Atividades de Conjuntos
|
|
|
- Vitória Pais Bonilha
- 9 Há anos
- Visualizações:
Transcrição
1 Atividades de Conjuntos Conjuntos 01) Diga se é verdadeira ou falsa cada uma das sentenças abaixo. a) 0 {0, 1, 2, 3, 4} f) a {a, {a}} b) {a} {a, b} g) a {a, {a}} c) {0} h){, {a, {a}} {a} d) 0 i) {, {a}} e) {a} j) {a, b} {a, b, c, d} 02) Sejam os conjuntos A = {a, b, c, d}, B = {c, d, e, f, g} e C = {b, d, e, g}. Determine: a) A B c) C B e) A (B C) b) B A d) (A C) B f) (A B) (A C) 03) Sendo o conjunto A = {1, 2, 3, 4, 5} e o conjunto B = {2, 4, 5, 6, 7} então, A B é: a) {2, 4, 5} d) {1, 3, 5} b) {1, 2, 3, 6} e) {1, 2, 3, 4, 5, 6} c) {2, 4, 6} 04) Dados os conjuntos: A = {0, 1, 3, 5}, B = {1, 3, 5, 7} e C = {3, 8, 9}, o conjunto M, definido por M = B (A C) é: a) {1, 3, 5} b) {7} c) {7, 5, 8, 9} d) {0, 8, 9} e) {1, 5, 7} 05) Dado o conjunto P = { 0},0,,{ } I. {0} P II. {0} P III. P Com relação a estas afirmativas conclui-se que:, considere as afirmativas: a) Todas são verdadeiras. b) Apenas a I é verdadeira. c) Apenas a II é verdadeira. d) Apenas a III é verdadeira. e) Todas são falsas. 06) Se A = { x N / x = 4n, com n N} e número de elementos de A B é: * 20 B = { x N / = n, com n N}, então o x a) 3 b) 2 c) 1 d) 0 e) Impossível de determinar.
2 07) Sabemos que C B A = { todos os elementos que pertencem a A e não pertencem a B}, A isto é, = A B. Com base nesta definição, determine C, sabendo que A={0,2,4,6,8 } C B A U ={01,,2,3,4,5,6,7,8,9} e. 08) Sejam A e B conjuntos tais que A = {x; x = 3n, com n N e x 30} e B = {x; x N e x é ímpar}. Se o conjunto X é tal que X (A B) e (A B) X = {3, 15, 21}, então X é igual a: a) b) {3, 15, 21} c) {9, 27} d) {0, 6, 12, 18, 24, 27, 30} e) {0, 1, 5, 6, 7, 11, 12, 13, 18, 23, 24, 25, 27, 29, 30} 09) Se A, B ea B são conjuntos com 90, 50 e 30 elementos, respectivamente, então o número de elementos do conjunto A B é: a) 10 b) 70 c) 85 d) 110 e) ) Num colégio de segundo grau com 2000 alunos, foi realizada uma pesquisa sobre o gosto dos alunos pelas disciplinas de Física e Matemática. Os resultados da pesquisa se encontram na tabela a seguir: U O número de alunos que gostam de Matemática e Física simultaneamente, é: a) 700 b) 500 c) 200 d) 100 e) ) Numa pesquisa, realizada em alguns colégios, sobre a preparação dos alunos para o concurso vestibular, foram obtidos os seguintes resultados: Número de alunos Cursou pré-vestibular 358 Contratou professor particular 110 Ambas as situações anteriores 54 Nenhuma das situações anteriores 36 Com base nesses dados, o número de alunos consultados foi: a) 378 b) 414 c) 450 d) 510 e) 514
3 12) Numa festa, 29 pessoas discutiam sobre dois filmes A e B. Precisamente: treze pessoas assistiram ao filme A; cinco pessoas assistiram aos dois filmes; seis pessoas não assistiram a nenhum dos dois filmes. Quantas pessoas assistiram ao filme B, sabendo que todas as 29 pessoas opinaram? 13) Uma empresa, fabricante de achocolatados, pretende lançar um novo produto no mercado. Para isso, encomendou uma pesquisa sobre as preferências dos consumidores entre duas embalagens A e B. Foram consultadas 402 pessoas, e o resultado foi precisamente o seguinte: 150 pessoas gostaram somente da embalagem A; 240 pessoas gostaram da embalagem B; 60 pessoas gostaram das duas embalagens. Quantas pessoas não gostaram de nenhuma das duas embalagens? 14) Um professor de Português sugeriu em uma classe a leitura dos livros Helena, de Machado de Assis, e Iracema, de José de Alencar. Vinte alunos leram Helena, 15 leram só Iracema, 10 leram os dois livros e 15 não leram nenhum deles. a) Quantos alunos leram Iracema? b) Quantos alunos leram só Helena? c) Qual é o número de alunos nessa classe? 15) Uma população utiliza 3 marcas diferentes de sabonete: A, B e C. Feita uma pesquisa de mercado colheram-se os resultados tabelados abaixo: Calcular o número de consumidores que só utilizam a marca C. a) 8 b) 7 c) 5 d) 15 e) Nenhuma das anteriores. 16 Numa pesquisa feita com 1000 famílias para se verificar a audiência dos programas de televisão, os seguintes resultados foram encontrados: 510 famílias assistam ao programa A, 305 assistem ao programa B e 386 assistem ao programa C. Sabe-se ainda que 180 famílias assistem aos programas A e B, 60 assistem aos programas B e C, 25 assistem a A e C, e 10 famílias assistem aos três programas. a) Quantas famílias não assistem a nenhum desses programas? b) Quantas famílias assistem somente ao programa A? c) Quantas famílias não assistem nem ao programa A e nem ao programa B? 17) Em um posto de saúde foram atendidas, em determinado dia, 160 pessoas com a mesma doença, apresentando, pelo menos, os sintomas diarréia, febre ou dor no corpo, isoladamente ou não. A partir dos dados registrados nas fichas de atendimento dessas pessoas, elaborada a tabela abaixo. Sintomas Freqüência diarréia 62 febre 62
4 dor no corpo 72 diarréia e febre 8 diarréia e dor no corpo 14 febre e dor no corpo 20 diarréia, febre e dor no corpo x Na tabela, x corresponde ao número de pessoas que apresentam, ao mesmo tempo, os três sintomas. Pode-se concluir que o valor de x é igual a: 18) Um programa de proteção e preservação de tartarugas marinhas, observando dois tipos de contaminação dos animais, constatou em um de seus postos de pesquisa, que: 88 tartarugas apresentavam sinais de contaminação por óleo mineral, 35 não apresentavam sinais de contaminação por radioatividade, 77 apresentavam sinais de contaminação tanto por óleo mineral como por radioatividade e 43 apresentavam sinais de apenas um dos dois tipos de contaminação. Quantas tartarugas foram observadas? a) 144 d) 160 b) 154 e) 168 c) ) Uma população consome três marcas de sabão em pó: A, B e C. Feita uma pesquisa de mercado, colheram-se os resultados tabelados abaixo: Marca A B C A e B B e C A e C A, B e C Nenhuma das três Número de consumidores Forneça: a) o número de pessoas consultadas; b) o número de pessoas que só consomem a marca A; c) o número de pessoas que não consomem as marcas A ou C; d) o número de pessoas ao menos duas marcas. Conjuntos numéricos 20) Determine o conjunto A = {x IN/ x 3}, nomeando seus elementos. 21) Um conjunto X é formado pelos cinco primeiros números naturais, pelos cinco primeiros números naturais pares e pelos cinco primeiros números naturais primos. Escreva esse conjunto. 22) Dados A = {1, 2, 3, 4, 5,..., 50} e B = {x IN / x = 3 a, com a A}, determine o conjunto B, nomeando seus elementos ) Considere A = {, -1, 0,, } e K o conjunto dos quadrados dos elementos de A que são racionais e não são inteiros. Escreva o conjunto K ) Dados A = {1, 5, 6, 8} e B = {x Q / x =, com a A}, determine o conjunto B. a 25) Dados A = {-4, -1, 0, 1, 2, 6, 9} e B = {x é irracional / x = a, com a A}, quais são os elementos do conjunto B. 26) Se A = {x IN / x é divisor de 24} e B = { x IN / x é divisor de 30}, calcule o conjunto A B.
5 Intervalos a) { x R / 3 < x 7} b) { x R / 3 x < 7} c) { x R / x 3} d) { x R / x < 7} e) { x R / x < 3 ou x 7} 28. Escreva, usando notação de intervalo, os intervalos representados graficamente: ] ] 29. Se A = 2,3 e B = [ 0, 5], então os números inteiros que estão em B A são: a) -1 e 0 b) 1 e 0 c) 4 e 5 d) 3, 4 e 5 e) 0, 1, 2 e Dois conjuntos são iguais quando têm os mesmos elementos. Verifique se os conjuntos 2 A = { x N / 2 x < 4} e B = { x R / x 5x + 6 = 0} são iguais. 31. Dados A = ( 5,2], B = [ 6,6] ec = (,2], determine graficamente: a) A B b) A B c) ( A B) C d) A ( B C) 2x Resolva o sistema, obtendo a intersecção dos intervalos que são soluções 3x 36 0 de cada inequação Dados os conjuntos A = { x R / 1 < x < 1} e B = [0,5), determine: a) A B b) A B c) B A
6 34. Sendo A = { x R / 2 x < 3} e B = { x Z / 2 x < 3}, é correto afirmar que: a) A B = A b) A B Z c) A B = A d) A B Z e) A B = B GABARITO 01. a) V c) F e) F g) V i) V b) F d) F f) F h) V j) F 02. a) {a, b} c) {b} e) {a, b, c} b) {e, f,g} d) {a, b} f) {a, c,e,f, g} 03. a 04. b 05. a 06. b 07. C A U = {1,3,5,7,9 } 08. c 09. d 10. c 11. c a) 25 b) 10 c) c 16. a) 54 b) 315 c) a 19. a) 500 b) 61 c) 257 d) { 0,1,2,3} 21. { 0,1,2,3,4,5,6,7,8,10, 11} 1 1, =,2,, { 1,2,3 } a B 25. {, 6} 28. a) [ 2,2] b) ] 1, + [ c) ], 1] d) [ 1,2[ 29. c 30. Os conjuntos são iguais A B = { 1,2,3,6 }
7 32. [ 2,12] 33. a) [ 0,1[ b) ] 1,5 [ c) [ 1,5[ 34. e
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 2 a Lista de Exercícios
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I 2 a Lista de Exercícios Tópico: Conjuntos, Elementos, Subconjuntos e Conjuntos
Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):
Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto
MATEMÁTICA - 3 o ANO MÓDULO 03 OPERAÇÕES EM CONJUNTOS NUMÉRICOS
MATEMÁTICA - 3 o ANO MÓDULO 03 OPERAÇÕES EM CONJUNTOS NUMÉRICOS Como pode cair no enem (ENEM) Numa pesquisa para se avaliar a leitura de três revistas A, B e C, descobriu-se que 81 pessoas leem, pelo menos,
Matemática. Resolução das atividades complementares. M3 Conjuntos
Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas
AULA 1 - Conjuntos numéricos (GABARITO)
L - Conjuntos numéricos (GRITO). de exercícios. Se, determine: a) b) c) d) e). Sendo, represente o conjuntos e pelo diagrama de Venn e determine: 0 6 a) b) c) d). Determine se as proposições abaixo são
Parte II. votos D 34 A 66 P 63. D e A 17. D e P 22. A e P 50. D,A e P 10. Sem problemas
Parte II 1) Numa pesquisa feita com todos os moradores de um prédio, constatou-se que mais de 45% são homens e que mais de 60% pintam o cabelo. Explique por que se pode concluir que, nesse prédio, há homens
Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).
O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.
a) Quantos estudantes não estudam nenhum desses idiomas? b) Quantos estudantes estudam apenas um desses idiomas?
Conjuntos 1- Conjuntos A, B e C são tais que A possui 10 elementos; A U B, 16 elementos; A U C, 15 elementos; A B, 5 elementos; A C, 2 elementos; B C, 6 elementos; e A B C, 2 elementos. Calcule o número
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
c) 35. d) 37. e) 45.
LISTA DE EXERCÍCIOS CONJUNTOS PROF: Paulo Vinícius Questão 1) Em uma determinada turma, há alunos que praticam futebol (conjunto A), que praticam basquetebol (conjunto B) e que praticam futebol e basquetebol
Visite :
01) (UFE) e e são dois conjuntos não vazios e é o conjunto vazio, é verdade que, das afirmações: I. = { } II. ( ) ( ) = ( ) ( ) III. { } = {} {} IV. {,, } são verdadeiras somente: a) I e II d) III e IV
2 - Explicite os conjuntos indicados: (1) { x N x 5 } (3) { x N x 2 < 5 } (2) { x N x 2 = 4 } (4) { x Z x 2 < 5 }
Lista de Conjuntos Numéricos Revisão para o Simulado Nacional Rumoaoita (Ciclo Zero) 1 - Considere os conjuntos: A - conjunto dos números pares positivos; B - conjunto dos números ímpares positivos; C
Lista de Exercícios - Conjuntos
01) (UFE) e e são dois conjuntos não vazios e é o conjunto vazio, é verdade que, das afirmações: I. = { } II. ( ) ( ) = ( ) ( ) III. { } = {} {} IV. {,, } são verdadeiras somente: a) I e II d) III e IV
CONCEITOS BÁSICOS E CONJUNTOS
MATEMÁTICA CONCEITOS BÁSICOS E CONJUNTOS. UFMS Quantos são os elementos do conjunto {x IN / 0 π < x < π + 0}? a) b) c) d) infinitos e) o conjunto é vazio. F.I. Anápolis-GO Dados os conjuntos: A = {0,,,
Lista 1. 1 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira
ÁLLO I 1 a LIST DE EXERÍIOS Prof. Ânderson Vieira 1. Dê os elementos dos seguintes conjuntos: = {x x é letra da palavra matemática} = {x x é cor da bandeira brasileira} = {x x é nome do estado brasileiro
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº PROFESSORA:
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº TURMA: TURNO: ANO: PROFESSORA: 1 1. Noção básica de conjuntos numéricos 1.1 Conceito de Conjunto Segundo
Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi
Bases Matemáticas - Turma A3 1 a Avaliação (resolvida) - Prof. Armando Caputi IMPORTANTE A resolução apresentada aqui vai além de um mero gabarito. Além de cumprir esse papel de referência para as respostas,
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2
1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Bases Matemáticas - Turma B3 1 a Avaliação (resolvida) - Prof. Armando Caputi
Bases Matemáticas - Turma B3 1 a Avaliação (resolvida) - Prof. Armando Caputi IMPORTANTE A resolução apresentada aqui vai além de um mero gabarito. Além de cumprir esse papel de referência para as respostas,
LISTA EXERCÍCIOS SOBRE CONJUNTOS
MATEMÁTICA - SEMI PROF. HEY 03/08/2016 LISTA EXERCÍCIOS SOBRE CONJUNTOS 01) (PUC-RJ) Num colégio de 100 alunos, 80 gostam de sorvete de chocolate, 70 gostam de sorvete de creme e 60 gostam dos dois sabores.
OPERAÇÕES COM CONJUNTOS
OPERAÇÕES COM CONJUNTOS 14243 Operações com conjuntos 1. União de conjuntos Dados dois conjuntos, A e B, a união de A e B é o conjunto formado por todos os elementos que pertencem a A ou a B. A B = {x
Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação
Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o º Teste de Avaliação Lições nº e Data: /11/011 Apresentação dos Conteúdos e Objectivos
CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA
CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com
INCLUSÃO DE CONJUNTOS OPERAÇÕES COM CONJUNTOS OPERAÇÕES COM CONJUNTOS PARTES DE UM CONJUNTO
INCLUSÃO DE CONJUNTOS PARTES DE UM CONJUNTO OPERAÇÕES COM CONJUNTOS OPERAÇÕES COM CONJUNTOS 10 10 10 10 20 20 20 20 30 30 30 30 40 40 40 40 50 50 50 50 As perguntas da Categoria 1 vêm a seguir Pergunta
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 1º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO º ANO ANO 08 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE º Ano do Ensino Médio Quanto
MATEMÁTICA. a) 30 b) 150 c) 180 d) 200 e) 210
1. Considere os conjuntos A = {0, 1, 2, 3}, B= {1, 3, 4, 6}, C= {2, 3, 6, 7} Pede-se: a) A B = b) A C = c) B C = d) A B = MATEMÁTICA 7. Das 40 crianças de uma creche 26 foram vacinadas contra poliomielite
Ciências da Natureza e Matemática
Ciências da Natureza e 1 CEDAE Acompanhamento Escolar Ciências da Natureza e 1. Num colégio, onde estudavam 250 alunos, houve, no final do ano, recuperação nas disciplinas de e Português. 10 alunos fizeram
Disciplina: Matemática Professor (a): _Valeria
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 1ª Etapa 2012 Disciplina: Matemática Professor (a): _Valeria Ano: 2012 Turma:1º ANO FG Caro aluno, você está recebendo o conteúdo de recuperação.
Matemática. Resolução das atividades complementares. M3 Conjuntos
Resolução das atividades complementares 1 Matemática M3 Conjuntos p. 52 1 Considere os conjuntos A 5 {x M* x é par e x. 6}, 5 {x M* x é ímpar e x, 21} e C 5 {x M* x é par}. Então: a) A tem 2 elementos
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática A 10. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número
1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados:
1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15% nenhuma das
MATEMÁTICA PAULO ROBERTO
I CONJUNTOS não seja elementos de B. (A e não B). 1) Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. 2) Relação
Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT INTRODUÇÃO À ÁLGEBRA
Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT 131 - INTRODUÇÃO À ÁLGEBRA 1. Seja A = {1, 3, 5, 7, 11}. Verifique quais das seguintes proposições são verdadeiras ou falsas.
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
2 a Lista de Exercícios 2001/I
1 Universidade Federal de Viçosa Departamento de Matemática MAT 131 Introdução à Álgebra a Lista de xercícios 001/I Tópico: onjuntos e elementos 1) Definir, pela enumeração dos seus elementos, cada um
Fundamentos de Matemática
Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,
Simulado Aula 02 CEF MATEMÁTICA. Prof. Dudan
Simulado Aula 02 CEF MATEMÁTICA Prof. Dudan Matemática 1. O algarismo das unidades do número 11 1 + 11² + 11³ +... + 11 6 é maior que 5. 2. O algarismo da dezena do resultado da expressão numérica 948652919238493
Escola Secundária de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º
Escola Secundária de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o 3º Teste de Avaliação Lições nº e Data: /0/01 Apresentação dos Conteúdos e Objectivos para o 3º Teste
CONJUNTOS lista 1. O número de alunos que gosta dos sucos de manga e acerola é: a) 40. b) 60. c) 120. d) 50. e) 100.
1. (Ueg 2016) Dados os conjuntos A {x 2 x 4} e B {x x 0}, a intersecção entre eles é dada pelo conjunto a) {x 0 x 4} b) {x x 0} c) {x x 2} d) {x x 4} 2. (Ime 2016) Dados três conjuntos quaisquer F, G e
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos
Nome do aluno: N.º: Turma:
Teste de Matemática A 2017 / 2018 Teste N.º 1 Matemática A Duração do Teste: 90 minutos NÃO É PERMITIDO O USO DE CALCULADORA 10.º Ano de Escolaridade Nome do aluno: N.º: Turma: Na resposta aos itens de
Linguagem Básica de Conjuntos
Capítulo 1 Linguagem Básica de Conjuntos 1.1 A Noção de Conjunto A teoria dos conjuntos surgiu com os trabalhos de George Cantor no século XIX. Entretanto, tal teoria não se preocupava com muito rigor
TEORIA DOS CONJUNTOS. Inclusão: Obs: A, A. a) A B e) D B i) B D. b) B C f) C A j) C B. c) C D g) C B k) A C d) D A h) B A l) D A
TEORI DOS CONJUNTOS Representação 1. Por extensão: Ex: = {1, 2, 4,7} = {a, b, c, d} 2. Por compreensão: Ex: = {x x é vogal} = {x N x é par} C = {x x é divisor de 5} 3. Por diagrama: Ex: Tipos de conjuntos:
SuperPro copyright Colibri Informática Ltda.
1. (Fuvest-gv) Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15%
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.
TEORIA DOS CONJUNTOS Professor: Marcelo Silva [email protected] Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 5 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
CURSO DE MATEMÁTICA. Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha
CURSO DE MATEMÁTICA Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha Qual a importância de conhecer os CONJUNTOS NUMÉRICOS? Meu querido aluno,
EXERCÍCIOS DO CAPÍTULO 1
EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos serão, em geral, indicados por letras maiúsculas do alfabeto: A,B,C,...,
Lista de Exercícios de Matemática Conjuntos parte I Profº. Márcio Prieto
1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Represente em linguagem simbólica os seguintes subconjuntos de IR. 3. Sendo A = {5, 7, 9}, B = {0, 9, 10, 90}, C = {7, 8, 9, 10}, D
MÓDULO 9. Conjuntos. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Conjuntos 1. (ITA) Considere as seguintes afirmações sobre o conjunto U = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: I. Ø U e n(u) = 10. II.
Teste de Matemática A 2015 / 2016
Teste de Matemática A 2015 / 2016 Teste N.º 2 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em cada
E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO
E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 INTERVALOS, INEQUAÇÕES E MÓDULO 1 MATEMÁTICA ELEMENTAR CAPÍTULO 2 SUMÁRIO Apresentação ------------------------------------------------- 2 Capítulo 2
01. D e m o n s t r a r q u e s e. 02. Mostre que se a 1 a2
Série Professor(a) Aluno(a) Rumo ao ITA Marcelo Mendes Sede Turma Turno Data N / / Ensino Pré-Universitário TC Matemática Revisão de Álgebra OSG.: 85/0 Exercícios de Fixação 0. Encontre os valores das
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
Tema I Introdução à lógica bivalente e à teoria de conjuntos
Tema I Introdução à lógica bivalente e à teoria de conjuntos Unidade 1 Proposições Páginas 13 a 9 1. a) 3 é uma designação. b) 3 = 6 é uma proposição. c) é o único número primo par é uma proposição. d)
fevereiro PC Sampaio (Natália Peixoto)
10 fevereiro 06 PC Sampaio (Natália Peixoto) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA
LISTA DE EXERCÍCIOS. Números Reais Geometricamente, Numericamente e Axiomaticamente
LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 07 Números Reais Geometricamente, Numericamente e Axiomaticamente [01] Determine os números reais x,
A seguir, estão três afirmativas sobre números reais:
Questão 01) O conjunto X = {4m + 5n;m,n Z + } contém todos os números inteiros positivos a) pares, a partir de 4. b) ímpares, a partir de 5. c) a partir de 9, inclusive. d) a partir de 12, inclusive. e)
Teste de Matemática A 2015 / 2016
Teste de Matemática A 2015 / 2016 Teste N.º 1 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em cada
Segmento: Pré-vestibular. Coleção: Alfa, Beta e Gama. Disciplina: Matemática. Unidade 1: Série 17. Conjuntos
Segmento: Pré-vestibular Coleção: Alfa, Beta e Gama Disciplina: Matemática Volume: 1 Unidade 1: Série 17 Resoluções Conjuntos 1. A = {1, } O Conjunto A possui dois elementos: 1 e. O total de subconjuntos
7. Calcule o valore de x + y z sabendo que as
. Considere as matrizes: A 3, B 3 e C 3 3. Assinale a alternativa que apresenta um produto ineistente: A) A B B) B A C) C A D) A t C E) B t C 3 3. Seja a matriz A =. 3 3 O termo 3 da matriz X = A é igual
CONJUNTOS CONJUNTOS NUMÉRICOS
ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por
Lista 3. A = x x < 9 4 e x > 6 } B = {x 0 x = 2} C = { x x é inteiro e x 2 = 3 } D = {x 2x+1 = 7} A = {x 0 x = 0} B = x x > 9 4 e x < 6 }
3 a LIST DE EXERÍIOS Prof. Ânderson Vieira 1. Dê os elementos dos seguintes conjuntos: = {x x é letra da palavra matemática} = {x x é cor da bandeira brasileira} = {x x é nome do estado brasileiro que
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não
FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES
FICHA DE TRABALHO N.º MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Considere a condição px : x é um número
CURSO DE MATEMÁTICA. Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha
CURSO DE MATEMÁTICA Conjuntos dos números naturais, inteiros, racionais e irracionais. (propriedades e operações) Josimar Padilha Qual a importância de conhecer os CONJUNTOS NUMÉRICOS? Meu querido aluno,
Direto do concurso. Comentário CONJUNTOS NUMÉRICOS
CONJUNTOS NUMÉRICOS Conjuntos dos números naturais, inteiros, racionais e irracionais (propriedades e operações). Qual a importância de conhecer os CONJUNTOS NUMÉRICOS? Como existem vários tipos de conjuntos,
OS 70 TONS DE RACIOCÍNIO LÓGICO
OS 70 TONS DE RACIOCÍNIO LÓGICO DIAGRAMAS LÓGICOS Diagramas lógicos Todo Sinônimos: qualquer um ou outra similar. Representação: Conclusão: Todo A é B. Alguns elementos de B são A ou existem B que são
Funções - Terceira Lista de Exercícios
Funções - Terceira Lista de Exercícios Módulo - Números Reais. Expresse cada número como decimal: a) 7 b) c) 9 0 5 5 e) 3 7 0 f) 4 g) 8 7 d) 7 8 h) 56 4. Expresse cada número decimal como uma fração na
Exercícios de Matemática Produtos Notáveis Fatoração
Exercícios de Matemática Produtos Notáveis Fatoração TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p =
Roteiro de Estudo para a Recuperação Semestral MATEMÁTICA 1ºEM
Roteiro de Estudo para a Recuperação Semestral MATEMÁTICA 1ºEM NOME: IMPRIMA AS FOLHAS. RESOLVA AS QUESTÕES DISSERTATIVAS EM FOLHA DE PAPEL ALMAÇO OU FOLHA DE FICHÁRIO; OS TESTES PODERÃO SER RESPONDIDOS
LISTA DE EXERCÍCIOS. Demonstrações diretas e por absurdo
LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 02 Demonstrações diretas e por absurdo Diga se cada uma das sentenças abaixo é verdadeira ou falsa.
Matemática. Resolução das atividades complementares. M6 Função Modular ( ) ( ) 1 De acordo com a definição, calcule:
Resolução das atividades complementares Matemática M6 Função Modular p. 89 De acordo com a definição, calcule: a) b) c) 8 d) 6 7 a) b) c) 8 8 d) 6 6 7 Aplicando a definição, determine o valor numérico
TC DE MATEMÁTICA CLICK-PROFESSOR 6ª SÉRIE OLÍMPICA ENSINO FUNDAMENTAL. Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO:
TC DE MATEMÁTICA CLICK-PROFESSOR 6ª SÉRIE OLÍMPICA ENSINO FUNDAMENTAL Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Faça o que se pede: I. Qual é o menor número natural, diferente
ATIVIDADE. b) A diferença de dois números inteiros é sempre um número inteiro. c) Existe número natural que não é número inteiro.
ATIVIDADE 1. Considere os números a seguir e responda: 5; -8; 0; 14; -100; 57; -18; 2/3; -0,4; -1 a) Quais deles são números naturais? b) Quais deles são números inteiros? c) Todo número natural é um número
Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2015 Professora Adriana FUNÇÕES
Licenciatura em Matemática Fundamentos de Matemática Elementar o /05 Professora Adriana FUNÇÕES. Determine a e b de modo que os pares ordenados a seguir sejam iguais: a) (a, b + ) e (a + 5, b 7) b) (a,
Matemática A - 10 o Ano Ficha de Trabalho
Matemática A - 10 o Ano Ficha de Trabalho Álgebra - Divisão Inteira de Polinómios Grupo I 1. Tendo em conta que n N; a n, a n 1,..., a 1, a 0 R e a n 0; b n, b n 1,..., b 1, b 0 R e b n 0, considere os
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A 3.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma
Simulado Aula 03 CEF RACIOCÍNIO LÓGICO. Prof. Fabrício Biazotto
Simulado Aula 03 CEF RACIOCÍNIO LÓGICO Prof. Fabrício Biazotto Raciocínio Lógico 1. Argumento é a afirmação de que uma sequência de proposições, denominadas premissas, acarreta outra proposição, denominada
DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO
DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: 2018-2 TURNO: NOTURNO ALUNO a): 1ª Lista de Exercícios - Introdução à Lógica Matemática, Teoria
Lista de Exercícios de Matemática
Lista de Exercícios de Matemática Álgebra e Aritmética 01) (Epcar/2003) - De dois conjuntos A e B, sabe-se que: I) O número de elementos que pertencem a A B é 45; II) 40% desses elementos pertencem a ambos
Professor: Fabiano Vieira
RACIOCÍNIO LÓGICO CONJUNTOS Professor: Fabiano Vieira Prof. Fabiano Vieira www.aprovaconcursos.com.br Página 1 de 10 CONJUNTOS Elementos e Conjuntos Os conjuntos são formados por elementos, onde cada elemento
RLM - PROFESSOR CARLOS EDUARDO AULA 3
AULA 3 Sucessões = sequências(numéricas) São conjuntos de números reais dispostos numa certa ordem. Uma sequência pode ser FINITA ou INFINITA. Ex: a) (3, 6, 9, 12) sequência finita P.A de razão 3 b) (5,
RESOLUÇÃO CONJUNTOS R: = 320 A B R: = 120 R: = 140 R: = 280
RESOLUÇÃO CONJUNTOS Em um clube com quadra de futebol e vôlei, sabe-se que: 100 rapazes jogam vôlei e futebol 130 rapazes jogam vôlei, mas não jogam futebol. 170 rapazes jogam futebol e não jogam vôlei.
CONJUNTOS EXERCÍCIOS DE CONCURSOS
CONJUNTOS EXERCÍCIOS DE CONCURSOS E0626 (IBEG Merendeira Prefeitura de Uruaçu GO). Sendo os conjuntos A = {2, 4, 6, 8, 10, 12}; B = {1, 3, 5, 7, 9, 11}; C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. I A
Índice. Números naturais. Isometrias do plano. Figuras geométricas planas. Representação e interpretação de dados. Relações e regularidades
Índice Números naturais Isometrias do plano. Números primos e números compostos. Decomposição de um número em fatores primos 6. Mínimo múltiplo comum e máximo divisor comum 8. Potências de expoente natural
Fundamentos de Matemática. Lista de Exercícios Humberto José Bortolossi
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA Fundamentos de Matemática Lista de Exercícios Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 02 Demonstração direta, demonstração por absurdo e
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 1º - Ensino Médio Professor: João Ângelo
Colégio Santa Dorotéia Área de Disciplina: Ano: 1º - Ensino Médio Professor: João Ângelo Atividades para Estudos Autônomos Data: 8 / 5 / 018 Caro(a) aluno(a), O momento de revisão deve ser visto como oportunidade
