Lista de Exercícios - Conjuntos
|
|
|
- Maria do Loreto Braga Miranda
- 9 Há anos
- Visualizações:
Transcrição
1 01) (UFE) e e são dois conjuntos não vazios e é o conjunto vazio, é verdade que, das afirmações: I. = { } II. ( ) ( ) = ( ) ( ) III. { } = {} {} IV. {,, } são verdadeiras somente: a) I e II d) III e IV b) II e III e) I, III e IV c) II e IV 02) Numa classe de 30 alunos, 16 alunos gostam de Matemática e 20 de História. O número de alunos desta classe que gostam de Matemática e de História é: a) exatamente 16 b) exatamente 10 c) no máximo 6 d) no mínimo 6 e) exatamente 18 03) I) e {5; 7} e {5; 6; 7; 8}, então os possíveis conjuntos são em números de 4. II) upondo e conjuntos quaisquer, então sempre temos ( ) ( ) =. III) soma de dois números irracionais pode ser racional. Das afirmações anteriores: a) I, II e III são verdadeiras. b) apenas I e II são verdadeiras. c) apenas III é verdadeira. d) apenas II e III são verdadeiras. e) apenas I e III são verdadeiras. 04) ejam X um conjunto não-vazio; e dois subconjuntos de X. Definimos c ={x X tal que x } e = {x tal que x }. Dadas as sentenças: 1. = φ c c, onde significa equivalente e φ o conjunto vazio; 2. e X = IR; = {x IR tal que x 3 1 = 0}; = {x IR tal que x 2-1 = 0} e C = {x IR tal que x 1 = 0}, então = = C; 3. - φ = e - = - ( ); 4. - c ; podemos afirmar que está (estão) correta (s): a) s sentenças 1 e 3; b) s sentenças 1,2 e4; c) s sentenças 3 e 4; d) s sentenças 2,3 e4; e) penas a sentença 2. 05) ejam F e G dois subconjuntos não vazios de IR. ssinale a alternativa correta: a) e F G e G F, então necessariamente F = F G; b) e F G é o conjunto vazio, então necessariamente F G = IR; c) e F G e G F então F G = F G; d) e F G = F, então necessariamente G F; e) e F G e G IR, então (F G) G = IR. 07) ejam, e C subconjuntos de IR, não vazios, e - = {p IR; p e p }. Dadas as igualdades: 1. ( - ) x C = ( x C) - ( x C) 2. ( - ) x C = ( x ) - ( x C) 3. ( ) ( ) ( C) = ( - ) ( - C) 5. ( - ) ( - C) = ( - C) ( - ) podemos garantir que são verdadeiras : a) 2 e 4; b) 1 e 5; c) 3 e 4; d) 1 e 4; e) 1 e 3. 08) Provar: a) ( - ), b) - = 09) Considere os seguintes conjuntos: = {1, 2, {1,2}}, = {{1},2} e C = {1,{1},{2}} ssinale abaixo a alternativa falsa: a) = {2} b) C = {{1}} c) - C = d) e) P() = {{1,2}}, onde P() é o conjunto das partes de 10) Dados os conjuntos = {a, b, c, d}, = {b, c, d, e}, C = {a, c, f}, então: [(- ) (- C) ( )] [( C) ( C)] é: a) {a, b, c, d, e} b) {a, b, c, d} c) {a, c} d) {a, b} e) {b, c, d} 11) ejam os conjuntos com 2 elementos, com 3 elementos, C com 4 elementos, então: a) tem no máximo 1 elemento b) C tem no máximo 5 elementos c) ( ) C tem no máximo 2 elementos d) ( ) C tem no máximo 2 elementos e) tem 2 elementos pelo menos 12) eja = { 1, 2, 3} o conjunto de sintomas de uma determinada moléstia. Em geral, um portador desta moléstia apresenta apenas um subconjunto não vazio de. ssinale a única alternativa correspondente ao número de subconjuntos de que poderão apresentar os pacientes portadores desta moléstia. a) 7 b) 8 c) 16 d) 15 e) 14 13) (FGV) implificando a expressão abaixo ( X Y ) ( X Y ) teremos: a) universo b) vazio c) X Y d) X Y e) X Y 14) Classifique em verdadeiro ou falso, supondo que e são subconjuntos quaisquer de um universo U: a) - = c b) - c = c) c - c = - d) ( c ) c = e) ( - ) c = ( c ) c = c 15) Prove que: a) ( ) c = c c b) ( ) c = c c 06) ejam, e C subconjuntos do conjunto dos números reais. Então podemos afirmar que: a) ( ) c = c c ; b) ( ) c = c c ; c) e então c c ; d) ( ) C c = ( c C) c ( c C) c ; e) ( C) c = ( c ) ( C c ). Nota: c significa o complementar de no conjunto dos reais. (Leisde de Morgan) 16) (IT) eja ={(-1) n /n! + sen(n!π/6); n N}. Qual conjunto a seguir é tal que sua intersecção com dá o próprio? a) (-, -2] U [2, ) b) (-,-2] c) [-2, 2] d) [-2, 0] e) [0, 2)
2 17) (FUVET) Uma pesquisa de mercado sobre o consumo de três marcas, e C de um determinado produto apresentou os seguintes resultados: - 48% e - 18% - 45% e C - 25% C - 50% e C - 15% nenhuma das 3-5% a) Qual é a porcentagem dos entrevistados que consomem as três marcas, e C? b) Qual é a porcentagem dos entrevistados que consomem uma e apenas uma das três marcas? 18) (UFPR) Considere o conjunto ={1,2,-1,-2}. É correto afirmar que: 01) O total de subconjuntos de é igual ao número de permutações de quatro elementos. 02) O conjunto solução da equação (x 2-1)(x 2-4)=0 é igual a. 04) O conjunto-solução da equação 2log 10x=log 103+log 10[x-(2/3)] está contido em. 08) Todos os coeficientes de x no desenvolvimento de (x-1) 4 pertencem a. 19) (IT) ejam e subconjuntos não vazios de R, e considere as seguintes afirmações: (I) ( - ) x ( U x ) x = (II) ( - x ) x = - x (III) [( x - ) ( - )] x = obre essas afirmações podemos garantir que: a) apenas a afirmação (I) é verdadeira. b) apenas a afirmação (II) é verdadeira. c) apenas a afirmação (III) é verdadeira d) todas as afirmações são verdadeiras. e) apenas as afirmações (I) e (II) são verdadeiras. 20) Complete as sentenças a seguir, de forma a torná-las todas verdadeiras: a) {,,5,4} U {,7,2, } = {1,,,,6, } b) {2,9, } U {,,,7} = {,4,5,,9,10,90} 21) Monte um conjunto e um conjunto, sabendo-se que tem apenas 2 elementos, que em pelo menos 3 elementos e que U H, sendo H = {1, 3, 4, 8, 16, 24, 40} No teste de qualidade, 60 foram aprovadas e 40 reprovadas, por conterem pílulas de farinha. No teste de quantidade, 74 foram aprovadas e 26 reprovadas, por conterem um número menor de pílulas que o especificado. O resultado dos dois testes mostrou que 14 caixas foram reprovadas em ambos os testes. Quantas caixas foram aprovadas em ambos os testes? 24) (UNIRIO) Considere três conjuntos, e C, tais que: n()=28, n()=21, N(C)=20, n( )=8, n( C)=9, n( C)=4 e n( C)=3. ssim sendo, o valor de n((u) C) é: a) 3 b) 10 c) 20 d) 21 e) 24 25) (UFF) Dado o conjunto P = {{0}, 0,, { }}, considere as afirmativas: (I) {0} P (II) {0} P (III) P Com relação a estas afirmativas conclui-se que: a) Todas são verdadeiras. b) penas a I é verdadeira. c) penas a II é verdadeira. d) penas a III é verdadeira. e) Todas são falsas. 26) (UFE) e ={-2,3,m,8,15} e ={3,5,n,10,13} são subconjuntos de Z (números inteiros), e ={3,8,10}, então a) n - m b) n + m c) m - n U d) mn e) {m + n, mn} 27) (MCKENZIE) I) e {5; 7} e {5; 6; 7; 8}, então os possíveis conjuntos são em números de 4. II) upondo e conjuntos quaisquer, então sempre temos ( ) U ( U ) = U. III) soma de dois números irracionais pode ser racional. Das afirmações anteriores: a) I, II e III são verdadeiras. b) apenas I e II são verdadeiras. c) apenas III é verdadeira. d) apenas II e III são verdadeiras. e) apenas I e III são verdadeiras. 28) (UFF) Os conjuntos não-vazios M, N e P estão, isoladamente, representados abaixo. Considere a seguinte figura que estes conjuntos formam. 22) (Universidade Federal do Paraná - 97) Foi realizada uma pesquisa para avaliar o consumo de três produtos designados por,, C. Todas as pessoas consultadas responderam à pesquisa e os resultados estão indicados no quadro a seguir: região hachurada pode ser representada por: a) M U (N P) b) M -(N U P) c) M U (N- P) d) N -(M U P) e) N U (P M) Observação: O consumidor de dois produtos está incluído também como consumidor de cada um destes dois produtos. Com base nestes dados, calcule o número total de pessoas consultadas. 23) (UFRJ) Uma amostra de 100 caixas de pílulas anticoncepcionais fabricadas pela Nascebem.. foi enviada para a fiscalização sanitária.
3 29) e ={ x N 1 < x 6} e o conjunto possui 15 subconjuntos não vazios, então x possui número de elementos igual a: a) 10 b) 12 c) 20 d) 24 e) 25 30) (F) ssinale a afirmativa correta. a) interseção de conjuntos infinitos pode ser finita. b) interseção infinita de conjuntos não vazios é vazia. c) reunião infinita de conjuntos não vazios tem infinitos elementos. d) interseção dos conjuntos e possui sempre menos elementos do que o e do que o. e) n.d.a. 31) (MN) Em N, o conjunto dos números inteiros naturais, representa-se por D(x) o conjunto dos divisores de x. O número de elementos de D(54) D(120) é: () 4 () 6 (C) 8 d) 11 (E) 12 32) (EFOMM) eja = {,{ 2},{ 1,2 } (I) 1 (II) 2 (III) (IV) { 1,2} Estão corretas as afirmações: () I e II () I e III (C) III e IV (D) III (E) I 1. Considere as afirmações: 33) (MCK) Dados M, N e P, subconjuntos não vazios de E, e as afirmações: I. M N = M N M ; II. M N = M N M ; III. ( P M e P N) P (M N) ; IV. M E N M C N = V. M N N CE M = E Então o número de afirmações corretas é: a) 1 b) 2 c) 3 d) 4 e) 5 34) (PUC-P) e = {n n = 2p 1e p }, então: a) n é número natural ímpar se = R b) n é número natural ímpar p c) n é número natural ímpar se e somente se = Z d) n é número natural ímpar se e somente se = N e) n é número natural ímpar se e somente se = N * 35) (UFRN) e, e C são conjuntos tais que n ( ( C) = 15, n ( ( C)) = 20, n (C ( )) = 35, n ( C) = 120, então n(( ) ( C) ( C)) é igual a: 36) (UFPE) eja = { 1, 2, 3 } o conjunto de sintomas de uma determinada moléstia. Em geral, um portador desta moléstia apresenta apenas um subconjunto não vazio de. ssinale a única alternativa correspondente ao número de subconjuntos de que poderão apresentar os pacientes portadores desta moléstia. a) 7 b) 8 c) 16 d) 15 e) 14 37) (CEEP) Numa Universidade são lidos apenas dois jornais X e Y. 80% dos alunos da mesma lêem o jornal X e 60% o jornal Y. abendose que todo aluno é leitor de pelo menos um dos dois jornais, assinale a alternativa que corresponde ao percentual de alunos que lêem ambos. a) 80% b) 14% c) 40% d) 60% e) 48% 38) (FGV) De todos os empregados de uma firma, 30% optaram por um plano de assistência médica. firma tem a matriz na Capital e somente duas filiais, uma em antos e outra em Campinas. 45% dos empregados trabalham na matriz e 20 % dos empregados da Capital optaram pelo plano de assistência médica e que 35% dos empregados da filial de antos o fizeram, qual a porcentagem dos empregados da filial de Campinas que optaram pelo plano a) 47% b) 32% c) 38% d) 40% e) 29% 39) (FGV) Numa pesquisa de mercado, foram entrevistadas várias pessoas acerca de suas preferências em relação a 3 produtos:, e C. Os resultados da pesquisa indicaram que: 210 pessoas compram o produto 210 pessoas compram o produto 20 pessoas compram os 3 produtos 100 pessoas não compram nenhum dos 3 produtos 60 pessoas compram os produtos e 70 pessoas compram os produtos e C 50 pessoas compram os produtos e C Quantas pessoas foram entrevistadas a) 670 b) 970 c) 870 d) 610 e) ) (FGV) No problema anterior, calcular quantas pessoas compram apenas o produto ; apenas o produto ; apenas o produto C. a) 210; 210; 250 b) 150; 150; 180 c) 100; 120; 150 d) 120; 140; 170 e) n.d.a a) 40 b) 50 c) 60 d) 70 e) 80
4 41) (FGV) Numa Universidade com N alunos, 80 estudam Física,90 iologia, 55 Química, 32 iologia e Física, 23 Química e Física, 16 biologia e Química e 8 estudam nas 3 faculdades. abendo-se que esta Universidade somente mantém as 3 falculdades, quantos alunos estão matriculados na Universidade a) 304 b) 162 c) 146 d) 154 e) n.d.a 42) (PUC-P) Em um exame vestibular, 30 % dos candidatos eram da área de Humanas. Dentre esses candidatos, 20% optaram pelo curso de Direito. Do total dos candidatos, qual a porcentagem dos que optaram por Direito a) 50% b) 20% c) 10% d) 6% e) 5% 47) (FUVET) ejam a e b números naturais e p um número primo a) se p divide a² + b² e p divide a, então p divide b b) se p divide ab, então p divide a e p divide b c) se p divide a + b, então p divide a e p divide b d) se a divide p, então a é primo e) se a divide b e p divide b, então p divide a 48) (EEP) Considere as afirmações a respeito da parte hachurada do diagrama abaixo: 43) (PUC-P) Dentre os inscritos em um concurso público, 60% são homens e 40% são mulheres. Já tem emprego 80% do homens e 30% das mulheres. Qual a porcentagem dos candidatos que játem emprego a) 60% b) 40% c) 30% d) 24% e) 12% 44) (CECEM) Um subconjunto X de números naturais contém 12 múltiplos de 4, 7 múltiplos de 6, 5 múltiplos de 12 e 8 números ímpares O número de elementos de X é: a) 32 b) 27 c) 24 d) 22 e) 20 45) (V.UNIF.R) Dados os conjuntos = {n a n N} {n M b b n N} subconjunto de M b sempre que: M a, com a e b naturais não nulos, então Ma é a) a for menor do que b b) b for menor do que a c) a for divisor de b d) b for divisor de de a e) a e b forem pares I. ( C) II. ( C) III. ( C) IV. ( C) (s) firmação(ões) correta(s) é (são): a) I b) III c) I e IV d) II e III e) II e IV 46) (PUCCMP) um aluno foram propostas as questões: Numa divisão, cujo resto não é nulo, o menor número que se deve adicionar ao dividendo para que ela se torne exata é: (d r) (sendo d o divisor e r o resto). soma de 3 números naturais consecutivos é sempre divisível por 3. C O produto de 2 números ímpares consecutivos, aumentando de uma unidade é sempre um quadrado perfeito. O aluno respondeu que 3 questões propostas são verdadeiras. Responda você: a) o aluno acertou somente em relação à terceira questão b) o aluno acertou somente em relação à primeira questão c) acertou integralmente d) o aluno acertou somente, em relação à segunda questão e) n.d.a 49) (FGV) Considere a parte hachurada nos diagramas, onde e são subconjuntos de : ( 1 ) ( 4 ) ( 2 ) ( 5 ) Considere as denominações: ( 3 )
5 a) b) c) d) e) 50) (UF) Na figura ao lado, estão representados os conjuntos não vazios, e C. região sombreada representa o conjunto: C a) C b) ( ) C c) ( ) C d) ( C) e) ( C)
6 GRITO 01) C 02) D 03) E 04) 05) C 06) E 07) D 09) D 10) C 11) C 12) 13) C 14) VVVVV 16) C 17) a) 10 %; b) 57 % 18) 04 19) 20) a) {1, 6, 5, 4} {1, 7, 2, 6} = {1, 2, 4, 5, 6, 7} b) {2, 9, 10} {4, 5, 90, 7} = {2, 4, 5, 7, 9, 10, 90} 21) = {1, 3} = {4, 8, 16} 22) 71 23) 48 24) 25) 26) 27) E 28) 29) C 30) 31) 32) E 33) E 34) E 35) 36) 37) C 38) D 39) D 40) C 41) 42) D 43) 44) D 45) C 46) C 47) 48) D 49) 50) C Dúvidas e sugestões, [email protected]
Visite :
01) (UFE) e e são dois conjuntos não vazios e é o conjunto vazio, é verdade que, das afirmações: I. = { } II. ( ) ( ) = ( ) ( ) III. { } = {} {} IV. {,, } são verdadeiras somente: a) I e II d) III e IV
Lista de Exercícios de Matemática Conjuntos parte I Profº. Márcio Prieto
1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Represente em linguagem simbólica os seguintes subconjuntos de IR. 3. Sendo A = {5, 7, 9}, B = {0, 9, 10, 90}, C = {7, 8, 9, 10}, D
MATEMÁTICA - 3 o ANO MÓDULO 03 OPERAÇÕES EM CONJUNTOS NUMÉRICOS
MATEMÁTICA - 3 o ANO MÓDULO 03 OPERAÇÕES EM CONJUNTOS NUMÉRICOS Como pode cair no enem (ENEM) Numa pesquisa para se avaliar a leitura de três revistas A, B e C, descobriu-se que 81 pessoas leem, pelo menos,
Projeto Jovem Nota 10 Conjuntos Lista 1 Professor Marco Costa
1 1. (Universidade Federal do Paraná - 97) Projeto Jovem Nota 10 Foi realizada uma pesquisa para avaliar o consumo de três produtos designados por A, B, C. Todas as pessoas consultadas responderam à pesquisa
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem
DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO
DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: 2018-2 TURNO: NOTURNO ALUNO a): 1ª Lista de Exercícios - Introdução à Lógica Matemática, Teoria
CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA
CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com
SuperPro copyright Colibri Informática Ltda.
1. (Fuvest-gv) Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15%
NOÇÕES. 04- (F. Santo André-SP) Seja A um conjunto com 7 elementos. O número total de subconjuntos de A é: a) 16 b) 128 c) 56 d) 100 e) 256
MATQUEST CONJUNTOS PROF.: JOSÉ LUÍS NOÇÕES 01- (CATANDUVA-SP) Dado o conjunto A = {, {a}, b} com {a} b a 0, pode-se afirmar que: a) {, {b}} A b) {, {a}} A c) {, a} A d) {a, b} A e) A 02- (CEFET) Considerando
ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível
2 - Explicite os conjuntos indicados: (1) { x N x 5 } (3) { x N x 2 < 5 } (2) { x N x 2 = 4 } (4) { x Z x 2 < 5 }
Lista de Conjuntos Numéricos Revisão para o Simulado Nacional Rumoaoita (Ciclo Zero) 1 - Considere os conjuntos: A - conjunto dos números pares positivos; B - conjunto dos números ímpares positivos; C
1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados:
1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15% nenhuma das
Lista 1. 1 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira
ÁLLO I 1 a LIST DE EXERÍIOS Prof. Ânderson Vieira 1. Dê os elementos dos seguintes conjuntos: = {x x é letra da palavra matemática} = {x x é cor da bandeira brasileira} = {x x é nome do estado brasileiro
RLM - PROFESSOR CARLOS EDUARDO AULA 3
AULA 3 Sucessões = sequências(numéricas) São conjuntos de números reais dispostos numa certa ordem. Uma sequência pode ser FINITA ou INFINITA. Ex: a) (3, 6, 9, 12) sequência finita P.A de razão 3 b) (5,
TEORIA DOS CONJUNTOS. Inclusão: Obs: A, A. a) A B e) D B i) B D. b) B C f) C A j) C B. c) C D g) C B k) A C d) D A h) B A l) D A
TEORI DOS CONJUNTOS Representação 1. Por extensão: Ex: = {1, 2, 4,7} = {a, b, c, d} 2. Por compreensão: Ex: = {x x é vogal} = {x N x é par} C = {x x é divisor de 5} 3. Por diagrama: Ex: Tipos de conjuntos:
Lista 3. A = x x < 9 4 e x > 6 } B = {x 0 x = 2} C = { x x é inteiro e x 2 = 3 } D = {x 2x+1 = 7} A = {x 0 x = 0} B = x x > 9 4 e x < 6 }
3 a LIST DE EXERÍIOS Prof. Ânderson Vieira 1. Dê os elementos dos seguintes conjuntos: = {x x é letra da palavra matemática} = {x x é cor da bandeira brasileira} = {x x é nome do estado brasileiro que
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem
COLÉGIO EQUIPE DE JUIZ DE FORA
1. Os conjuntos não-vazios M, N e P estão, isoladamente, representados abaixo. Considere a seguinte figura que estes conjuntos formam. A região hachurada pode ser representada por: a) M (N P) b) M (N P)
Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):
Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto
MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin
MATEMÁTICA Conjuntos Professor Marcelo Gonzalez Badin Alguns símbolos importantes Œ Pertence / Tal que œ Não Pertence : Tal que $ " fi Existe Não existe Qualquer (para todo) Portanto Se, e somente se,...(equivalência)
Matemática A Extensivo V. 2
GRITO Matemática Extensivo V. Exercícios 0) a) Verdadeira. e são elementos de. b) Verdadeira. Pois {} é elemento de. c) Verdadeira. Pois não é elemento de. d) Verdadeira. Pois {} é um subconjunto de. e)
Conjuntos & Conjuntos Numéricos. Exercícios Propostos
Enem e esb Matemática Cursinho: niversidade para Todos Professor: Cirlei Xavier Lista: 4 a Lista de Matemática luno (a): Disciplina: Matemática Conteúdo: Conjuntos Turma: e B Data: gosto de 2016 Conjuntos
MÓDULO 9. Conjuntos. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Conjuntos 1. (ITA) Considere as seguintes afirmações sobre o conjunto U = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: I. Ø U e n(u) = 10. II.
Aula 1 Conjuntos Numéricos
1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 2 a Lista de Exercícios
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I 2 a Lista de Exercícios Tópico: Conjuntos, Elementos, Subconjuntos e Conjuntos
2 a Lista de Exercícios 2001/I
1 Universidade Federal de Viçosa Departamento de Matemática MAT 131 Introdução à Álgebra a Lista de xercícios 001/I Tópico: onjuntos e elementos 1) Definir, pela enumeração dos seus elementos, cada um
BIMESTRAL - MATEMÁTICA - 1ºBIMESTRE
BIMESTRAL - MATEMÁTICA - 1ºBIMESTRE Série: 3ªEM Gabarito 1- : (PUC-RIO 2010) Sejam x e y números tais que os conjuntos {0, 7, 1} e {x, y, 1} são iguais. Então, podemos afirmar que: x = 0 e y = 5 x + y
LISTA DE EXERCÍCIOS DE MATEMÁTICA
1. (Ita 95) Seja A={(-1)¾/n! + sen(n! /6); n Æ N}. Qual conjunto a seguir é tal que sua intersecção com A dá o próprio A? a) (-, -2]» [2, ) b) (-,-2] c) [-2, 2] d) [-2, 0] e) [0, 2) 2. (Vunesp 95) Uma
Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira:
Conjuntos Introdução Lembramos que conjunto, elemento e relação de pertinência são considerados conceitos primitivos, isto é, não aceitam definição. Intuitivamente, sabemos que conjunto é uma lista, coleção
MÓDULO 9. Conjuntos. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Conjuntos 1. (ITA) Considere as seguintes afirmações sobre o conjunto U = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: I. Ø U e n(u) = 10. II.
Conjunto, elemento e pertinência entre elemento e conjunto são noções primitivas, ou seja, conceitos iniciais para os quais não há definição.
CONJUNTOS 1. NOÇÕES PRIMITIVAS E NOTAÇÃO Conjunto, elemento e pertinência entre elemento e conjunto são noções primitivas, ou seja, conceitos iniciais para os quais não há definição. Um conjunto costuma
Fundamentos de Matemática
Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,
Atividades de Conjuntos
Atividades de Conjuntos Conjuntos 01) Diga se é verdadeira ou falsa cada uma das sentenças abaixo. a) 0 {0, 1, 2, 3, 4} f) a {a, {a}} b) {a} {a, b} g) a {a, {a}} c) {0} h){, {a, {a}} {a} d) 0 i) {, {a}}
MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.
MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um
(B A )=B e ( A B)= A ()
Lógica/oitavos anos do E. Fundamental II/ Listagem de estudos referência para prova- PUPO 1- Analise as proposições abaixo e a seguir atribua a cada uma delas valor lógico: a) Se A é um conjunto de 3 elementos
CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...
ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início
TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.
TEORIA DOS CONJUNTOS Professor: Marcelo Silva [email protected] Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando
CONCEITOS BÁSICOS E CONJUNTOS
MATEMÁTICA CONCEITOS BÁSICOS E CONJUNTOS. UFMS Quantos são os elementos do conjunto {x IN / 0 π < x < π + 0}? a) b) c) d) infinitos e) o conjunto é vazio. F.I. Anápolis-GO Dados os conjuntos: A = {0,,,
Exercícios de Matemática Conjuntos - 2
Exercícios de Matemática Conjuntos - 2 TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considerando-se os conjuntos A = { x Æ IN,
Exercícios de Matemática Produtos Notáveis Fatoração
Exercícios de Matemática Produtos Notáveis Fatoração TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p =
A seguir, estão três afirmativas sobre números reais:
Questão 01) O conjunto X = {4m + 5n;m,n Z + } contém todos os números inteiros positivos a) pares, a partir de 4. b) ímpares, a partir de 5. c) a partir de 9, inclusive. d) a partir de 12, inclusive. e)
Questão 03 Sejam os conjuntos: A) No conjunto A B C, existem 5 elementos que são números inteiros.
Questão 0 Dada a proposição: Se um quadrilátero é um retângulo então suas diagonais cortam-se ao meio, podemos afirmar que: A) Se um quadrilátero tem as diagonais cortando-se ao meio então ele é um retângulo.
Lógica/oitavos anos do E. Fundamental II/ Listagem de estudos referência para prova- PUPO
Lógica/oitavos anos do E. Fundamental II/ Listagem de estudos referência para prova- PUPO 1- Analise as proposições abaixo e a seguir atribua a cada uma delas valor lógico: a) Se A é um conjunto de 3 elementos
Interbits SuperPro Web
1. (Ita 2017) Sejam A {1, 2, 3, 4, 5} e B { 1, 2, 3, 4, 5}. Se C {xy : x A e y B}, então o número de elementos de C é a) 10. b) 11. c) 12. d) 13. e) 14. 2. (Ita 2017) Sejam X e Y dois conjuntos finitos
Disciplina: Matemática Data da entrega: 14/03/2015.
Lista de Exercícios - 01 Aluno (a): Nº. Professor: Flávio Turma: 1ª série: (ensino médio) Disciplina: Matemática Data da entrega: 14/03/2015. Observação: A lista deverá apresentar capa, enunciados e as
Interbits SuperPro Web
1. (Ita 2017) Sejam A e B dois conjuntos com 3 e 5 elementos, respectivamente. Quantas funções sobrejetivas f : B A existem? 2. (Ita 2017) Sejam A {1, 2, 3, 4, 5} e B { 1, 2, 3, 4, 5}. Se C {xy : x A e
Parte II. votos D 34 A 66 P 63. D e A 17. D e P 22. A e P 50. D,A e P 10. Sem problemas
Parte II 1) Numa pesquisa feita com todos os moradores de um prédio, constatou-se que mais de 45% são homens e que mais de 60% pintam o cabelo. Explique por que se pode concluir que, nesse prédio, há homens
(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
Conjuntos e Aritmética (resolução)
Revisão 01 Conjuntos e Aritmética (resolução) 01. O conjunto A tem os seguintes elementos Assim sendo, temos 1, 2, 3, {1, 2}, {3, 4} a) {3} A verdadeira, pois 3 A b) {1, 2, 3} A verdadeira, pois 1, 2,
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Rafael Carvalho 7º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos Rafael Carvalho 7º Período Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos
MATRIZ FORMAÇÃO E IGUALDADE
MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se
Capítulo 2 Noções de conjuntos
THE BRIDGEMAN/KEYSTONE Capítulo 2 Noções de conjuntos X SAIR Para representar o conjunto A formado pelos números naturais de 0 a 10, podem-se utilizar três possibilidades: 1ª forma: pela citação dos elementos.
MAT Álgebra I para Licenciatura 2 a Lista de exercícios
MAT0120 - Álgebra I para Licenciatura 2 a Lista de exercícios 1. Quais são os números de cifras iguais que são divisíveis por 3? Idem, por 9? Idem por 11? 2. Determinar mmc (56, 72) e mmc (119, 272). 3.
III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária.
1 Projeto Jovem Nota 10 1. (Fuvest 2000) Um número inteiro positivo n de 4 algarismos decimais satisfaz às seguintes condições: I) a soma dos quadrados dos 1 e 4 algarismos é 58; II) a soma dos quadrados
Matemática. Resolução das atividades complementares. M3 Conjuntos
Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Sumário. 1 CAPÍTULO 1 Revisão de álgebra
Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se logicamente como um termo não definido. Um conjunto se pode entender
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos
OS 70 TONS DE RACIOCÍNIO LÓGICO
OS 70 TONS DE RACIOCÍNIO LÓGICO DIAGRAMAS LÓGICOS Diagramas lógicos Todo Sinônimos: qualquer um ou outra similar. Representação: Conclusão: Todo A é B. Alguns elementos de B são A ou existem B que são
CURSO DE MATEMÁTICA. Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha
CURSO DE MATEMÁTICA Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha Qual a importância de conhecer os CONJUNTOS NUMÉRICOS? Meu querido aluno,
EXERCÍCIOS DO CAPÍTULO 1
EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes
Lista de Exercícios de Matemática
Lista de Exercícios de Matemática Álgebra e Aritmética 01) (Epcar/2003) - De dois conjuntos A e B, sabe-se que: I) O número de elementos que pertencem a A B é 45; II) 40% desses elementos pertencem a ambos
Matemática I Conjuntos Conjuntos Numéricos. Prof.: Joni Fusinato 1
Matemática I Conjuntos Conjuntos Numéricos Prof.: Joni Fusinato [email protected] [email protected] 1 Teoria dos Conjuntos Teoria matemática dedicada ao estudo da associação entre objetos com
Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =
Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de
PROGRESSÃO PARCIAL/DEPENDÊNCIA MATEMÁTICA 1º ANO- 1ª ETAPA
PROGRESSÃO PARCIAL/DEPENDÊNCIA 06- MATEMÁTICA º ANO- ª ETAPA ) Classifique os conjuntos abaio em vazio, unitário, finito ou infinito: a) A é o conjunto das soluções da equação + 5 = 9. B = { / é número
PROFESSOR FLABER 2ª SÉRIE Circunferência
PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de
Lista de exercícios 01. Aluno (a): Turma: 1ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 01 Aluno (a): Turma: 1ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes
Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5
Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então
CAPÍTULO 1 - Teoria dos conjuntos
TEORI DOS CONJUNTOS 1. CONCEITO DE CONJUNTOS teoria dos conjuntos tem inicio com o matemático Georg Cantor ( 1845-1918). Como na Geometria Euclidiana adota-se ponto, reta e plano como conceitos primitivos
Roteiro da segunda aula presencial - ME
PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência
4) (PUC RJ) Uma população consome 3 marcas de sabão em pó: A, B e C. Feita uma pesquisa de mercado, colheram- se os resultados tabelados abaixo.
Lista de exercícios Diagramas de Venn Profª Juliana 1-) Uma avaliação com duas questões foi aplicada a uma classe com quarenta alunos. Quinze alunos acertaram as duas questões, 25 acertaram a primeira
Conjuntos Numéricos Conjunto dos números naturais
Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto
A matriz das incógnitas é uma matriz coluna formada pelas incógnitas do sistema.
MATEMÁTICA MÓDULO 1 SISTEMA LINEAR Um sistema linear de m equações a n incógnitas é um conjunto de m (m 1) equações lineares a n incógnitas e pode ser escrito como segue: a a a b a a a b 11 1 1 1n n 1
EXERCÍCIOS 2006 APOSTILA MATEMÁTICA
EXERCÍCIOS 2006 APOSTILA MATEMÁTICA Professor: LUIZ ANTÔNIO 1 >>>>>>>>>> PROGRESSÃO ARITMÉTICA P. A.
A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.
Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos
Ciências da Natureza e Matemática
Ciências da Natureza e 1 CEDAE Acompanhamento Escolar Ciências da Natureza e 1. Num colégio, onde estudavam 250 alunos, houve, no final do ano, recuperação nas disciplinas de e Português. 10 alunos fizeram
OPERAÇÕES COM CONJUNTOS
OPERAÇÕES COM CONJUNTOS Vamos estudar agora problemas envolvendo as operações entre conjuntos que serão solucionados utilizando-se os diagramas de Venn. 01. Uma escola oferece reforço escolar em todas
matematicautodidata.com
Exercite! Data: Nota: Nome: Tópico: Médio 01 - Conjuntos 1. Dê os elementos dos seguintes conjuntos: (a) A = {x x é a letra da palavra autodidata } (b) B = {x x é o estado do sudeste do Brasil } (c) C
MATEMÁTICA DISCRETA TEORIA DOS CONJUNTOS PROFESSOR WALTER PAULETTE FATEC SP
MTEMÁTIC DISCRET TEORI DOS CONJUNTOS PROFESSOR WLTER PULETTE FTEC SP 2009 02 2 2 TEORI DOS CONJUNTOS 1. CONCEITO DE CONJUNTOS teoria dos conjuntos tem inicio com o matemático Georg Cantor ( 1845-1918).
MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00
MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde
Teoria dos conjuntos
Matemática I Teoria dos conjuntos UNE - Universidade do Estado da ahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Teoria dos conjuntos Prof. MSc. Rebeca Dourado
Exercícios de Matemática Conjuntos Numéricos
Exercícios de Matemática Conjuntos Numéricos TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe 96) Na(s) questão(ões) a seguir escreva nos parênteses a letra (V) se a afirmativa for verdadeira ou (F) se for falsa. 1.
Programa de Recuperação Paralela PRP - 01
Programa de Recuperação Paralela PRP - 01 Nome: 1ª Etapa 2013 Disciplina: Matemática 1ª Série Ensino Médio Página 1 de 26-28/6/2013-6:13 PROGRAMA DE RECUPERAÇÃO PARALELA PRP 01 MATEMÁTICA 01- Seja a função
Preparatórios e Cursos Eduardo Chaves - 1
1 3-LÓGICA DOS CONJUNTOS 2.1 Diagrama de Venn Venn foi um matemático estudioso da teoria dos conjuntos e funções. Ele criou estes diagramas visualizado abaixo,onde está representado o conjunto das vogais
Conjuntos Numéricos. 16 fev. 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto
Conjuntos Numéricos 16 fev 01. Resumo 02. Exercícios de Aula 03. Exercícios de Casa 04. Questão Contexto RESUMO Ao estudarmos os conjuntos numéricos, estamos dando um foco num segmento do estudo dos conjuntos.
Matemática Conjuntos - Teoria
Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar
Extensivo Matemática A VOL 2
Extensivo Matemática VOL 2 01) N = {0, 1, 2, 3, 4,...} Conjunto dos números naturais B = {x N/ 2 x 7} a) V: 7 B = {2, 3, 4, 5, 6, 7} b) F: 5 é um elemento de B c) F: x, com x N, tal que 2 x 7. d) F: os
Conjuntos. Parte I. Página 1. mdc x,y = 33;
Parte I Conjuntos 1. (Ufsj 2013) O diagrama que representa o conjunto ( A B) C ( C B) A é a) b) c) d) 2. (Cefet MG 2013) Em uma enquete realizada com pessoas de idade superior a 30 anos, pesquisou-se as
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Isabelle Araujo 5º período de Engenharia de Produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Conjuntos Isabelle Araujo 5º período de Engenharia de Produção Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto
RACIOCÍNIO LÓGICO. Aula 1 - Introdução a Teoria de Conjuntos. Prof.: Jorge Junior
RACIOCÍNIO LÓGICO Aula 1 - Introdução a Teoria de Conjuntos Prof.: Jorge Junior Conteúdo Programático desta aula Conjuntos e Elementos Representações Subconjuntos Pertinência e Inclusão Tipos de Conjunto
fevereiro PC Sampaio (Natália Peixoto)
10 fevereiro 06 PC Sampaio (Natália Peixoto) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
Janeiro M A T E M Á T I C A CONJUNTOS TEORIA DOS CONJUNTOS. Sejam bem-vindos ao nosso primeiro dia de Cronograma.
VEST Janeiro @vestmapamental M A T E M Á T I C A CONJUNTOS TEORIA DOS CONJUNTOS Sejam bem-vindos ao nosso primeiro dia de Cronograma. Iniciando pela Matemática, uma disciplina exata, que requer muito compromisso,
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
MATEMÁTICA Questões selecionadas de provas diversas
MATEMÁTICA Questões selecionadas de provas diversas 01. Uma pesquisa realizada com 1000 universitários revelou que 280, 400 e 600 desses universitários são alunos de cursos das áreas de tecnologia, saúde
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. João Victor Tenório Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos João Victor Tenório Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos os estudantes
