntos Numéricos. Prof.: Joni Fusinato 1
Matemática I Conjuntos Conjuntos Numéricos Prof.: Joni Fusinato [email protected] [email protected] 1 Teoria dos Conjuntos Teoria matemática dedicada ao estudo da associação entre objetos com
Calendarização da Componente Letiva Ano Letivo 2016/2017
AGRUPAMENTO DE ESCOLAS ANDRÉ SOARES (150952) Calendarização da Componente Letiva Ano Letivo 2016/2017 8º Ano Matemática Períodos 1º Período 2º Período 3º Período Número de aulas previstas (45 minutos)
Contagem e Combinatória Elementar
Contagem e Combinatória Elementar Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 11 de janeiro de 2013 Motivação (I) Combinatória
Slides de apoio: Fundamentos
Pré-Cálculo ECT2101 Slides de apoio: Fundamentos Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2017 Conjuntos Um conjunto é coleção de objetos, chamados de elememtos do conjunto. Nomeraremos conjuntos
CURSO PRF 2017 MATEMÁTICA
AULA 001 1 MATEMÁTICA PROFESSOR AULA 001 MATEMÁTICA DAVIDSON VICTOR 2 AULA 01 - CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS É o primeiro e o mais básico de todos os conjuntos numéricos. Pertencem
Conjunto dos números irracionais (I)
MATEMÁTICA Revisão Geral Aula - Parte 1 Professor Me. Álvaro Emílio Leite Conjunto dos números irracionais (I) {... π; ; ; ; 7; π + } I =... Q Z N I Número pi ( π) Diâmetro Perímetro π =,14196897984664...
setor 1102 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 2 REVISÃO
setor 1102 1102008 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 1 PRINCÍPIOS BÁSICOS DA CONTAGEM Seja, por exemplo, uma lanchonete que vende três tipos de refrigerantes e dois tipos de cerveja. Pergunta-se:
Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS. Prof.: Marcelo Maraschin de Souza
Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS Prof.: Marcelo Maraschin de Souza 3. Conjuntos Definição: Um conjunto é uma coleção desordenada de zero ou mais objetos, denominados
Planificação Anual de Matemática 2017 / ºAno
Planificação Anual de Matemática 2017 / 2018 3ºAno NÚMEROS E Aulas Previstas: 1º período: 64 aulas 2º período: 55 aulas 3º período: 52 aulas DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Utilizar corretamente
1º Período PROGRESSÃO 2º Período º Período... 32
Ano Letivo 17/ 18 Turma: A 8º Ano PLANIFICAÇÃO ANUAL DE MATEMÁTICA - 8º ANO Professora: Grácia Alexandra Catela 1º Período... 55 PROGRESSÃO 2º Período... 43 3º Período... 32 1º período ( 55 aulas) N.º
PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
Planificação Anual de Matemática 2016 / ºAno
Planificação Anual de Matemática 2016 / 2017 3ºAno NÚMEROS E Aulas Previstas: 1º período: 63 aulas 2º período: 63 aulas 3º período: 45 aulas DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Conhecer os numerais
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como 2 1, 1414 e 3 1, 7321, representando na reta real o intervalo
Prefeitura Municipal de Caxias do Estado do Maranhão CAXIAS-MA
Prefeitura Municipal de Caxias do Estado do Maranhão CAXIAS-MA Comum aos Cargos de Nível Fundamental: Manutenção De Infraestrutura - Limpeza Auxiliar De Cozinha Manipulador De Alimentos Concurso Público
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 8º ANO PLANIFICAÇÃO GLOBAL Planificação 8º ano 2015/2016 Página 1 AGRUPAMENTO DE ESCOLAS DR.
exemplos O conjunto das letras do nosso alfabeto; L= {a, b, c, d,..., z}. O conjunto dos dias da semana: S= {segunda, terça,... domingo}.
CONJUNTOS Conjunto: Representa uma coleção de objetos, geralmente representado por letras MAIÚSCULAS; não interessando a ordem e quantas vezes os elementos estão listados na coleção, e sempre são representados
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2016/
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2016/2017... 1º Período Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas Geometria
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2017/
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática (8º Ano) METAS CURRICULARES/CONTEÚDOS ANO LETIVO 2017/2018... 1º Período Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas Geometria
AGRUPAMENTO DE ESCOLAS DE MIRA Escola Sec/3 Drª. Maria Cândida. PLANIFICAÇÃO ANUAL MATEMÁTICA 8º Ano Ano Letivo 2016/2017. Objetivos específicos
1º Período TEMA 1: NÚMEROS RACIONAIS. NÚMEROS REAIS N. de blocos previstos: 15 1.1. Representação de números reais através de dízimas 1.2. Conversão em fração de uma dízima infinita periódica 1.3. Potências
Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas
DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: MATEMÁTICA ANO: 8º ANO Planificação (Conteúdos)... Período Letivo: 1º Metas/Objetivos/Domínios Conteúdos/Competências/Conceitos Número de Aulas Geometria
Combinatória - Nível 2
Combinatória - Nível 2 POTI UFPR Princípio da Casa dos Pombos - 30/09/2017 Material complementar http://www.mat.ufpr.br/poti/ Princípio da Casa dos Pombos: se em n gaiolas são postos n + 1 pombos, então
NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA
NÚCLEO EDUCAFRO KALUNGA DISCIPLINA DE MATEMÁTICA PROFESSOR DEREK PAIVA NOTAS DE AULA: REPRESENTAÇÕES DECIMAIS A representação decimal é a forma como escrevemos um número em uma única base, e como essa
Conjuntos. Notações e Símbolos
Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas
CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...
ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início
Será que sou irracional?
Reforço escolar M ate mática Será que sou irracional? Dinâmica 2 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Conjuntos Aluno Primeira etapa Compartilhar
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos
8.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 8.º Ano
8.º Ano Planificação Matemática 16/17 Escola Básica Integrada de Fragoso 8.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Dízimas finitas e infinitas
EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS
NOME: TURMA: SANTO ANDRÉ, DE DE EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS Conjunto dos números naturais -Representado pela letra N, este conjunto abrange todos os números inteiros positivos, incluindo
Sumário. 1 CAPÍTULO 1 Revisão de álgebra
Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção
AGRUPAMENTO DE ESCOLAS DE PAREDE
GESTÃO DE CONTEÚDOS Ensino Básico 1.º Ciclo Matemática 3.º Ano Domínios Subdomínios Conteúdos Programáticos Nº Tempos previstos (Horas) 1º Período Geometria Medida naturais Adição e subtração Ler e interpretar
