OPERAÇÕES COM CONJUNTOS
|
|
|
- Leonardo Sousa Natal
- 9 Há anos
- Visualizações:
Transcrição
1 OPERAÇÕES COM CONJUNTOS
2 14243 Operações com conjuntos 1. União de conjuntos Dados dois conjuntos, A e B, a união de A e B é o conjunto formado por todos os elementos que pertencem a A ou a B. A B = {x x ϵ A ou x ϵ B} A = {2, 3, 5, 7} B = {0, 2, 4, 6} A B = {0, 2, 3, 4, 5, 6, 7} A região hachurada representa A B.
3 Operações com conjuntos 2. Intersecção de conjuntos A = {x x é um número natural menor que 8} B = {x x é um número natural par menor que 10} Dados dois conjuntos, A e B, a intersecção de A e B é o conjunto formado por todos os elementos que pertencem a A e a B. A região hachurada representa A B. A B = {x x ϵ A e x ϵ B} A B = {0, 2, 4, 6}
4 EXEMPLOS 1. Determinar A B e A B sabendo que: A = {x x é um número natural menor que 8} e B = {x x é um número natural entre 7 e 11}. Inicialmente, determinamos os elementos dos conjuntos A e B. Assim, temos: A = {0, 1, 2, 3, 4, 5, 6, 7} e B = {8, 9, 10} Desse modo: A B = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} A B = { }
5 EXEMPLOS 2. Considerar os conjuntos representados abaixo. a) Observe que: A = {1, 2, 3, 4}, B = {1, 2, 6, 7} e C = {1, 3, 5, 7} Agora, determinamos (A B): A B = {1, 2, 3, 4, 6, 7} Então, obtemos: (A B) C = {1, 3, 7} b) Primeiro, determinamos (A B): A B = {1, 2} Determinar: a) (A B) C b) (A B) C Depois, determinamos a união desse conjunto com C: (A B) C = {1, 2, 3, 5, 7}
6 EXEMPLOS 3. Sabendo que A B = {1, 2, 3, 4, 5, 6} e A B = {4,5}, escrever duas possibilidades diferentes para A e B. Como A B = {4, 5}, devemos considerar que os elementos 4 e 5 pertencem tanto ao conjunto A quanto ao conjunto B. Sabemos também que os conjuntos A e B são formados necessariamente pelos elementos que pertencem a A B. Assim, podemos escrever: A = {1, 4, 5} e B = {2, 3, 4, 5, 6} ou A = {3, 4, 5, 6} e B = {1, 2, 4, 5} Há outras possibilidades além dessas.
7 Operações com conjuntos 3. Diferença de conjuntos A = {x x é um número natural e está entre 20 e 30} B = {x x é um número primo menor que 30} A região hachurada representa A B. A B = {21, 22, 24, 25, 26, 27, 28} Dados dois conjuntos, A e B, a diferença entre A e B é o conjunto formado pelos elementos que pertencem a A, mas não pertencem a B. A B = {x x A e x B}
8 Complementar de um conjunto OBS.: A C = complementar de A em relação ao Universo. Dados os conjuntos A e B, o complementar do conjunto B em relação a A é a parte laranja da figura. = A B, com B A OBS.: Só vai existir o complementar de B em relação a A se B A. Caso B A, então =.
9 EXEMPLOS 1. Determinar A B sabendo que: A = {x x é um número natural menor que 10} e B = {x x é um número natural e está entre 3 e 7}. Enumerando os elementos de A e B, temos: A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} e B = {4, 5, 6} Como a diferença de A e B é o conjunto formado pelos elementos que pertencem a A mas não pertencem a B, temos: A B = {0, 1, 2, 3, 7, 8, 9}
10 EXEMPLOS 2. Descrever a parte azul do diagrama por meio de operações de conjuntos. Observando a figura, vemos que nenhuma parte do conjunto B está colorida, assim como nenhuma parte do conjunto C. Devemos observar ainda que somente uma parte do conjunto A está colorida de azul. Como essa parte representa os elementos de A que não pertencem a B nem a C, podemos escrever a seguinte operação para representar a parte azul da figura: A B C ou A C B ou A (B C).
11 EXEMPLOS 3. Considerar os conjuntos A = {0, 5, 10, 15}, B = {0, 10} e U = {x x é um número natural menor ou igual a 15}. Determinar: a) A c b) c), com E = a) Como o conjunto U é um conjunto finito, para facilitar a resolução podemos enumerar seus elementos: U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} Determinando U A, encontramos: A c = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14}
12 b) c), com E = b) Nesse caso, devemos determinar A B se B A. Assim: = A B = {5, 15} c) Inicialmente, devemos encontrar os elementos do conjunto E. Como E =, temos: E = {5, 15}. Agora, determinamos U E e encontramos: = {0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14}.
13 EXEMPLOS 4. Dados os conjuntos U = {3, 6, 9, 12, 15, 18}, A C = {3, 6, 9} e B C = {15, 18}, determinar: a) o conjunto A. b) o conjunto B. a) Como A C = {3, 6, 9}, os elementos de U que não pertencem a A C pertencem ao conjunto A; portanto: A = {12, 15, 18} b) Como B C = {15, 18}, os elementos de U que não pertencem a B C pertencem ao conjunto B; portanto: B = {3, 6, 9, 12}
14 Aplicação das operações com conjuntos 1. ESPORTES. Em uma pesquisa com uma turma de Ensino Médio, verificou-se que 15 alunos praticavam basquete como atividade esportiva, 25 alunos praticavam futebol e 7 alunos praticavam duas atividades: basquete e futebol. Determinar quantos alunos participaram da pesquisa, sabendo que todos optaram por pelo menos um dos dois esportes. Como 15 pessoas praticavam basquete e, desse total, 7 também praticavam futebol, a quantidade de alunos que estão no conjunto A e não estão no conjunto B é: 15 7 = 8 n(a B) = = 33 Somente A Somente B
15 2. CONSUMIDOR. Após uma pesquisa com os clientes de um supermercado, verificou-se que 150 pessoas compraram o refrigerante da marca C e 75 compraram o da marca P. Sabendo que 200 pessoas participaram da pesquisa, determinar quantas compraram refrigerantes das duas marcas. Marca C e marca P: x 123 Marca C: 150 x Marca P: 75 x 200 = (150 x) + x + (75 x) x = x = 25 Assim, concluímos que 25 pessoas compraram refrigerantes das duas marcas.
16 3. CULTURA. Uma pesquisa foi realizada com o objetivo de identificar o tipo de leitura preferida de 145 alunos de Ensino Médio. Nessa pesquisa, história em quadrinhos teve 60 votos, romance, 85 votos, e ficção científica, 55. Sabe-se ainda que 20 alunos votaram em história em quadrinhos e em romance, 30 votaram em romance e em ficção, 10 votaram em história em quadrinhos e em ficção e 5 alunos votaram nos três tipos. Determinar quantos alunos votaram somente em romance. HQ (60) 15 X = R (85) X = 85 ( ) 20 F (55)
17 AGORA VOCÊS FAZEM! 4. Numa pesquisa feita com 1000 famílias para verificar a audiência dos programas de televisão, os seguintes resultados foram encontrados: 510 famílias assistem ao programa A, 305 assistem ao programa B, 386 assistem ao programa C, 180 assistem aos programas A e B, 60 assistem aos programas B e C, 25 assistem aos programas A e C, e 10 assistem aos três programas. a) Quantas famílias não assistem aos três programas? 54 b)quantas famílias assistem somente ao programa A? 315 c) Quantas famílias não assistem nem ao programa A nem ao prgrama B? 365
18 n(u) = 1000 A (510) B (305) 311 C (386) X = 54 X = 1000 ( ) = 54
19 2. Certo dia um proprietário de um restaurante de cozinha italiana perguntou a 80 dos seus clientes: Entre lasanha, canelone e macarronada, de qual(is) você gosta? O resultado da pesquisa foi o seguinte: 35 gostam de lasanha; 39 gostam de canelone; 40 gostam de macarronada; 15 gostam de lasanha e de canelone; 13 gostam de lasanha e macarronada; 11 gostam de canelone e macarronada; 5 gostam dos três pratos. a) Quantos clientes gostam somente de: Lasanha 12 - Canelone 18 - Macarronada 21 b) Quantos clientes gostam somente de lasanha ou somente de canelone ou de ambos os pratos. 45
20 n(u) = 80 L (35) C(39) 21 M (40) 0 a)12, 18 e 21 b) = 45 c) 21
21 5. Roberto pesquisou 34 proprietários de carros bicombustível para saber qual combustível eles costumam utilizar em seus carros: álcool em gasolina. Dos entrevistados, 23 utilizam álcool e 19 utilizam gasolina. Sabendo que cada proprietário usa pelo menos um dos combustíveis, responda as questões a seguir. a) Quantos proprietários utilizam os dois combustíveis? b) Quantos proprietários utilizam somente gasolina? E apenas álcool? A (23) B (19) A (23) B (19) 23 X X 19 X x + x + 19 x = 34 x = x = 8
Capítulo 2 Noções de conjuntos
THE BRIDGEMAN/KEYSTONE Capítulo 2 Noções de conjuntos X SAIR Para representar o conjunto A formado pelos números naturais de 0 a 10, podem-se utilizar três possibilidades: 1ª forma: pela citação dos elementos.
QUESTÕES PARA A AVALIAÇÃO AC2 - (ETAPA III) - (Rivaildo 9º anos)
QUESTÕES PARA A AVALIAÇÃO AC2 - (ETAPA III) - (Rivaildo 9º anos) 01. (valor 1,0) A bandeira das Olimpíadas representa o congraçamento dos continentes: a Europa é simbolizada pelo círculo azul; a Ásia,
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem
INCLUSÃO DE CONJUNTOS OPERAÇÕES COM CONJUNTOS OPERAÇÕES COM CONJUNTOS PARTES DE UM CONJUNTO
INCLUSÃO DE CONJUNTOS PARTES DE UM CONJUNTO OPERAÇÕES COM CONJUNTOS OPERAÇÕES COM CONJUNTOS 10 10 10 10 20 20 20 20 30 30 30 30 40 40 40 40 50 50 50 50 As perguntas da Categoria 1 vêm a seguir Pergunta
Matemática I Conjuntos Conjuntos Numéricos. Prof.: Joni Fusinato 1
Matemática I Conjuntos Conjuntos Numéricos Prof.: Joni Fusinato [email protected] [email protected] 1 Teoria dos Conjuntos Teoria matemática dedicada ao estudo da associação entre objetos com
Atividades de Conjuntos
Atividades de Conjuntos Conjuntos 01) Diga se é verdadeira ou falsa cada uma das sentenças abaixo. a) 0 {0, 1, 2, 3, 4} f) a {a, {a}} b) {a} {a, b} g) a {a, {a}} c) {0} h){, {a, {a}} {a} d) 0 i) {, {a}}
Descrevendo um conjunto
Conjuntos Veja os seguintes exemplos: Jogadores de um time Lista de compras Números Inteiros Alfabeto Se você está familiarizado com estes exemplos, é claro que você tem a ideia do que é um conjunto, podemos
Teoria dos Conjuntos. Prof. Jorge
Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do
Aula 1 Conjuntos Numéricos
1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º
NOÇÕES. 04- (F. Santo André-SP) Seja A um conjunto com 7 elementos. O número total de subconjuntos de A é: a) 16 b) 128 c) 56 d) 100 e) 256
MATQUEST CONJUNTOS PROF.: JOSÉ LUÍS NOÇÕES 01- (CATANDUVA-SP) Dado o conjunto A = {, {a}, b} com {a} b a 0, pode-se afirmar que: a) {, {b}} A b) {, {a}} A c) {, a} A d) {a, b} A e) A 02- (CEFET) Considerando
CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA
CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com
Mat. Semana. Professor: Luanna Ramos, Alex Amaral, Gabriel Miranda Monitor: Gabriella Teles Roberta Teixeira Rodrigo Molinari
Semana 1 Professor: Luanna Ramos, Alex Amaral, Gabriel Miranda Monitor: Gabriella Teles Roberta Teixeira Rodrigo Molinari Conjuntos 12 jul RESUMO Apesar de não haver uma definição formal para conjuntos,
CONJUNTOS lista 1. O número de alunos que gosta dos sucos de manga e acerola é: a) 40. b) 60. c) 120. d) 50. e) 100.
1. (Ueg 2016) Dados os conjuntos A {x 2 x 4} e B {x x 0}, a intersecção entre eles é dada pelo conjunto a) {x 0 x 4} b) {x x 0} c) {x x 2} d) {x x 4} 2. (Ime 2016) Dados três conjuntos quaisquer F, G e
a) Quantos estudantes não estudam nenhum desses idiomas? b) Quantos estudantes estudam apenas um desses idiomas?
Conjuntos 1- Conjuntos A, B e C são tais que A possui 10 elementos; A U B, 16 elementos; A U C, 15 elementos; A B, 5 elementos; A C, 2 elementos; B C, 6 elementos; e A B C, 2 elementos. Calcule o número
Matemática é a ciência das regularidades.
Matemática é a ciência das regularidades. Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Conjunto
CAPÍTULO 2 INSTRUMENTAL MATEMÁTICO
DEPARTAMENTO DE GEOCIÊNCIAS GCN 7901 ANÁLISE ESTATÍSTICA EM GEOCIÊNCIAS PROFESSOR: Dr. ALBERTO FRANKE CONTATO: [email protected] F: 3721 8595 CAPÍTULO 2 INSTRUMENTAL MATEMÁTICO semestre 2015.2 Prof.
Matemática. Resolução das atividades complementares. M3 Conjuntos
Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas
RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS
Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)
1 ano do ensino médio Segue algumas das questões do curso de reforço de matemática 1 ano do ensino médio.
Segue algumas das questões do curso de reforço de matemática. 1. Dado o conjunto A = {1, 2, [3, 4], [5]} Verifique se os itens são verdadeiros (V) ou falsos (F) a) 2 A ( ) b) 2 A ( ) c) {2} A( ) d) 5 A
CONJUNTOS CONJUNTOS NUMÉRICOS
ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por
Hewlett-Packard CONJUNTOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard CONJUNTOS Aulas 01 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano 2016 Sumário CONJUNTOS... 2 CONCEITOS PRIMITIVOS... 2 REPRESENTAÇÃO DE UM CONJUNTO... 2 RELAÇÃO DE PERTINÊNCIA...
Extensivo Matemática A VOL 2
Extensivo Matemática VOL 2 01) N = {0, 1, 2, 3, 4,...} Conjunto dos números naturais B = {x N/ 2 x 7} a) V: 7 B = {2, 3, 4, 5, 6, 7} b) F: 5 é um elemento de B c) F: x, com x N, tal que 2 x 7. d) F: os
AULA DO CPOG. Teoria dos conjutos
AULA DO CPOG Teoria dos conjutos TEORIA DOS CONJUNTOS Professor Felipe Técnico de Operações P-25 Petrobras Contatos Felipe da Silva Cardoso [email protected] www.professorfelipecardoso.blogspot.com
Exercícios para estudar
Exercícios para estudar Nome: 1) (Uece 2018) Em um grupo de 200 estudantes, 98 são mulheres das quais apenas 60 não estudam comunicação. Se do total de estudantes do grupo somente 60 estudam comunicação,
c) 35. d) 37. e) 45.
LISTA DE EXERCÍCIOS CONJUNTOS PROF: Paulo Vinícius Questão 1) Em uma determinada turma, há alunos que praticam futebol (conjunto A), que praticam basquetebol (conjunto B) e que praticam futebol e basquetebol
Aula 1 Conjuntos Numéricos
1 Tecnólogo em Construção de Edifícios Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega 2 SONDAGEM Inicialmente, façamos uma revisão: 1 Calcule o valor das expressões abaixo. Dê as respostas de todas
Lógica/oitavos anos do E. Fundamental II/ Listagem de estudos referência para prova- PUPO
Lógica/oitavos anos do E. Fundamental II/ Listagem de estudos referência para prova- PUPO 1- Analise as proposições abaixo e a seguir atribua a cada uma delas valor lógico: a) Se A é um conjunto de 3 elementos
MATEMÁTICA - 3 o ANO MÓDULO 03 OPERAÇÕES EM CONJUNTOS NUMÉRICOS
MATEMÁTICA - 3 o ANO MÓDULO 03 OPERAÇÕES EM CONJUNTOS NUMÉRICOS Como pode cair no enem (ENEM) Numa pesquisa para se avaliar a leitura de três revistas A, B e C, descobriu-se que 81 pessoas leem, pelo menos,
EXERCÍCIOS PARA RECUPERAÇÃO EM MATEMÁTICA 2º TRIMESTRE
EXERCÍCIOS PARA RECUPERAÇÃO EM MATEMÁTICA 2º TRIMESTRE Nome: nº: Ano: 7ºA/B E.F. Realizou-se uma pesquisa de opinião com 2.000 pessoas para saber quantas vezes elas tinham viajado de avião. Veja os dados
Disciplina: Matemática Data da entrega: 14/03/2015.
Lista de Exercícios - 01 Aluno (a): Nº. Professor: Flávio Turma: 1ª série: (ensino médio) Disciplina: Matemática Data da entrega: 14/03/2015. Observação: A lista deverá apresentar capa, enunciados e as
Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).
O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.
Matemática. Resolução das atividades complementares. M3 Conjuntos
Resolução das atividades complementares 1 Matemática M3 Conjuntos p. 52 1 Considere os conjuntos A 5 {x M* x é par e x. 6}, 5 {x M* x é ímpar e x, 21} e C 5 {x M* x é par}. Então: a) A tem 2 elementos
matematicautodidata.com
Exercite! Data: Nota: Nome: Tópico: Médio 01 - Conjuntos 1. Dê os elementos dos seguintes conjuntos: (a) A = {x x é a letra da palavra autodidata } (b) B = {x x é o estado do sudeste do Brasil } (c) C
APS I: Conjuntos e noções de lógica
APS I: Conjuntos e noções de lógica Conceitos fundamentais 1 Exercise 1 Classifique como verdadeiro ou falso a) {a,b} {a,b,{a},{b}} b) {a} {a,b,{a},{b}} c) {a} {a,b,{a},{b}} d) {a,b} {a,b,{a},{b}} Exercise
Pré Universitário Uni-Anhanguera. Disciplina: Matemática Data da prova: 08/03/2014. Lista de Exercícios. Aluno (a): Nº.
Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: 3º ano (Ensino médio) Disciplina: Matemática Data da prova: 08/03/2014 Observação: A lista deverá apresentar
RESOLUÇÃO CONJUNTOS R: = 320 A B R: = 120 R: = 140 R: = 280
RESOLUÇÃO CONJUNTOS Em um clube com quadra de futebol e vôlei, sabe-se que: 100 rapazes jogam vôlei e futebol 130 rapazes jogam vôlei, mas não jogam futebol. 170 rapazes jogam futebol e não jogam vôlei.
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 2 a Lista de Exercícios
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I 2 a Lista de Exercícios Tópico: Conjuntos, Elementos, Subconjuntos e Conjuntos
Matéria: Matemática Assunto: Representação e análise de dados Prof. Dudan
Matéria: Matemática Assunto: Representação e análise de dados Prof. Dudan Matemática Estatística A ciência encarregada de coletar, organizar e interpretar dados é Chamada de estatística. Seu objetivo
Matemática A Extensivo V. 2
GRITO Matemática Extensivo V. Exercícios 0) a) Verdadeira. e são elementos de. b) Verdadeira. Pois {} é elemento de. c) Verdadeira. Pois não é elemento de. d) Verdadeira. Pois {} é um subconjunto de. e)
Introdução à Matemática
Universidade Estadual de Goiás Unidade Universitária de Ciências Sócio-Econômicas e Humanas de Anápolis Introdução à Matemática Conjuntos e Conjuntos Numéricos Introdução A noção de conjunto Propriedades,
CEM CADERNO DE EXERCÍCIOS MASTER. RLM Conjuntos. Período
CEM CADERNO DE EXERCÍCIOS MASTER Período 2014 2016 1) FCC - Auditor Fiscal RE RJ/SEFAZ RJ-2014 Em uma grande empresa, 50% dos empregados são assinantes da revista X, 40% são assinantes da revista Y e 60%
Teoria dos conjuntos
Matemática I Teoria dos conjuntos UNE - Universidade do Estado da ahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Teoria dos conjuntos Prof. MSc. Rebeca Dourado
Lista de exercícios 01. Aluno (a): Turma: 1ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 01 Aluno (a): Turma: 1ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
TEORIA DOS CONJUNTOS. Inclusão: Obs: A, A. a) A B e) D B i) B D. b) B C f) C A j) C B. c) C D g) C B k) A C d) D A h) B A l) D A
TEORI DOS CONJUNTOS Representação 1. Por extensão: Ex: = {1, 2, 4,7} = {a, b, c, d} 2. Por compreensão: Ex: = {x x é vogal} = {x N x é par} C = {x x é divisor de 5} 3. Por diagrama: Ex: Tipos de conjuntos:
Visite :
01) (UFE) e e são dois conjuntos não vazios e é o conjunto vazio, é verdade que, das afirmações: I. = { } II. ( ) ( ) = ( ) ( ) III. { } = {} {} IV. {,, } são verdadeiras somente: a) I e II d) III e IV
COLÉGIO EQUIPE DE JUIZ DE FORA
1. Os conjuntos não-vazios M, N e P estão, isoladamente, representados abaixo. Considere a seguinte figura que estes conjuntos formam. A região hachurada pode ser representada por: a) M (N P) b) M (N P)
(B A )=B e ( A B)= A ()
Lógica/oitavos anos do E. Fundamental II/ Listagem de estudos referência para prova- PUPO 1- Analise as proposições abaixo e a seguir atribua a cada uma delas valor lógico: a) Se A é um conjunto de 3 elementos
2 - Explicite os conjuntos indicados: (1) { x N x 5 } (3) { x N x 2 < 5 } (2) { x N x 2 = 4 } (4) { x Z x 2 < 5 }
Lista de Conjuntos Numéricos Revisão para o Simulado Nacional Rumoaoita (Ciclo Zero) 1 - Considere os conjuntos: A - conjunto dos números pares positivos; B - conjunto dos números ímpares positivos; C
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº PROFESSORA:
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº TURMA: TURNO: ANO: PROFESSORA: 1 1. Noção básica de conjuntos numéricos 1.1 Conceito de Conjunto Segundo
O conceito de número foi evoluindo ao longo dos tempos, tendo-se criado novos números para responder a problemas entretanto surgidos.
CONJUNTOSNUMÉRICOS CONJUNTOS NUMÉRICOS O conceito de número foi evoluindo ao longo dos tempos, tendo-se criado novos números para responder a problemas entretanto surgidos. CONJUNTOS NUMÉRICOS NATURAIS
CENTRO EDUCACIONAL CHARLES DARWIN NOME: TURMA: PROFESSOR: G:\2014\Pedagógico\Documentos\Exercicios\Est_Comp_Rec_Parcial\1ª Série\Matematica.
NOME: TURMA: PROFESSOR: 1 MATEMÁTICA 1 1. Dados os conjuntos: A x x é número natural múltiplo de 4 menor do que 20 B x x 5 C x x D x IN x a) Represente os conjuntos A, B, C e D na forma tabular (citação
2. Escreva em cada caso o intervalo real representado nas retas:
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 018 4º BIMESTRE TRABALHO DE RECUPERAÇÃO Nome: Nº Turma Data Nota Disciplina: Matemática Prof. Tallyne Siqueira Valor 1. Represente na reta real os intervalos:
ENTREGAR ESSE ROTEIRO DIRETAMENTE AO PROFESSOR DA DSCIPLINA DATA DA ENTREGA: 29/05/2019
Disciplina: Matemática 01 Data: 29 /05 / 19 Segmento: E. Médio Série: 3º ano Turma: JC Valor: 5,0 Média: 3,0 Assunto: Roteiro de Estudos Para Recuperação da I Etapa/2019 Tipo: A Aluno(a): Nº: Nota: Professor(a):
RACIOCÍNIO LÓGICO. Aula 1 - Introdução a Teoria de Conjuntos. Prof.: Jorge Junior
RACIOCÍNIO LÓGICO Aula 1 - Introdução a Teoria de Conjuntos Prof.: Jorge Junior Conteúdo Programático desta aula Conjuntos e Elementos Representações Subconjuntos Pertinência e Inclusão Tipos de Conjunto
Colégio Santa Dorotéia Disciplina: Matemática / ORIENTAÇÃO DE ESTUDO - RECUPERAÇÃO Ano: 3 º - Ensino Fundamental Data: 11 / 9 / 2018
Colégio Santa Dorotéia Disciplina: Matemática / ORIENTAÇÃO DE ESTUDO - RECUPERAÇÃO Ano: 3 º - Ensino Fundamental Data: 11 / 9 / 2018 CONTEÚDO DE ESTUDO PARA RECUPERAÇÃO: Tabela e gráfico. Hora e meia hora.
INTRODUÇÃO À ANÁLISE COMBINATÓRIA
INTRODUÇÃO À ANÁLISE COMBINATÓRIA Noções Básicas Profº Aristóteles Miranda 2ªSérie O QUE É A ANÁLISE COMBINATÓRIA? A análise combinatória corresponde ao ramo da matemática que procura elaborar métodos
1) Calcule a distância entre os pontos A e B em cada caso a seguir:
ESTUDO DIRIGIDO PROVA MENSAL 9ºA - MATEMÁTICA 1) Calcule a distância entre os pontos A e B em cada caso a seguir: a) A(1, 8) e B(4, 12) b) A(-1, 3) e B(-9, 18) c) A(4, -7) e B(-16, -22) d) A(2, -3) e B(7,
Ministério da Educação Secretaria de Educação Profissional e Tecnológica. Instituto Federal Catarinense- Campus avançado Sombrio
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA 1- IDENTIFICAÇÃO Instituto
Resposta da questão 5: [D] Admitindo que o número de pessoas que leem jornal e outros livros seja zero, temos o seguinte diagrama.
Resposta da questão 1: [C] Portanto, o número de agricultores da cooperativa é: 80 + 45 + 40 = 165 agricultores. Resposta da questão 2: [D] 25 + 15 + 15 + 5 + 5 + 10 + 10 + 5 + x = 88 x = 8 Resposta da
MATEMÁTICA MÓDULO 18. Exercícios de Revisão III. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 18 Exercícios de Revisão III QUESTÃO 1 Uma instituição financeira abaixou a sua taxa de juros de 2,5% para 2,0%. Assinale a opção que apresenta, em porcentagem,
MATEMÁTICA PAULO ROBERTO
I CONJUNTOS não seja elementos de B. (A e não B). 1) Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. 2) Relação
Colégio XIX de Março Educação do jeito que deve ser
Colégio XIX de Março Educação do jeito que deve ser 018 ª PROVA PARCIAL DE MATEMÁTICA Aluno(a): Nº Ano: 6º Turma: Data: 5/08/018 Nota: Professor(a): Claudia Meazzini Sepulvene Valor da Prova: 40 pontos
OPINIÃO NÚMERO DE PESSOAS PORCENTAGEM ótimo 42 bom 37 regular 10 ruim 6 não assistiram 5
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 7º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 0- Assunto: Porcentagem Numa
Conjuntos & Conjuntos Numéricos. Exercícios Propostos
Enem e esb Matemática Cursinho: niversidade para Todos Professor: Cirlei Xavier Lista: 4 a Lista de Matemática luno (a): Disciplina: Matemática Conteúdo: Conjuntos Turma: e B Data: gosto de 2016 Conjuntos
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona ntônia Valadares MTEMÁTIC 1º NO TEORI DOS CONJUNTOS PROFESSOR: LEXSNDRO DE SOUS http://donaantoniavaladares.comunidades.net Conjuntos: Não existe uma definição formalizada do que vem a ser um
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matemática Teoria dos Conjuntos (Linguagem dos Conjuntos) Conjunto é um conceito primitivo, isto é, sem definição, que indica agrupamento
LISTA DE REVISÃO PROVA TRIMESTRAL MATEMÁTICA. 2) Escreva o elemento inverso de cada um dos números racionais.
LISTA DE REVISÃO PROVA TRIMESTRAL MATEMÁTICA ANO º TRIMESTRE ) Que barra representa: a) Metade da metade da barra marrom. b) Metade de um quarto da barra marrom. c)um quarto de dois quintos da barra laranja.
ALGORITMOS E PROGRAMAÇÃO
ALGORITMOS E PROGRAMAÇÃO LISTA 3 - EXERCÍCIOS COM COMANDOS ITERATIVOS 1.Elaborar um programa que: a) calcule e escreva o somatório dos termos positivos da série abaixo. b) indique quantos termos foram
Prog A B C A e B A e C B e C A,B e C Nenhum Pref
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 2 Lógica II Quando lemos um problema de matemática imediatamente podemos ver que ele está dividido em duas partes:
MATEMÁTICA. Aula 2 Teoria dos Conjuntos. Prof. Anderson
MATEMÁTICA Aula 2 Teoria dos Conjuntos Prof. Anderson CONCEITO Na teoria dos conjuntos, um conjunto é descrito como uma coleção de objetos bem definidos. Estes objetos são chamados de elementos ou membros
SEQUÊNCIAS E PROGRESSÕES. Iva Emanuelly Rafael Carvalho
SEQUÊNCIAS E PROGRESSÕES Iva Emanuelly Rafael Carvalho Conceituando... SEQUÊNCIAS Em muitas situações da vida diária aparece a ideia de sequência ou sucessão. Exemplos de sequências: a) A sequência dos
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
OPEMAT. Olimpíada Pernambucana de Matemática
OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide
1) Verifique as afirmativas abaixo e responda, qual é a correspondente ao conjunto infinito?
Resumo Os conjuntos podem ser finitos ou infinitos. Intuitivamente um conjunto é finito se consiste de um número específico de elementos diferentes, isto é, se ao contarmos os diferentes membros do conjunto
Operações com conjuntos: união, interseção e complementar
PREPARATÓRIO IFRN Cargo: Auxiliar em Administração Disciplina: Matemática Professor: Daniel Almeida Operações com conjuntos: união, interseção e complementar CONJUNTOS Formado pelo agrupamento ou ausência
QUESTÕES DE CONCURSOS FRAÇÕES E PORCENTAGEM
Página 1 QUESTÕES DE CONCURSOS FRAÇÕES E PORCENTAGEM 12. (AOCP) João gastou um quarto de sua vida do seu nascimento até completar seus estudos. Em seguida, gastou 7/12 de sua vida trabalhando e viveu seus
Teoria dos Conjuntos FBV. Prof. Rossini Bezerra
Teoria dos onjuntos FV Prof. Rossini ezerra Os resultados do trabalho de Georg Ferdinand Ludwing Phillip antor estabeleceram a teoria de conjuntos como uma disciplina matemática completamente desenvolvida
Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira:
Conjuntos Introdução Lembramos que conjunto, elemento e relação de pertinência são considerados conceitos primitivos, isto é, não aceitam definição. Intuitivamente, sabemos que conjunto é uma lista, coleção
RL Edição Fevereiro 2014
RL Edição Fevereiro 2014 01. Sejam dados dois conjuntos não vazios, A, B, e sejam A e B seus respectivos conjuntos complementares no conjunto Universo considerado. Se um elemento x é tal que x A B, então
Projeto Jovem Nota 10 Conjuntos Lista 1 Professor Marco Costa
1 1. (Universidade Federal do Paraná - 97) Projeto Jovem Nota 10 Foi realizada uma pesquisa para avaliar o consumo de três produtos designados por A, B, C. Todas as pessoas consultadas responderam à pesquisa
COLÉGIO PEDRO II - MEC 1aSÉRIE DO ENSINO MÉDIO MATEMÁTICA NOTURNO
COLÉGIO PEDRO II - MEC 1aSÉRIE DO ENSINO MÉDIO MATEMÁTICA - 2007 NOTURNO QUESTÃO 1 1 (VALOR: 1,0) Observe a matéria a seguir, extraída da Revista Veja, edição 1978, de 18 de outubro de 2006. UM EXÉRCITO
Roteiro de Estudo para a Recuperação Semestral MATEMÁTICA 1ºEM
Roteiro de Estudo para a Recuperação Semestral MATEMÁTICA 1ºEM NOME: IMPRIMA AS FOLHAS. RESOLVA AS QUESTÕES DISSERTATIVAS EM FOLHA DE PAPEL ALMAÇO OU FOLHA DE FICHÁRIO; OS TESTES PODERÃO SER RESPONDIDOS
Lista de Exercícios - Conjuntos
01) (UFE) e e são dois conjuntos não vazios e é o conjunto vazio, é verdade que, das afirmações: I. = { } II. ( ) ( ) = ( ) ( ) III. { } = {} {} IV. {,, } são verdadeiras somente: a) I e II d) III e IV
Interruptores e Conjuntos
aula 03 (Lógica) Sistemas Dicotômicos, Interruptores e Conjuntos Professor: Renê Furtado Felix E-mail: [email protected] Site: http://www.renecomputer.net/pdflog.html Sistemas Dicotômicos Aula de
AULA 8. Conteúdo: Equivalência de Frações. Objetivo: Compreender o significado e o processo de obtenção de frações equivalentes.
AULA 8 Conteúdo: Equivalência de Frações. Objetivo: Compreender o significado e o processo de obtenção de frações equivalentes. 8.1 Tarefa 1: Problema Gerador Na terça-feira, a turma dividiu um bolo pequeno
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se logicamente como um termo não definido. Um conjunto se pode entender
RACIOCÍNIO LÓGICO. Quantas dessas proposições compostas são FALSAS? a) Nenhuma. b) Apenas uma. c) Apenas duas. d) Apenas três. e) Quatro.
RACIOCÍNIO LÓGICO 01. Uma proposição é uma sentença fechada que possui sentido completo e à qual se pode atribuir um valor lógico verdadeiro ou falso. Qual das sentenças apresentadas abaixo se trata de
Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz
Agente Penitenciário
Agente Penitenciário Questões La Salle Raciocínio Lógico Prof. Edgar Abreu Raciocínio Lógico QUESTÕES LA SALLE MUNICÍPIO DE CANOAS 2015 TÉCNICO EM TRÂNSITO E TRANSPORTES 1. A negação da proposição "Arthur
