Capítulo 2 Noções de conjuntos
|
|
|
- Ana Luísa Bento Barata
- 9 Há anos
- Visualizações:
Transcrição
1 THE BRIDGEMAN/KEYSTONE Capítulo 2 Noções de conjuntos X SAIR
2 Para representar o conjunto A formado pelos números naturais de 0 a 10, podem-se utilizar três possibilidades: 1ª forma: pela citação dos elementos. A={0,1,2,3,4,5,6,7,8,9,10} 2ª forma: por uma propriedade: A={Xϵ IN/ 0 x 10} 3ª forma: pelo diagrama de venn:
3 Definição Conjunto: representa uma coleção de objetos, geralmente representado por letras maiúsculas; Ex: A = {1, 2, 3}, está entre chaves Elemento: qualquer um dos componentes de um conjunto, geralmente representado por letras minúsculas. Ex: 1, 2, 3 não tem chaves
4
5
6
7
8
9
10
11 Igualdade de conjuntos Dois conjuntos são iguais quando possuem os mesmos elementos. Ex: {1, 2} = {1, 1, 1, 2, 2, 2} OBS: A quantidade de vezes que os elementos dos conjuntos aparem não importa.
12 Qual a diferença entre os conjuntos citados abaixo: A C B D x x IN x IR / 0 x 10 / 0 x 10 IN */ 0 x 10 x IN / 0 x 10 E qual a diferença entre esses conjuntos aí: A x / 5 x 5 x * / 5 x 5 C x / 5 x 5 B
13 diz-se que o conjunto A é subconjunto do conjunto B se todos os elementos de A estiverem em B Observações: *todo conjunto é subconjunto dele mesmo. *o conjunto vazio é subconjunto de qualquer outro conjunto.
14 Quais são os subconjuntos de A = {0,1} Ø,{0}, {1},{0,1} Quais são os subconjuntos de A = {0,1,2} Ø,{0}, {1},{2},{0,1},{0,2},{1,2},{0,1,2} Quais são os subconjuntos de A = {0,1,2,3} Ø,{0}, {1},{2},{3},{0,1},{0,2},{0,3},{1,2},{1,3},{2,3}, {0,1,2},{0,1,3},{0,2,3},{1,2,3},{0,1,2,3}
15 CONJUNTO DAS PARTES O conjunto de todos os subconjuntos de um conjunto dado A é chamado de conjunto de partes (ou conjunto potência ) de A, denotado por P(A) ou 2 A. Se S é o conjunto de três elementos {x, y, z} a lista completa de subconjuntos de S é: { } (conjunto vazio); {x}; {y}; {z}; {x, y}; {x, z}; {y, z}; {x, y, z}; e portanto o conjunto de partes de S é o conjunto de 8 elementos: P(S) = {{ }, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.
16 e l e m e n t o, d e p o i s t o d o s o s s u b c o n j u n t o s c o m d o i s e l e m e n t o s, e a s s i m p o r d i a n t e. S e A = { 1, 2, 3 }, e n t ã o P ( A ) = {, S e o c o n j u n t o A Conjunto das partes ou potência Dado um conjunto A, definimos o conjunto das partes de A, P(A), como o conjunto que contém todos os subconjuntos de A (incluindo o conjunto vazio e o próprio conjunto A). Uma maneira prática de determinar P(A) é pensar em todos os subconjuntos com um Exemplo: {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} }. Observação: tem n elementos, o conjunto P(A) terá 2 n elementos. Ou seja: P(A) = 2 n
17
18
19
20
21 Operações com Conjuntos.
22 UNIÃO ENTRE CONJUNTOS Conjunto formado pelos elementos de outros conjuntos já pré-existentes. Ex: A = {1,2,3} B = {3,4,5} AUB = {1,2,3,4,5}
23 INTERSEÇÃO ENTRE CONJUNTOS Conjunto formado pelos elementos Comuns a outros conjuntos pré-existentes. Ex: A = {1,2,3} A = {1,2,3,4,5} B = {3,4,5} B = {7,8,9,10} A B = {3} A B = Ø
24 Conjuntos disjuntos: São conjuntos que não possuem interseção... n(aub) = n(a) + n(b)
25 Se houver interseção temos:... n(aub) = n(a) + n(b) n(a B)
26 SUBTRAÇÃO ENTRE CONJUNTOS Conjunto formado Pela retirada dos elementos comuns do Conjunto que está sendo subtraído. Ex: A = {1,2,3} A = {1,2,3} B = {3,4,5} B = {3,4,5} A-B = {1,2} B-A = {4,5} Em conjuntos disjuntos a subtração não altera o conjunto de referência... EX: A B =A
27 Conjunto complementar:dados dois conjuntos A e B, o complementar de B em relação a A é A- B,estabelecidas as seguintes condições: 1º) B deve ser subconjunto de A; 2º) CAB = A-B ex: A = {1,2,3,4,5,6} B = {5,6} CAB = {1,2,3,4}
28
29 Representação de partes de conjuntos
30 Questões de vestibulares
31 (UFF) Os conjuntos S, T e P são tais que todo elemento de S é elemento de T ou P. O diagrama que pode representar esses conjuntos é: Solução: Como S é elemento de T ou P então S deve estar completamente inserido nos conjuntos T e P. A letra que descreve ela situação é a letra D.
32 (PUC) Considere os seguintes subconjuntos de números naturais: N = { 0,1,2,3,4,...} P = { x N / 6 x 20 } A = { x P / x é par } B = { x P / x é divisor de 48 } C = { x P / x é múltiplo de 5 } O número de elementos do conjunto (A - B) C é: a) 2 b) 3 c) 4 d) 5 e) 6 Solução: Primeiramente devemos descreve os conjuntos A,B e C: A B 6,8,12,16 10,15,20 C A B 6,8,10,12,14,16,18,20 Observe que: 10,14,18,20 Sendo assim: ( A B) C 10,20
33 (MACKENZIE) A e B são dois conjuntos tais que A-B tem 30 elementos, A B tem 10 elementos e A B tem 48 elementos. Então o número de elementos de B-A é: a) 8 b) 10 c) 12 d) 18 e) 22 Observe que: Como AUB tem 48 elementos é fácil Concluir que n(a B) = 48 (30+10) = A B A B B A
34 Numa escola de 630 alunos, 350 deles estudam Matemática, 210 estudam Física e 90 deles estudam as duas matérias. Pergunta-se: a) Quantos alunos estudam apenas Matemática? b) Quantos alunos estudam apenas Física? c) Quantos alunos estudam Matemática ou Física? d) Quantos alunos não estudam nenhuma das duas matérias? U=630 M F x = x = 630 x x = 160 Logo: a) 260 b) 120 c) 470 d)160
35 (UFPB-07) Os 40 alunos de uma turma da 4ª série de uma escola de Ensino Fundamental foram a um supermercado fazer compras. Após 30 minutos no supermercado, a professora reuniu os alunos e percebeu que exatamente: 19 alunos compraram biscoitos. 24 alunos compraram refrigerantes. 7 alunos não compraram biscoitos nem refrigerantes. O número de alunos que compraram biscoitos e refrigerantes foi: a) 17 b) 15 c) 12 d) 10 e) 7 Utilizando o diagrama de venn temos: B 19-x x 24-x R Somando todos os termos e igualando A 40 temos: 19 x x 24 x x 40 x 10 7
36 Numa escola há n alunos. Sabe-se que : 56 alunos lêem o jornal A, 21 lêem aos jornais A e B, 106 lêem apenas um dos jornais, 66 não lêem o jornal B Determine o valor de n 35 + x = 106 x = y = 66 y = 31 U= n n = A B n = x 71 y 31 LOGO : Há na escola 158 alunos
37 Feito um exame de sangue em um grupo de 200 pessoas, constatou-se o seguinte: 80 delas têm sangue com fator Rh negativo, 65 têm sangue tipo O e 25 têm tipo O com fator Rh negativo. Determine o número de pessoas com sangue de tipo diferente de O e com fator Rh positivo. U=200 Rh _ Tipo O x = x = 200 X = 80 (Resposta) x
38 Na comunidade universitária são lidos dois jornais A e B. Verificou-se que exatamente 75 % dos alunos lêem o jornal A e 60 % o jornal B. Sabendo-seque todo aluno é leitor de pelo menos um dos jornais, determine quantos por cento dos alunos lêem ambos. 75% - x + x + 60% - x = 100% U=100% 135% - x = 100% A B -x = -35% x 75% - x 60% - x X = 35% (Resposta)
39 De 200 pessoas que foram pesquisadas sobre suas preferâncias em assistir aos campeonatos de corrida pela televisão, foram colhidos os seguintes dados: 55 dos entrevistados não assistem. 101 assistem às corridas de Fórmula 1 27 assistem às corridas de Fórmula 1 e motovelocidade. Quantas das pessoas entrevistadas assistem, exclusivamente, Às corridas de motovelocidade x+55 = 200 U= x = 200 F M x = x X = 44 pessoas 55
40 Numa pesquisa, sobre a preferência entre 2 produtos, foram, entrevistadas 320 pessoas e chegou-se ao seguinte resultado: 210 preferiam o produto A 190 preferiam o produto B 45 nenhum dos dois. Portanto o total de entrevistados que preferiam somente um dos produtos foi de: a) 150 b) 125 c) 35 d) 85 U=320 A B x + x x + 45= x x 190- x x = 320 X = =150 pessoas
41 Numa pesquisa de mercado, foram entrevistadas várias pessoas acerca de suas preferências em relação a três produtos: A,B e C. Os resultados indicaram que: Produto A B C A e B A e C B e C A,B e C nenhum Pessoas U Total = A 100 Total = 610 pessoas 40 B C 100 Logo: 610 pessoas foram entrevistadas
42 (Ufersa) A coordenação de esportes da UFERSA numa pesquisa entre seus alunos que praticavam futebol, vôlei, ou basquete, verificou que 110 alunos praticavam basquete; 130 praticavam vôlei; 150 praticavam futebol; 30 praticavam basquete e vôlei; 40 praticavam basquete e futebol; 50 praticavam vôlei e futebol e 10 praticavam os três esportes. Qual o número de alunos que praticam apenas futebol? A) 70 B) 50. C) 30. D) 10 F 70 V B Logo 70pessoas praticam apenas futebol.
43 Um instituto de opinião pública pesquisou 800 alunos de uma faculdade sobre a preferência pela leitura das revistas A, B e C, obtendo o seguinte resultado: O número de leitores das três revistas é a) 50 b) 60 c) 70 d) 80 Utilizando o diagrama de venn temos: A 90 x Como B tem 3500 elementos Temos que Essa parte equivale a: 350 (x+100-x+90-x) B x x Somando todos os termos e Igualando a 800 temos: 730 x 800 x x x 190 x 110 x C x 110 x 100 x 90 x 80 x 190 x 160 x x
44 (PUC) O diagrama em que está sombreado o conjunto (A C)-(A B) é:
45 O diagrama Abaixo representa o conjunto: A) (B A) C.. B) [(A B) (AU C)]. C) (A U C) B. D) (A U B) (A U C)
46 (F.M. Itajubá-MG) Com relação a parte sombreada do diagrama, é correto afirmar que: a) A (B C) b) A (B C) c) A (B C) d) A (C B) e) Nenhuma das respostas anteriores.
47 É um passaro?
48 É um avião?
49 É o superman?
50 Não!!!!
51 É o EudesMan!
52 OBRIGAD0 PELA ATENÇÃO!!!
53 FUI 127
RACIOCÍNIO LÓGICO. Aula 1 - Introdução a Teoria de Conjuntos. Prof.: Jorge Junior
RACIOCÍNIO LÓGICO Aula 1 - Introdução a Teoria de Conjuntos Prof.: Jorge Junior Conteúdo Programático desta aula Conjuntos e Elementos Representações Subconjuntos Pertinência e Inclusão Tipos de Conjunto
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).
O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem
Descrevendo um conjunto
Conjuntos Veja os seguintes exemplos: Jogadores de um time Lista de compras Números Inteiros Alfabeto Se você está familiarizado com estes exemplos, é claro que você tem a ideia do que é um conjunto, podemos
NOÇÕES. 04- (F. Santo André-SP) Seja A um conjunto com 7 elementos. O número total de subconjuntos de A é: a) 16 b) 128 c) 56 d) 100 e) 256
MATQUEST CONJUNTOS PROF.: JOSÉ LUÍS NOÇÕES 01- (CATANDUVA-SP) Dado o conjunto A = {, {a}, b} com {a} b a 0, pode-se afirmar que: a) {, {b}} A b) {, {a}} A c) {, a} A d) {a, b} A e) A 02- (CEFET) Considerando
INCLUSÃO DE CONJUNTOS OPERAÇÕES COM CONJUNTOS OPERAÇÕES COM CONJUNTOS PARTES DE UM CONJUNTO
INCLUSÃO DE CONJUNTOS PARTES DE UM CONJUNTO OPERAÇÕES COM CONJUNTOS OPERAÇÕES COM CONJUNTOS 10 10 10 10 20 20 20 20 30 30 30 30 40 40 40 40 50 50 50 50 As perguntas da Categoria 1 vêm a seguir Pergunta
CONJUNTOS CONJUNTOS NUMÉRICOS
ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por
Aula 1 Conjuntos Numéricos
1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º
ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível
TEORIA DOS CONJUNTOS. Inclusão: Obs: A, A. a) A B e) D B i) B D. b) B C f) C A j) C B. c) C D g) C B k) A C d) D A h) B A l) D A
TEORI DOS CONJUNTOS Representação 1. Por extensão: Ex: = {1, 2, 4,7} = {a, b, c, d} 2. Por compreensão: Ex: = {x x é vogal} = {x N x é par} C = {x x é divisor de 5} 3. Por diagrama: Ex: Tipos de conjuntos:
Fundamentos de Matemática
Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,
MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.
MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um
RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS
Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)
Admitiremos que um conjunto seja uma coleção de objetos chamados elementos e que cada elemento é um dos componentes do conjunto.
TEORIA DOS CONJUNTOS Introdução A Teoria dos conjuntos é a teoria matemática dedicada ao estudo da associação entre objetos com uma mesma propriedade, elaborada no século XIX. Sua origem pode ser encontrada
Conjunto, elemento e pertinência entre elemento e conjunto são noções primitivas, ou seja, conceitos iniciais para os quais não há definição.
CONJUNTOS 1. NOÇÕES PRIMITIVAS E NOTAÇÃO Conjunto, elemento e pertinência entre elemento e conjunto são noções primitivas, ou seja, conceitos iniciais para os quais não há definição. Um conjunto costuma
MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin
MATEMÁTICA Conjuntos Professor Marcelo Gonzalez Badin Alguns símbolos importantes Œ Pertence / Tal que œ Não Pertence : Tal que $ " fi Existe Não existe Qualquer (para todo) Portanto Se, e somente se,...(equivalência)
Teoria dos Conjuntos. Prof. Jorge
Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do
TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.
TEORIA DOS CONJUNTOS Professor: Marcelo Silva [email protected] Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando
Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros
1. Conjuntos Objetivo: revisar as principais noções de teoria de conjuntos afim de utilizar tais noções para apresentar os principais conjuntos de números. 1.1 Conjunto, elemento e pertinência Conjunto
Matemática é a ciência das regularidades.
Matemática é a ciência das regularidades. Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Conjunto
CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA
CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com
MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.
1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:
Conjuntos. 1 Conceitos primitivos. representação de um conjunto. 2.1 REPRESENTAÇÃO TABULAR. 2.2 Representação por Diagrama de Venn- Euler
MT I Prof. Gustavo dolfo Soares Conjuntos a) 1 Conceitos primitivos Os conceitos que iniciam uma teoria são aceitos sem definição, pois, não existindo ainda a teoria, não há recurso para definí-los; por
Matemática. Resolução das atividades complementares. M3 Conjuntos
Resolução das atividades complementares 1 Matemática M3 Conjuntos p. 52 1 Considere os conjuntos A 5 {x M* x é par e x. 6}, 5 {x M* x é ímpar e x, 21} e C 5 {x M* x é par}. Então: a) A tem 2 elementos
OPERAÇÕES COM CONJUNTOS
OPERAÇÕES COM CONJUNTOS 14243 Operações com conjuntos 1. União de conjuntos Dados dois conjuntos, A e B, a união de A e B é o conjunto formado por todos os elementos que pertencem a A ou a B. A B = {x
RLM - PROFESSOR CARLOS EDUARDO AULA 3
AULA 3 Sucessões = sequências(numéricas) São conjuntos de números reais dispostos numa certa ordem. Uma sequência pode ser FINITA ou INFINITA. Ex: a) (3, 6, 9, 12) sequência finita P.A de razão 3 b) (5,
OFICINA DA PESQUISA. Prof. Msc. Carlos José Giudice dos Santos
OFICINA DA PESQUISA DISCIPLINA: LÓGICA MATEMÁTICA E COMPUTACIONAL APOSTILA 6 TEORIA DOS CONJUNTOS Prof. Msc. Carlos José Giudice dos Santos [email protected] www.oficinadapesquisa.com.br
2 - Explicite os conjuntos indicados: (1) { x N x 5 } (3) { x N x 2 < 5 } (2) { x N x 2 = 4 } (4) { x Z x 2 < 5 }
Lista de Conjuntos Numéricos Revisão para o Simulado Nacional Rumoaoita (Ciclo Zero) 1 - Considere os conjuntos: A - conjunto dos números pares positivos; B - conjunto dos números ímpares positivos; C
MATEMÁTICA PAULO ROBERTO
I CONJUNTOS não seja elementos de B. (A e não B). 1) Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. 2) Relação
Hewlett-Packard CONJUNTOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard CONJUNTOS Aulas 01 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano 2016 Sumário CONJUNTOS... 2 CONCEITOS PRIMITIVOS... 2 REPRESENTAÇÃO DE UM CONJUNTO... 2 RELAÇÃO DE PERTINÊNCIA...
Visite :
01) (UFE) e e são dois conjuntos não vazios e é o conjunto vazio, é verdade que, das afirmações: I. = { } II. ( ) ( ) = ( ) ( ) III. { } = {} {} IV. {,, } são verdadeiras somente: a) I e II d) III e IV
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 2 a Lista de Exercícios
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I 2 a Lista de Exercícios Tópico: Conjuntos, Elementos, Subconjuntos e Conjuntos
Prof.ª Dr.ª Donizete Ritter. MÓDULO III PARTE I: Conjuntos e Diagramas Lógicos
Bacharelado em Sistemas de Informação Disciplina: Lógica Prof.ª Dr.ª Donizete Ritter MÓDULO III PARTE I: Conjuntos e Diagramas Lógicos 1 Teoria de Conjuntos Conceitos Primitivos (não-definidos): Conjuntos
MÓDULO 9. Conjuntos. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Conjuntos 1. (ITA) Considere as seguintes afirmações sobre o conjunto U = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: I. Ø U e n(u) = 10. II.
Introdução a Teoria de Conjuntos
Aula 01 Introdução a Teoria de Conjuntos A Teoria dos Conjuntos foi criada e desenvolvida pelo Matemático russo George Cantor (1845-1918), trata-se do estudo das propriedades dos conjuntos, relações entre
Matemática I Conjuntos Conjuntos Numéricos. Prof.: Joni Fusinato 1
Matemática I Conjuntos Conjuntos Numéricos Prof.: Joni Fusinato [email protected] [email protected] 1 Teoria dos Conjuntos Teoria matemática dedicada ao estudo da associação entre objetos com
RESOLUÇÃO CONJUNTOS R: = 320 A B R: = 120 R: = 140 R: = 280
RESOLUÇÃO CONJUNTOS Em um clube com quadra de futebol e vôlei, sabe-se que: 100 rapazes jogam vôlei e futebol 130 rapazes jogam vôlei, mas não jogam futebol. 170 rapazes jogam futebol e não jogam vôlei.
MÓDULO 9. Conjuntos. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Conjuntos 1. (ITA) Considere as seguintes afirmações sobre o conjunto U = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: I. Ø U e n(u) = 10. II.
APS I: Conjuntos e noções de lógica
APS I: Conjuntos e noções de lógica Conceitos fundamentais 1 Exercise 1 Classifique como verdadeiro ou falso a) {a,b} {a,b,{a},{b}} b) {a} {a,b,{a},{b}} c) {a} {a,b,{a},{b}} d) {a,b} {a,b,{a},{b}} Exercise
c) 35. d) 37. e) 45.
LISTA DE EXERCÍCIOS CONJUNTOS PROF: Paulo Vinícius Questão 1) Em uma determinada turma, há alunos que praticam futebol (conjunto A), que praticam basquetebol (conjunto B) e que praticam futebol e basquetebol
Operações com conjuntos: união, interseção e complementar
PREPARATÓRIO IFRN Cargo: Auxiliar em Administração Disciplina: Matemática Professor: Daniel Almeida Operações com conjuntos: união, interseção e complementar CONJUNTOS Formado pelo agrupamento ou ausência
OPERAÇÕES COM CONJUNTOS
OPERAÇÕES COM CONJUNTOS Vamos estudar agora problemas envolvendo as operações entre conjuntos que serão solucionados utilizando-se os diagramas de Venn. 01. Uma escola oferece reforço escolar em todas
Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):
Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Rafael Carvalho 7º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos Rafael Carvalho 7º Período Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos
Introdução à Matemática
Universidade Estadual de Goiás Unidade Universitária de Ciências Sócio-Econômicas e Humanas de Anápolis Introdução à Matemática Conjuntos e Conjuntos Numéricos Introdução A noção de conjunto Propriedades,
Prof. a : Patrícia Caldana
CONJUNTOS ESPECIAIS Conjunto Vazio O Conjunto vazio é o conjunto que não possui elementos. Para representarmos o conjunto vazio usaremos os símbolos: { } ou. Atenção: Quando os símbolos { } ou, aparecerem
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE Experimento Aleatório Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de
PROGRESSÃO PARCIAL/DEPENDÊNCIA MATEMÁTICA 1º ANO- 1ª ETAPA
PROGRESSÃO PARCIAL/DEPENDÊNCIA 06- MATEMÁTICA º ANO- ª ETAPA ) Classifique os conjuntos abaio em vazio, unitário, finito ou infinito: a) A é o conjunto das soluções da equação + 5 = 9. B = { / é número
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Isabelle Araujo 5º período de Engenharia de Produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Conjuntos Isabelle Araujo 5º período de Engenharia de Produção Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto
a. O conjunto de todos os brasileiros. b. O conjunto de todos os números naturais. c. O conjunto de todos os números reais tal que x²-4=0.
Introdução aos conjuntos No estudo de Conjuntos, trabalhamos com alguns conceitos primitivos, que devem ser entendidos e aceitos sem definição. Para um estudo mais aprofundado sobre a Teoria dos Conjuntos,
MATEMÁTICA - 3 o ANO MÓDULO 03 OPERAÇÕES EM CONJUNTOS NUMÉRICOS
MATEMÁTICA - 3 o ANO MÓDULO 03 OPERAÇÕES EM CONJUNTOS NUMÉRICOS Como pode cair no enem (ENEM) Numa pesquisa para se avaliar a leitura de três revistas A, B e C, descobriu-se que 81 pessoas leem, pelo menos,
Pensamento. (Provérbio Chinês) Prof. MSc. Herivelto Nunes
Aula Introdutória Matemática Básica- março 2017 Pensamento Não creio em números, não creio na palavra tudo e nem na palavra nada. São três afirmações exatas e imóveis: o mundo está sempre dando voltas.
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. João Victor Tenório Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos João Victor Tenório Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos os estudantes
Lista de Exercícios - Conjuntos
01) (UFE) e e são dois conjuntos não vazios e é o conjunto vazio, é verdade que, das afirmações: I. = { } II. ( ) ( ) = ( ) ( ) III. { } = {} {} IV. {,, } são verdadeiras somente: a) I e II d) III e IV
Sumário. 1 CAPÍTULO 1 Revisão de álgebra
Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção
1 Operações com conjuntos
Notas sobre Conjuntos (2) Anjolina Grisi de Oliveira 1 Operações com conjuntos Definição 1 (União) Sejam A e B dois conjuntos arbitrários. A união dos conjuntos A e B, denotada por A B, é o conjunto que
Bases Matemáticas. Definição ingênua de conjunto. Aula 3 Conjuntos. Rodrigo Hausen
1 ases Matemáticas ula 3 Conjuntos Rodrigo Hausen v. 2012-9-26 1/14 Definição ingênua de conjunto 2 Um conjunto é uma qualquer coleção de objetos, concretos ou abstratos, sem repetição. Dado um conjunto,
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos serão, em geral, indicados por letras maiúsculas do alfabeto: A,B,C,...,
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Interruptores e Conjuntos
aula 03 (Lógica) Sistemas Dicotômicos, Interruptores e Conjuntos Professor: Renê Furtado Felix E-mail: [email protected] Site: http://www.renecomputer.net/pdflog.html Sistemas Dicotômicos Aula de
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Instituto Galeno Raciocínio Lógico / Prof.: George Fontenelle 1
Instituto Galeno Raciocínio Lógico / Prof.: George Fontenelle 1 Prof. George Fontenelle RACIONCINIO LÓGICO Unidade II: Operações com Conjuntos c/ 25 questões de provas do CESPE Se as proposições p e q
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Por meio de uma figura fechada, dentro da qual podem-se escrever seus elementos. Diagrama de Venn-Euler.
REPRESENTAÇÕES Um conjunto pode ser representado da seguinte maneira: Enumerando seus elementos entre chaves, separados por vírgulas; Exemplos: A = { 1, 0, 1} N = {0, 1, 2, 3, 4,...} Indicando, entre chaves,
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
CAPÍTULO 1 - Teoria dos conjuntos
TEORI DOS CONJUNTOS 1. CONCEITO DE CONJUNTOS teoria dos conjuntos tem inicio com o matemático Georg Cantor ( 1845-1918). Como na Geometria Euclidiana adota-se ponto, reta e plano como conceitos primitivos
Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados.
Probabilidades O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Quando lançamos um dado, os resultados possíveis são sempre um dos elementos
Teoria dos Conjuntos FBV. Prof. Rossini Bezerra
Teoria dos onjuntos FV Prof. Rossini ezerra Os resultados do trabalho de Georg Ferdinand Ludwing Phillip antor estabeleceram a teoria de conjuntos como uma disciplina matemática completamente desenvolvida
Aula 4. NOÇÕES DE PROBABILIDADE
Aula 4. NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 013???? Quem será o próximo prefeito
Exercícios para estudar
Exercícios para estudar Nome: 1) (Uece 2018) Em um grupo de 200 estudantes, 98 são mulheres das quais apenas 60 não estudam comunicação. Se do total de estudantes do grupo somente 60 estudam comunicação,
Teoria das Probabilidades
Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ? CARA? OU? COROA? 2 ? Qual será o rendimento da Caderneta de Poupança até o final deste ano??? E qual será a taxa de inflação acumulada em 2011???? Quem será o próximo prefeito
Generalidades sobre conjuntos
Generalidades sobre conjuntos E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos
1 ano do ensino médio Segue algumas das questões do curso de reforço de matemática 1 ano do ensino médio.
Segue algumas das questões do curso de reforço de matemática. 1. Dado o conjunto A = {1, 2, [3, 4], [5]} Verifique se os itens são verdadeiros (V) ou falsos (F) a) 2 A ( ) b) 2 A ( ) c) {2} A( ) d) 5 A
Generalidades sobre conjuntos
Generalidades sobre conjuntos E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
TRT Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z =
Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS. Prof.: Marcelo Maraschin de Souza
Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS Prof.: Marcelo Maraschin de Souza 3. Conjuntos Definição: Um conjunto é uma coleção desordenada de zero ou mais objetos, denominados
Disciplina: Matemática Data da entrega: 14/03/2015.
Lista de Exercícios - 01 Aluno (a): Nº. Professor: Flávio Turma: 1ª série: (ensino médio) Disciplina: Matemática Data da entrega: 14/03/2015. Observação: A lista deverá apresentar capa, enunciados e as
SuperPro copyright Colibri Informática Ltda.
1. (Fuvest-gv) Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15%
NOÇÕES DE PROBABILIDADE
NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será
LISTA DE EXERCÍCIOS 01
MTEMÁTIC Professores rthur, Denilton, Elizeu e Rodrigo LIST DE EXERCÍCIOS 0 0. (UCSal) Na figura a seguir, suponha que um observador encontra-se no ponto, à distância C 4 metros do pé de uma torre, vendo
Ciências da Natureza e Matemática
Ciências da Natureza e 1 CEDAE Acompanhamento Escolar Ciências da Natureza e 1. Num colégio, onde estudavam 250 alunos, houve, no final do ano, recuperação nas disciplinas de e Português. 10 alunos fizeram
Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG.
Matemática Discreta Teoria dos Conjuntos - Parte I Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Letras maiúsculas: conjuntos. Letras minúsculas: elementos do conjunto. Pertinência: o símbolo
matematicautodidata.com
Exercite! Data: Nota: Nome: Tópico: Médio 01 - Conjuntos 1. Dê os elementos dos seguintes conjuntos: (a) A = {x x é a letra da palavra autodidata } (b) B = {x x é o estado do sudeste do Brasil } (c) C
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona ntônia Valadares MTEMÁTIC 1º NO TEORI DOS CONJUNTOS PROFESSOR: LEXSNDRO DE SOUS http://donaantoniavaladares.comunidades.net Conjuntos: Não existe uma definição formalizada do que vem a ser um
Probabilidade - 7/7/2018. Prof. Walter Tadeu
Probabilidade - 7/7/018 Prof. Walter Tadeu www.professorwaltertadeu.mat.br Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado.
Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos
Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e
Aula 4: Elementos da Teoria de Conjuntos
1 / 20 Elementos da Teoria de Conjuntos Bases Matemáticas - 3 o /2018 Dahisy Lima Aula 4: Elementos da Teoria de Conjuntos 2 / 20 Conjuntos Elementos da Teoria de Conjuntos Do ponto de vista ingênuo, um
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se logicamente como um termo não definido. Um conjunto se pode entender
MATEMÁTICA Questões selecionadas de provas diversas
MATEMÁTICA Questões selecionadas de provas diversas 01. Uma pesquisa realizada com 1000 universitários revelou que 280, 400 e 600 desses universitários são alunos de cursos das áreas de tecnologia, saúde
ACLÉSIO MOREIRA RACIOCÍNIO LÓGICO
ACLÉSIO MOREIRA RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL 01. (IBFC 2016) A conjunção entre duas proposições compostas é verdadeira se: a) os valores lógicos de ambas as proposições forem falsos b) se o valor
