LISTA DE EXERCÍCIOS 01
|
|
|
- Gustavo Brunelli Casado
- 9 Há anos
- Visualizações:
Transcrição
1 MTEMÁTIC Professores rthur, Denilton, Elizeu e Rodrigo LIST DE EXERCÍCIOS 0 0. (UCSal) Na figura a seguir, suponha que um observador encontra-se no ponto, à distância C 4 metros do pé de uma torre, vendo tal torre sob um ângulo 0 o. o deslocar-se metros em direção à torre, passará a vê-la do ponto, sob um ângulo 0 o. altura da torre, em metros, é: a) 8 b) c) 8 d) 4 e) 8 0 o 0 o C m 0. (UF) Um balão deia o solo verticalmente a uma distância 0 m de um observador. Sabendo-se que o balão está a uma altura de H metros no instante em que o ângulo de observação é, determine H. 0. (UCSal) Um observador, no ponto, vê o topo de um poste () e o topo de um prédio (C), conforme a figura a seguir. 0 Se as alturas do poste e do prédio são, respectivamente, m e 0m, então a distância, entre o poste e o prédio é, em metros: a) 8 b) 0 c) 0 4 d) 0 0 e) (UCSal) Uma escada está encostada em um prédio, fazendo com ele um ângulo de 0 o. Sabendo-se que a escada toca o prédio a 9m do solo, conclui-se que o comprimento da escada é aproimadamente: a) 9, m b) 0, m c), m d),7 m e), m C 0. (UCSal) Entre o plano da rua e o piso térreo de um edifício há um desnível de m. Da rua, acessa-se o piso térreo por meio de uma rampa com inclinação de 0 o em relação à horizontal. Qual é, aproimadamente, o comprimento da rampa? [Dados: cos 0 o 0,9 e sen 0 o 0,4] a), m b) 4, m c), m d),8 m e), m 0. (UCSal) Num terreno horizontal, têm-se dois postes verticais e. Do topo do poste, avista-se o pé do poste sob um ângulo de 0 o com a horizontal como mostra a figura abaio. Se a altura do poste é m, então a distância d entre os dois postes é aproimadamente: a), m b) 8, m c),7m d) 7,0 m e) 4,77 m 07. (UF) Uma estrada eleva-se 0, m a cada. Calcule em grau o ângulo de inclinação da estrada com a horizontal. 08. (UNE/00) Correndo numa praça circular de raio igual a 7 metros, um garoto descreve um arco de 78 metros de comprimento. medida desse arco, em radianos, é: a) b) c) d) e) 4 0 d
2 09. (UNE/99) Se um carrinho de controle remoto deu 0 voltas em uma pista circular de 4 cm de diâmetro, então ele percorreu, em cm: a) 0 b) 0 c) 40 d) 0 e) O menor ângulo formado pelos ponteiros de um relógio às h 4min. é: a) o b) 9 o c) o d) 87 o e) 4 o. (UEFS/00) Na figura, α é a medida angular do arco de círculo com centro em O. Com base nessa informação, pode-se afirmar que: a) α > 90 o b) α 90 o c) α o > 0 d) α o < 0 e) α, o µ.c. µ.c. α O µ.c.. (UNE/9) O raio de uma circunferência cujo comprimento é mede: a) b) d) c) 4 e). No quadrilátero a seguir, C cm, D cm, D Ĉ 0, D 90 e C Dˆ 90. medida, em cm, do perímetro do quadrilátero é: 4. (Efoa-MG) Na figura, qual é a medida do lado a do triângulo C? a) ( ) m b) m c) ( + ) m d) ( ) + m e) m. Sendo α 4 '" e β 8 40'48", calcule: a) α + β b) α β. Os ângulos de medidas θ e γ são tais que θ + γ 4 e θ γ 9 '0" Calcule θ e γ. 7. Num triângulo C isósceles de base C, o ângulo C tem medida  7 4'. Determine as medidas ˆ e Ĉ dos ângulos C e C, respectivamente. 8. Um triângulo tem ângulos internos de medidas rad, rad e rad. Epresse-os em graus Na figura abaio, a circunferência de centro O e raio R tem sobre si determinados os pontos, e C pelos ângulos centrais α e β. Sabe-se que α rad, β rad 4 e que o comprimento de é igual a cm. Determine: a) R; b) o comprimento de C, em centímetros. 0. Duas circunferências concêntricas em O têm sobre si determinados os arcos e CD pelo ângulo central α, conforme ilustra a figura abaio. a), b), c), d) 4, e), Sabendo-se que α rad, que o segmento C tem medida 0 cm e que o arco CD tem 0 cm de comprimento, determine: a) a medida de ; O b) o comprimento do arco.
3 . Durante uma competição, dois velocistas percorrem, emparelhados, um trecho circular de uma pista de atletismo. Um observador localizado no centro de curvatura dos arcos descritos pelos corredores nota que, acompanhando-os visualmente durante esse trecho da prova, teve que girar 0. Nesse intervalo de tempo, o atleta mais adiante percorreu m com velocidade v e o outro corredor, distante 9 m do seu oponente, manteve uma velocidade v. Considerando,, determine: a) a distância percorrida pelo velocista mais próimo; b) a razão entre as velocidades v e v, nessa ordem.. Calcule os ângulos formados pelos ponteiros de horas e minutos de um relógio quando ele estiver marcando os horários. a) 4h 0min; b) 4h 40min; c) h min.. O quíntuplo do suplemento do complemento de um ângulo é igual ao triplo do replemento do seu suplemento. O ângulo é: a) 0 b) 4 c) 0 d) 7 e) (UN-DPTD) No triângulo retângulo de hipotenusa 000 m e um cateto igual a 0 m, o ângulo α oposto a este cateto é: a) menor do que 0 o b) 0 c) 4 d) 0 e) maior que 0. O dobro do suplemento de um arco ecede em o triplo do complemento do dobro desse arco. Qual a medida, em graus, desse arco? a) 0 b) 8 c) d) 0 e) 8. Sejam r e s retas paralelas. medida na figura abaio é: 7. Na figura, C C CD, então ÂD é igual a: a) 7 b) 80 c) 90 d) 00 e) 0 8. Na figura abaio, o valor de y + z é: 9. Calcule os valores de e y na figura abaio, sabendo-se que OC é a bissetriz do ângulo ÔD. 0. razão entre a medida de um ângulo e o seu suplemento é. Calcule a medida desse ângulo. 7. O complemento da medida de um ângulo está para o seu suplemento na razão de. Calcule a medida desse ângulo.. (Cesgranrio-RJ) s retas r e s são paralelas. O valor do ângulo α, apresentado na figura, é:. Na figura, as retas r e s são paralelas. Calcule o valor de. a) 0 b) 70 c) 80 d) 90 e) 00
4 4. Sendo r paralela a s na figura, calcule o valor de Sendo {7, 8, 9}, obtenha o conjunto de partes do conjunto.. Na figura abaio, as retas r e s são paralelas. Calcule o valor de. 4. Para os conjuntos {a} e {a, {}}, podemos afirmar, corretamente, que: a). b). c). d) a. e) {}. 4. Obtenha e y, de modo que: {0,, } {0,, } e {, } {,, y}.. Sendo {, {},, {, }}, marque V ou F. a) ( ) b) ( ) {} c) ( ) {} d) ( ) {} P() (P() conjunto das partes de ) e) ( ) {, } f) ( ) {, } g) ( ) {, {}} h) ( ) {} i) ( ) n o de subconjuntos de é igual a. 7. Se {{ },, {0}}, podemos afirmar que: a) { } b) {0}. c) { }. d) {{0}, }. e) {{0}, }. 8. Diga se é verdadeira ou falsa cada uma das afirmações. a), b), c) 0 d) {0} e) {0} f), g), h) {} {, {}, {}, {, }} i) {} {, {, y}} 9. Se {,, {}, {, }}, então: a) {, } b) c) d) e) {} 4. (Vunesp) Suponhamos que e sejam subconjuntos do E, satisfazendo: 0. para todo E, se, então. 0. eiste E, tal que. Então, podemos afirmar que: a). b) eiste, tal que. c) eiste, tal que. d) contém. e) e não têm elementos em comum. 44. Consultec- No diagrama de Venn, a região sombreada representa o conjunto: a) C ( C) d) ( C ) b) C ( ) e) ( C ) c) C ( ) 4. Consultec- Na figura, a parte sombreada representa o conjunto: a) ( C) ( ) b) ( C) c) ( ) ( ) C d) ( C) ( C) e) C [ ]
5 4. (Mackenzie-SP) Numa escola, há n alunos. Sabe-se que alunos lêem jornal, lêem os jornais e, 0 lêem apenas um dos dois jornais e não lêem o jornal. O valor de n é: a) 49 b) 7 d) 7 c) 8 e) (FCMSC-SP) Feito eame de sangue em um grupo de 00 pessoas, constatou-se o seguinte: 80 delas têm sangue com fator Rh negativo, têm sangue do tipo O e têm sangue do tipo O com fator Rh negativo. O número de pessoas com sangue de tipo diferente de O e com fator Rh positivo é: a) 40 b) d) 0 c) 80 e) 48. (FGV-SP) Uma empresa entrevistou 00 de seus funcionários a respeito de três embalagens:, e C, para o lançamento de um novo produto. O resultado foi o seguinte: 0 indicaram a embalagem ; 0 indicaram a embalagem ; 90 indicaram a embalagem C; 0 indicaram as embalagens e ; 40 indicaram a embalagem e C; 0 indicaram a embalagem e C e 0 indicaram as três embalagens. Dos funcionários entrevistados, quantos não tinham preferência por nenhuma das embalagens? a) Os dados estão incorretos; é impossível calcular. b) Mais de 0. c). d) Menos de 0. e) (Consultec-) Consultadas 00 pessoas sobre as emissoras de TV a que habitualmente assistem, obteve-se o resultado seguinte: 80 pessoas assistem ao canal, 0 assistem ao canal e 70 assistem a outros canais distintos de e. O número de pessoas que assistem a e não assistem a é: a) 0 b) 0 d) 00 c) 80 e) 0 0. Numa sociedade há homens, mulheres que não usam óculos e 7 homens que usam óculos, Se forem 8 pessoas (ao todo) que usam óculos, a quantidade de mulheres que usam óculos é: a) 7 b) d) 8 c) e) 8. (Uneb-) Em um vestibular, 80 alunos acertaram pelo menos uma questão entre as questões n o e n o. Sabe-se que 70 deles acertaram a questão n o e 0 acertaram a questão n o. O número de alunos que acertaram ambas as questões é igual a: a) 40 b) d) 0 c) 0 e) 0
6 RESOLUÇÃO COMENTD 0. C. tg 0 o h h h 8 uc 8 0. tg 0 o H 0 H 0 H H 90 m o rad 0º 0 0. E. tg 0 0º 0 tg 0º 8 + y y 0 y cos 0 o 4 9 y y (,7) 0,
7 7 0. E. sen 0 o 0,4 y m y y 00, m tg 0 o d d d d (,7) 8, m 07. sen α α 4º 08.. r 7 m ρ 78 m α ρ 78 r C. r m C r C 4 0 volts 0 C cm 0.. α + β min 0º α º - α º α + β º min β min º0 4 min β 4 ( ) β, º 0
8 8. D. α rad 8º 0 α 7 α 84º90 α 8º0. C. C r r r.. cos 0º p , p, cm 4. C. cos 0º y h sen 0 o a + y a ( + ) m h h h. α + β 0º 8º α + β 7º 80 α + β 7º α β º4 44 o θ + y 4. o ' θ y 9 0 θ 4º 0 0 o 0 º7 4º θ 90 " y 44º 9 0 y º4 º 7 4 º 4 α - β º 8 9 4º 8º º 4 44
9 7. 79º 0 7º4' 7º 4 07º 8 07º 8 9 º 0 º9 78 R º9 C 8. rad º rad 0º rad º 4 9. C α rad 0 rad 4 rad C r rad r cm cm r r 0. 0 rad R 0 cm R O 0 cm 0 cm O 40 cm 0 rad 0 rad o rad 0º l a) l, m rad. a) º e 9º b) 0º e 00º c) 4º e 9º
10 0. [80º (90º )] [0º (80º )] (90º + ) (80º + ) º + 90º 4º 4. sen α E. (80 o ) o (90 o ) 0º º 70º 4 8. C. 80º (0º + 70º) 80º 7. a + a + b + b 80 a + b 80º (a + b) 80º a + b 90º 8. + y + + y 80 + y 80º + y + y y 4y + y 80º y 0º 0º 40º z 40º + 0 z 80º 40º 0º + 80º 00º
11 º 0 o 4 0º + 0º + 0º + y 80º y 00º y 0º 0. o 80 7 o o o o 80 90º 80 7º 4º.. 40º r 40º 0º 40º + 0º 70º 0º r 4. 0º 0º 70º 0º 0º + 40º 0º 0º 40º 40º 40º
12 . a + 0 a + 80 (a + 0º) a + 80º a + 0º a + 80º a 0º 0º + 0º 0º. a) V b) V c) V d) F e) V f) V g) V h) V i) V 7. E. 8. a) F b) V c) F d) F e) V f) V g) F h) F i) F 9. E. 40. P() {, {7}, {8}, {9}, {7, 8}, {7, 9}, {8, 9}, {7, 8, 9}} 4. E. 4. y ou 4.. E E C. 4. C. n n 8
13 47. C U R C 49. C H M O
MEDINDO ÂNGULO. Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos.
MEDINDO ÂNGULO Uma das dificuldades que alguns alunos demostram é fazer a relação entre graus e radianos. Grau ( ) e radiano (rad) são diferentes unidades de medida de ângulo que podem ser relacionadas
CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.
LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos
Lista de Exercícios. b. Dado tg α =
Lista de Exercícios 1. Nos triângulos retângulos representados abaixo, determine as medias x e y indicadas: a. 4. Calcule os valores de x e y nos triângulos retângulos representados a seguir. a. Dado sen
Roteiro Recuperação Geometria 3º trimestre- 1º ano
Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num
. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m
05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,
3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo
3º tri PR2 -MTEMÁTI Ens. Fundamental 9º ano Prof. Marcelo LIS LIST DE ESTUDO REFORÇO 1 Trigonometria no Triângulo Retângulo Parte 1. No triângulo retângulo determine as medidas e indicadas. (Use: sen65º
COOPERATIVA EDUCACIONAL DE PORTO SEGURO
OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75
2. Uma escada apoiada em uma parede forma, com ela, um ângulo de 30 o. Determine o comprimento da escada, sabendo que a mesma esta a 3 m da parede:
1. Um ciclista partindo de um ponto A, percorre 21 km para o norte; a seguir, fazendo um ângulo de 90, percorre mais 28 km para leste, chegando ao ponto B. Qual a distância, em linha reta, do ponto B ao
AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.
ENSINO MÉDIO Conteúdos da 1ª Série 1º/2º Bimestre 2015 Trabalho de Dependência Nome: N. o : Turma: Professor(a): Daniel/Rogério Data: / /2015 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado
Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E
Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)
LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.
LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente
TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA
TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA TRIÂNGULO RETÂNGULO Triângulo retângulo é todo aquele em que a medida de um de seus ângulos internos é igual 90 (ângulo reto). No triângulo retângulo
Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.
Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno
Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas.
Lista de Exercícios sobre relações métricas na circunferência, comprimento da circunferência e razões trigonométricas. 1) Determine o valor de x nas seguintes figuras: 2) Determine o valor de x nas seguintes
Lista de exercícios Função Trigonométrica
Lista de exercícios Função Trigonométrica 1- Um alpinista deseja calcular a altura de uma encosta que vai escalar. Para isso, afasta-se, horizontalmente, 80 m do pé da encosta e visualiza o topo sob um
1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:
Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados
Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial
Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria
Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º
4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas.
LISTAS DE ATIVIDADE A SER REALIZADA ANO 018 LISTA UM 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen 65º = 0,91; cos 65º = 0,4 e tg 65º =,14) 4. Considerando o triângulo retângulo
Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015
Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática
Questão 03) Questão 01)
Questão 01) Gab: D De um ponto do chão situado a 150 m de distância de um edifício, vê-se o topo do prédio sob um ângulo de 60º, como mostra a figura, desenhada sem escala. Se for adotado = 1, 7, o ponto
Matemática GEOMETRIA PLANA. Professor Dudan
Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A
2 = 1,41. 4) Qual é o comprimento da sombra de uma árvore de 5 m de altura quando o sol está 30º acima do horizonte? Dado
Exercicios - Relações Trigonométricas no Triangulo Retangulo 1) Um avião está a 7000 m de altura e inicia a aterrissagem, em aeroporto ao nível do mar. O ângulo de descida é 6º. A que distância da pista
Matemática - 2C16/26 Lista 2
Matemática - 2C16/26 Lista 2 1) (G1 - cp2 2008) Uma empresa cultiva eucaliptos para a produção de celulose. Com o objetivo de proteger sua plantação contra incêndios, esta empresa tem um sistema de segurança
LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE
LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) Na figura a seguir, o ponto O é o centro da circunferência, AB e AC são segmentos tangentes e o raio da circunferência mede o dobro de x. O perímetro
LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE
LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) (Eear) Duas cordas se cruzam num ponto distinto do centro da circunferência, conforme esboço. A partir do conceito de ângulo excêntrico interior, a
A Determine o comprimento do raio da circunferência.
Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados
Unidade 3 Geometria: semelhança de triângulos
Sugestões de atividades Unidade Geometria: semelhança de triângulos 9 MTEMÁTI 1 Matemática 1. (Unirio-RJ) eseja-se medir a distância entre duas cidades e sobre um mapa, sem escala. Sabe-se que 80 km e
PA = 1,2 m. Após uma tacada na bola, ela se
1. (Unifor 014) Sobre uma rampa de m de comprimento e inclinação de 0 com a horizontal, devem-se construir degraus de altura 0cm. Quantos degraus devem ser construídos? a) 4 b) c) 6 d) 7 e) 8. (Efomm 016)
COLÉGIO PASSIONISTA SANTA MARIA PROF. WELLINGTON LIMA 1. Funções Trigonométricas do Ângulo Agudo. 23/10/2015 3ª SÉRIE A EM
COLÉGIO PASSIONISTA SANTA MARIA 1. Funções Trigonométricas do Ângulo Agudo. REVISÃO DE TRIGONOMETRIA 23/10/2015 5. Identidades Trigonométricas. Relações Fundamentais. 2. Alguns Valores Notáveis. 3. Conversão
Taxas Trigonométricas
Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1
EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA
OLÉGIO FRNO-RSILEIRO NOME: N : TURM: PROFESSOR(): NO: 9ª DT: / 07 / 014 EXERÍIOS DE REUPERÇÃO DE MTEMÁTI 1) alcule: a) 7 7 b) 1 + 1 1 ) alcule: 1 1 a). 8. 8 b) ) alcule: a) 1 7 1 ( ) 64 9 1 b) 0 4) Resolva
NOME: ANO: 3º Nº: PROFESSOR(A):
NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles
Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. MF R: 3 MF R: 3 MF R: 5 F R:? M R:? M R:? D R:? D R:? MF R:? F R:?
Módulo 07. Exercícios Lista de exercícios do Módulo 07 Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. Calcule os logarítmos:. log. log 6 6. log 4 4. log. log 7 7 6. log 7.
Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:
GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre
2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor.
Curso: Exercícios ESAF para Receita Federal 2013 Disciplina: Raciocínio Lógico-Quantitativo Assunto: Tópico 03 Geometria/Trigonometria Professor: Valdenilson Garcia 2013 Copyright. Curso Agora eu Passo
COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A 2ª CERTIFICAÇÃO. PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG
COLÉGIO PEDRO II UNIDADE REALENGO II LISTA DE REVISÃO PARA A ª CERTIFICAÇÃO PROFESSORES: ANTÔNIO, CLAYTON e FELIPE COORDENADOR: DIEGO VIUG. (Unisinos) As funções seno e cosseno de qualquer ângulo x satisfazem
CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito
CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA Resolução de triângulos retângulos 1. A polícia federal localizou na floresta amazônica uma pista de
COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO
COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão
APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Trigonometria º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre Aluno(: Número: Turma: 1) Resolva os problemas: Calcule
Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é
TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM
ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA TRIÂNGULO RETÂNGULO 1. Em parques infantis, é comum encontrar um brinquedo, chamado escorrego, constituído de
Ensino. cossec x sec x. cot gx 1. x, k. Utilizando-se as identidades. DEF, no qual DF 1. Aluno (a): Nº: Turma: 1ª série Bimestre: 2º
Ensino Aluno (a): Nº: Turma: 1ª série Bimestre: º Disciplina: Matemática Razões Trigonométricas Professor (a): Capitão Barba Ruiva Data: / / cossec x sec x Questão 1 Seja M, com cot gx 1 kπ x, k. Utilizando-se
CIRCUNFERÊNCIA E CÍRCULO
IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em
SEGUNDO ANO - PARTE UM
MATEMÁTICA SEGUNDO ANO - PARTE UM NOME COMPLETO: Nº TURMA: TURNO: ANO: 1 Revisão pitágoras: Teorema de Pitágoras (hipotenusa) 2 = (cateto) 2 + (cateto) 2. (a) 2 = (b) 2 + (c) 2. Exemplos: 1. Encontre o
Prof. Luiz Carlos Moreira Santos. Questão 01)
Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau
ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF
Prof. Me. Luis esar Friolani Data: / / Nota: Disciplina: Matemática luno (a): Nº: 9 no/ef Objetivo: Desenvolver os conceitos sobre razões trigonométricas no triângulo retângulo valiar se o aluno é capaz
01. (valor: 1,0) Calcule o valor das incógnitas nos casos (as medidas indicadas estão em cm): 13 2 = x 2 x x 5. Resposta: x = 5.
P 006G.a Série Matemática Geometria Fábio áceres/oliveira/osana lves 0. (valor:,0) alcule o valor das incógnitas nos casos (as medidas indicadas estão em cm): a. = + 69 esposta: =. b. 0 cos0 6 esposta:
TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /2017
TRIGONOMETRIA BÁSICA LISTA PROF. ALEXANDRE /017 1. Um aluno de engenharia civil (altura do aluno 1,70 m) decide calcular a altura de uma torre de transmissão localizada na avenida Paulista em São Paulo
tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem
Resposta da questão : [C] 5 senα α 0 0 7,05 senβ 0,705 α 45 0 Portanto, AO B 0 + 45 75. Resposta da questão : [B] x x Tem-se que sen0 x 5 m. 0 0 Portanto, a resposta é 0 00% 00%. 5 Resposta da questão
Disciplina: Matemática Data da entrega: 31/03/2015.
Lista de Exercícios - 02 Aluno (a): Nº. Professor: Flávio Série: 9º ano. Disciplina: Matemática Data da entrega: 31/03/2015. Observação: A lista deverá apresentar capa, enunciados e as respectivas resoluções
EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO
EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO ======================================================================= 1) (FUVEST-SP) - Dados: MÔB
Trigonometria Básica e Relações Métricas
1. Em um triângulo isósceles, a base mede 6 cm e o ângulo oposto à base mede 120. Qual é a medida dos lados congruentes do triângulo? 2. Um triangulo tem lados iguais a 4cm, 5cm e 6cm. Calcule o cosseno
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,
Relações Métricas nos Triângulos. Joyce Danielle de Araújo
Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;
PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5
ENSINO FUNDAMENTAL 9º ano LISTA DE EXERCÍCIOS PT 3º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA PARTE 1 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ) Para
LISTA DE ATIVIDADES III UNIDADE - REVISÃO
LISTA DE ATIVIDADES III UNIDADE - REVISÃO 01) (F.C.CHAGAS-SP) Um observador, no ponto A, vê o topo de um poste (B) e o topo de um prédio (C), conforme a figura. Se as alturas do poste e do prédio são,
TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS
TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?
TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS
1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a
Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)
1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos
BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Para medir a largura de um lago,
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
LISTA DE EXERCÍCIOS 02
MTEMÁTI Professores rthur, enilton, Elizeu e Rodrigo LIST E EXERÍIOS 0 0. (onsultec - ) Sendo P {X ÎN; < } Q {X Î Z; < < }, P ÇQ a) {0,, } b) {0,,, } c) {0,,,, } d) {,, 0,,, } e) {,,, 0,,, } 0. (onsultec
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a
13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
Interbits SuperPro Web
ª. LISTA DE GEOMETRIA PLANA POLIEDRO - 07. (G - cps 05) A inclinação das vias públicas é um problema para o transporte. Na cidade de Dunedin, na Nova Zelândia, está localizada a rua Baldwin que, em seu
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA 9 B 25 C
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA TRABALHO Data: /1/018 Nota: Estudante :. No. 1) O valor de no triângulo retângulo abaio é: a) 10. b) 1.
Atividade extra. Exercício 1. Exercício 2. Exercício 3 (UNIRIO) Exercício 4. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 Qual o valor, em radianos, de um ângulo que mede 150o? (a) π 2 (b) 2π 3 (c) 5π 6 (d) π 3 Exercício 2 Qual o valor, em graus, de um ângulo que mede (a) 210 (b) 230 (c) 270 7π
Conteúdos Exame Final e Avaliação Especial 2017
Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..
GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:
Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,
Unidade 6 Geometria: quadriláteros
Sugestões de atividades Unidade 6 Geometria: quadriláteros 8 MTEMÁTI 1 Matemática 1. onsidere o retângulo representado a seguir. Indique o valor da medida do ângulo correspondente a α 1 β. 40 β 4. onsidere
LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI
01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.
Trigonometria. Parte I. Página 1
Trigonometria Parte I 1 (Uerj 01) Um esqueitista treina em três rampas planas de mesmo comprimento a, mas com inclinações diferentes As figuras abaixo representam as trajetórias retilíneas AB= CD= EF,
MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA
MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA A A` r B B` s C C` t A B P C S t r 1 r 2 x 6-5 15 3 r 3 B a β b ka B β kb A α c γ C A α kc γ C B B A C A C B a ka B A c C A kc C B B kc ka c
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III
MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio
Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é:
Módulos 9, 0, 7 e 8 Matemática º EM 1) (Exame de Qualificação UERJ 00) Um corpo de peso P encontra-se em equilíbrio, suspenso por três cordas inextensíveis. Observe, na figura, o esquema das forças T 1
ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.
ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do
Exercı cio 18.1 O capital de R$ 2.000, 00 foi aplicado à taxa de 2% ao mês durante um ano. Qual foi, em reais, o montante gerado por essa aplicação?
18 Atividade extra UNIDADE VAMOS POUPAR DINHEIRO! Fascículo 6 Matemática Unidade 18 Função do Segundo Grau Exercı cio 18.1 O capital de R$ 2.000, 00 foi aplicado à taxa de 2% ao mês durante um ano. Qual
COLÉGIO RESSURREIÇÃO NOSSA SENHORA
COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 01/06/2016 Disciplina: Matemática LISTA 10 Trigonometria no triângulo retângulo Período: 2 o Bimestre Série/Turma: 2 a série EM Professor(a): Wysner Max Valor:
Lista de Exercícios 3 - Gabriel Mendes (1º Ano)
Lista de Exercícios 3 - Gabriel Mendes (1º Ano) 1 - (Unicamp-SP) Uma pessoa de 1,65 m de altura observa o topo de um edifício conforme o esquema abaixo. Para sabermos a altura do prédio, devemos somar
Plano de Aulas. Matemática. Módulo 9 Trigonometria no triângulo retângulo
Plano de ulas Matemática Módulo 9 Trigonometria no triângulo retângulo Resolução dos eercícios propostos Retomada dos conceitos PÍTULO 1 1 Os catetos medem 1 e 16 u.c. e o ilustrar esta situação, nota-se
CDA AD CD. 2cos 2sen 2 2cos sen 2sen 2 2 A A A A
Preparar o Eame 01 016 Matemática A Página 19 88. 88.1. O ângulo CDA está inscrito na circunferência, portanto CDA. Assim: AD CD A ABCD A CDA AD CD AD Tem-se que, cos AD cos CD e sen CD sen. Portanto,
COLÉGIO MARQUES RODRIGUES - SIMULADO
COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P6 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 901 Questão 1 Um feixe
AVALIAÇÃO BIMESTRAL I
Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 INSTRUÇÕES: AVALIAÇÃO BIMESTRAL I Não é permitido o uso de calculadora ou de celular, caso contrário a sua
LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE
ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)
LISTA DE EXERCÍCIOS 9º ano 4º bim
LISTA DE EXERCÍCIOS 9º ano 4º bim Prof. Marcelo, Sandra, Rafael e Tammy PARTE 1 SISTEMAS DO 2º GRAU Resolva os seguintes sistemas RESPOSTAS: 1) {(,4),(4,)} 2) {(-,-2),(-2,-)} ) {(,1),(-2,-/2)} 4) {(2,-1),(-/2,-4/)}
LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE
LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE 1) Na figura, a circunferência de centro O está inscrita no triângulo ABC. A medida do ângulo inscrito x é: A) 126º B) 63º C) 62º D) 54º E) 108º 2) O triângulo
Projeto de Recuperação 1º Semestre - 2ª Série (EM)
Projeto de Recuperação 1º Semestre - 2ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Exercícios Matrizes e Determinantes Classificação de matrizes (pag. 0) 1,2,,4,6,8 Matrizes
GABARITO. Matemática D 11) B. Como β = C C = 3β.
GRITO Matemática Semietensivo V. ercícios 0) Logo, = 0 + 0 + 0 = 70 Observe a figura: 9 6 0 X 0 gora considerando os dois relógios: 0) O relógio é uma circunferência, o ponteiro dos minutos leva ora para
TURMA: M. DATA DE ENTREGA: 01/set/2015 COMPONENTE CURRICULAR: Matemática I. PROFESSOR: Thiago Pardo Severiano
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CAMPUS NATAL CIDADE ALTA CURSO: Técnico Integrado em Multimídia TURMA: 1.20151.12807. M DATA DE ENTREGA: 01/set/2015 COMPONENTE
2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.
Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON
MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON [email protected] DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são
Colégio Cruz das Almas Ensino de qualidade, vencendo desafios com você.
Colégio Cruz das Almas Ensino de qualidade, vencendo desafios com você. III Unidade Série: ª Série º ANO Aluno(a): Nº Data: / / 010. Disciplina: Matemática Professor: Ramon Neiva Valor atribuído: Valor
Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Ano/Série: 9ª Data: / / LISTA DE GEOMETRIA
Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Ano/Série: 9ª Data: / / 2018. LISTA DE GEOMETRIA Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha de papel
CICLO TRIGONOMÉTRICO
TRIGONOMETRIA CICLO TRIGONOMÉTRICO DEFINIÇÃO O Círculo Trigonométrico ou ciclo Trigonométrico é um recurso criado para facilitar a visualização das proporções entre os lados dos triângulos retângulos.
MATEMÁTICA. Questões de 01 a 04
GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,
1. Converta para a forma decimal: (a) (b) (c) (d) (e)
UNIVERSIDADE ESTADUAL VALE DO ACARAÚ Coordenação de Matemática 1 a Lista de Exercícios - Ângulos Matemática Básica II - 2015.1 Professor Márcio Nascimento Fontes: Practice Makes Perfect - Trigonometry
