Teoria dos conjuntos
|
|
|
- Luiz Felipe Lopes Festas
- 9 Há anos
- Visualizações:
Transcrição
1 Teoria dos conjuntos Zenão de Eléia, filósofo grego que viveu por volta de 45 a C., já se preocupava com o conceito de infinito ao propor a questão a seguir, conhecida como paradoxo de Zenão. Em meados da década de 1870 o matemático Georg Cantor ( )e seu colega Richard Dedeking ( ) definiram e classificaram precisamente tipos diferentes de infinito. Para isso eles se utilizaram de uma nova teoria, criada por Cantor em 1872: a teoria dos conjuntos. Além da definição rigorosa de infinito, e de muitas outras contribuições, a teoria dos conjuntos unificou a linguagem em todos os ramos da Matemática.
2 Teoria dos conjuntos Georg Cantor fez da teoria dos conjuntos um vasto campo de investigação matemática.
3 Conceitos Primitivos Os conceitos que iniciam uma determinada teoria são aceitos sem definição, pois, não existindo ainda a teoria, não há como defini-los; por isso são chamados de conceitos primitivos. Na teoria dos conjuntos esses conceitos são: conjunto, elemento de um conjunto e pertinência entre elemento e conjunto. A idéia de conjunto é a mesma de coleção, conforme mostram os exemplos a seguir.
4 Conceitos Primitivos Exemplos: a) Uma coleção de revistas é um conjunto. Cada uma dessas revistas é um elemento que pertence ao conjunto. b) Os alunos de sua sala formam um conjunto. Você é um elemento que pertence a esse conjunto.
5 Formas de Representar um Conjunto. Representação tabular A representação tabular (forma de tabela) de um conjunto é aquela em que os elementos são apresentados entre chaves e separados por vírgulas. Exemplos: a) A = {a, e, i, o, u} b) B = {1, 2, 3, 4} Note que, nos exemplos dados, u é elemento do conjunto A e não é elemento do conjunto B. Esses fatos são indicados, respectivamente, por: u A (lê-se u pertence a A) u B (lê-se u não pertence a B)
6 Formas de Representar um Conjunto. Representação por um diagrama de Venn. A representação de um conjunto por um diagrama de Venn (John Venn, ) é aquela em que os elementos são simbolizados por pontos interiores a uma região plana, delimitada por uma linha fechada que não se entrelaçada. Exemplos:
7 Formas de Representar um Conjunto. Representação por uma propriedade. A representação de um conjunto A por meio de uma propriedade é aquela em que os elementos são descritos por uma propriedade que os determina. Representa-se o conjunto por: Exemplo: A = { x x tem a propriedade p} A = { x x é país da Europa} Propriedade p
8 Tipos de Conjunto Conjunto Unitário. É todo conjunto formado por um único elemento. Exemplos: a) A = {5} b) B = {x x é estrela do sistema solar} = {Sol} Conjunto vazio. Exemplo: É aquele que não possui elemento algum. Representa-se o conjunto vazio por ou por { }. a) A = {x x é o número e 0. X = 5} = b) B = {x x é palavra proparoxítona não acentuada, em português} = { }
9 Tipos de Conjunto Conjunto finito É todo conjunto que, contando os elementos um a um, chega-se ao fim da contagem. Exemplos: a) A = {a, b, c, d, e, f} b) B = {x x é pessoa brasileira} c) C =
10 Tipos de Conjunto Conjunto infinito. Exemplos: É todo conjunto que não é finito. a) Um importante conjunto infinito que vamos usar como referência adiante é o conjunto dos números naturais. IN = {0, 1, 2, 3, 4,...} b) Outro importante conjunto infinito que também será usado freqüentemente como referência é o conjunto dos números inteiros: Z = {..., -3, -2, -1, 0, 1, 2, 3,...}
11 Subconjunto Consideramos o conjunto B formado por todas as pessoas brasileiras. Com os elementos de B podemos formar o conjunto H, de todos os homens brasileiros, e o conjunto M, de todas as mulheres brasileiras. Dizemos que os conjuntos H e M são subconjuntos de B. Se um conjunto T possui como elemento pelo menos uma pessoa que não seja brasileira, dizemos que T não é subconjunto de B. Indicamos esses fatos por: H B (lê-se H está contido em B ) M B (lê-se M está contido em B ) T B (lê-se T não está contido em B )
12 Subconjunto Atenção Um conjunto A é subconjunto B se, e somente se, todo elemento de A pertence a B. Exemplos:
13 Propriedades P1 O conjunto vazio é subconjunto de qualquer conjunto. A ( A) (O símbolo é lido qualquer que seja.) P2 Todo conjunto é subconjunto de si mesmo. Exemplos a) {5, 4, 0} {5, 4, 0} b) A A ( A)
14 Igualdade de Conjuntos Observe que todo elemento do conjunto {1, 2, 3} também pertence ao conjunto {3, 2, 1} e que todo elemento de {3, 2, 1} também pertence a {1, 2, 3}. Por isso, dizemos: {1, 2, 3} = {3, 2, 1} Dois conjuntos A e B são iguais (A = B) se, e somente se, A B e B A.
15 Conjunto Universo Quando estudamos a história da humanidade, o conjunto de todos os seres humanos é chamado de conjunto universo (U) desse estudo. Quando estudamos os números que podem resultar da contagem de unidades, o conjunto universo (U) é o conjunto dos números naturais: IN = {0, 1, 2, 3, 4,...} Generalizando: O conjunto universo de um estudo é aquele ao qual pertencem todos os elementos desse estudo.
16 Exercício Resolvido
17 Atividades
18 Atividades
19 Atividades
20 União e intersecção de conjuntos Um professor de Educação Física marcou dois treinos: para o primeiro foram convocadas as alunas que jogam voleibol ou basquetebol e, para o segundo, foram convocadas as alunas que jogam voleibol e basquetebol. Três alunas do colégio, Beatriz, Mariella e Caroline, são jogadoras. Beatriz joga apenas voleibol, Mariella joga apenas basquetebol, e Caroline joga basquetebol e voleibol. Quem dentre elas deve comparecer ao primeiro treino? E quem deve comparecer ao segundo? Fica claro que as três devem comparecer ao primeiro treino e apenas Caroline, dentre as três, deve comparecer ao segundo. Esse exemplo ajudará a entender as definições a seguir.
21 União (ou reunião) de conjuntos Exemplos A união (ou reunião) de dois conjuntos, A e B, que indicamos por A U B (lê-se: A união B ), é o conjunto cujos elementos são todos aqueles que pertencem a A ou a B. A U B = {x x A ou x B} a) Sendo A = {1, 2, 3} e B = {6, 7}, temos: A U B ={1, 2, 3, 6, 7} b) Sendo C = {1, 2, 3, 4} e D = {3, 4, 5, 6, 7}, temos: C U D = {1, 2, 3, 4, 5, 6, 7} c) Sendo E = {1, 2, 3} e F = {0, 1, 2, 3, 4}, temos E U F = {0, 1, 2, 3, 4}
22 União (ou reunião) de conjuntos
23 Intersecção de conjuntos
24 Intersecção de conjuntos
25 Atividades
26 Diferença
27 Atividades
28 Problemas sobre quantidades de elementos de conjuntos finitos
29 Problemas sobre quantidades de elementos de conjuntos finitos
30 Problemas sobre quantidades de elementos de conjuntos finitos Agora, consultando o diagrama, podemos responder as questões; a) 205 pessoas lêem apenas o jornal A b) =480 lêem o jornal A ou B. c) =500 Não lêem o jornal C. d) =700 Total de pessoas
31 Atividades
32 Classificação dos Números (IN)
33 Classificação dos Números (Z)
34 Classificação dos Números (Q)
35 Classificação dos Números (Q)
36 Classificação dos Números (Q)
37 Classificação dos Números (Q)
38 Classificação dos Números (Q )
39 Classificação dos Números (Q )
40 Classificação dos Números (Q )
41 Classificação dos Números (R)
42 Classificação dos Números (R)
43 Classificação dos Números (R)
44 Atividades
45 Classificação dos Números
46 Classificação dos Números
47 Classificação dos Números
48 Classificação dos Números
49 Bibliografia PAIVA, Manoel; Matemática, 1. Ed.; São Paulo: Moderna, IEZZI, Gelson; Fundamentos da Matemática elementar, 1: Conjuntos, funções 7. Ed. São Paulo: Atual, 1993.
50 Construção e Pesquisa: Professor Clayton Palma Graduado em Matemática e Física pela Faculdade Hebraica Renascença; Pós- graduado em Psicopedagogia na FPA; Pedagogia na Uniban; Pós-graduado em História, Sociedade e Cultura pela PUC-Barueri.
Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos.
Capítulo 1 Conjuntos 1.1 Noção de conjuntos Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos. 1. Uma coleção de revista
Prof.ª Dr.ª Donizete Ritter. MÓDULO III PARTE I: Conjuntos e Diagramas Lógicos
Bacharelado em Sistemas de Informação Disciplina: Lógica Prof.ª Dr.ª Donizete Ritter MÓDULO III PARTE I: Conjuntos e Diagramas Lógicos 1 Teoria de Conjuntos Conceitos Primitivos (não-definidos): Conjuntos
CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...
ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início
Conjuntos. 1 Conceitos primitivos. representação de um conjunto. 2.1 REPRESENTAÇÃO TABULAR. 2.2 Representação por Diagrama de Venn- Euler
MT I Prof. Gustavo dolfo Soares Conjuntos a) 1 Conceitos primitivos Os conceitos que iniciam uma teoria são aceitos sem definição, pois, não existindo ainda a teoria, não há recurso para definí-los; por
Pensamento. (Provérbio Chinês) Prof. MSc. Herivelto Nunes
Aula Introdutória Matemática Básica- março 2017 Pensamento Não creio em números, não creio na palavra tudo e nem na palavra nada. São três afirmações exatas e imóveis: o mundo está sempre dando voltas.
Introdução a Teoria de Conjuntos
Aula 01 Introdução a Teoria de Conjuntos A Teoria dos Conjuntos foi criada e desenvolvida pelo Matemático russo George Cantor (1845-1918), trata-se do estudo das propriedades dos conjuntos, relações entre
Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira:
Conjuntos Introdução Lembramos que conjunto, elemento e relação de pertinência são considerados conceitos primitivos, isto é, não aceitam definição. Intuitivamente, sabemos que conjunto é uma lista, coleção
Definição: Todo objeto parte de um conjunto é denominado elemento.
1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção
Teoria dos Conjuntos. Prof. Jorge
Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do
Teoria dos conjuntos
Matemática I Teoria dos conjuntos UNE - Universidade do Estado da ahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Teoria dos conjuntos Prof. MSc. Rebeca Dourado
Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).
O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.
Por meio de uma figura fechada, dentro da qual podem-se escrever seus elementos. Diagrama de Venn-Euler.
REPRESENTAÇÕES Um conjunto pode ser representado da seguinte maneira: Enumerando seus elementos entre chaves, separados por vírgulas; Exemplos: A = { 1, 0, 1} N = {0, 1, 2, 3, 4,...} Indicando, entre chaves,
Fundamentos de Matemática
Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,
Teoria dos Conjuntos FBV. Prof. Rossini Bezerra
Teoria dos onjuntos FV Prof. Rossini ezerra Os resultados do trabalho de Georg Ferdinand Ludwing Phillip antor estabeleceram a teoria de conjuntos como uma disciplina matemática completamente desenvolvida
MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin
MATEMÁTICA Conjuntos Professor Marcelo Gonzalez Badin Alguns símbolos importantes Œ Pertence / Tal que œ Não Pertence : Tal que $ " fi Existe Não existe Qualquer (para todo) Portanto Se, e somente se,...(equivalência)
Matemática é a ciência das regularidades.
Matemática é a ciência das regularidades. Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Conjunto
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos
MATEMÁTICA. Aula 2 Teoria dos Conjuntos. Prof. Anderson
MATEMÁTICA Aula 2 Teoria dos Conjuntos Prof. Anderson CONCEITO Na teoria dos conjuntos, um conjunto é descrito como uma coleção de objetos bem definidos. Estes objetos são chamados de elementos ou membros
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan
Matéria: Matemática Assunto: Teoria dos Conjuntos Prof. Dudan Matemática Teoria dos Conjuntos (Linguagem dos Conjuntos) Conjunto é um conceito primitivo, isto é, sem definição, que indica agrupamento
Matemática I Conjuntos Conjuntos Numéricos. Prof.: Joni Fusinato 1
Matemática I Conjuntos Conjuntos Numéricos Prof.: Joni Fusinato [email protected] [email protected] 1 Teoria dos Conjuntos Teoria matemática dedicada ao estudo da associação entre objetos com
Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):
Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto
Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros
1. Conjuntos Objetivo: revisar as principais noções de teoria de conjuntos afim de utilizar tais noções para apresentar os principais conjuntos de números. 1.1 Conjunto, elemento e pertinência Conjunto
CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA
CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com
Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.
MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa
ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível
Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos
Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e
exemplos O conjunto das letras do nosso alfabeto; L= {a, b, c, d,..., z}. O conjunto dos dias da semana: S= {segunda, terça,... domingo}.
CONJUNTOS Conjunto: Representa uma coleção de objetos, geralmente representado por letras MAIÚSCULAS; não interessando a ordem e quantas vezes os elementos estão listados na coleção, e sempre são representados
Matemática Aplicada à Informática
Matemática Aplicada à Informática Unidade 1.1 Teoria de Conjuntos Curso Técnico em Informática Aline Maciel Zenker SUMÁRIO INTRODUÇÃO À MATEMÁTICA APLICADA À INFORMÁTICA... 3 1 INTRODUÇÃO... 3 2 OBJETIVO
RACIOCÍNIO LÓGICO. Aula 1 - Introdução a Teoria de Conjuntos. Prof.: Jorge Junior
RACIOCÍNIO LÓGICO Aula 1 - Introdução a Teoria de Conjuntos Prof.: Jorge Junior Conteúdo Programático desta aula Conjuntos e Elementos Representações Subconjuntos Pertinência e Inclusão Tipos de Conjunto
Admitiremos que um conjunto seja uma coleção de objetos chamados elementos e que cada elemento é um dos componentes do conjunto.
TEORIA DOS CONJUNTOS Introdução A Teoria dos conjuntos é a teoria matemática dedicada ao estudo da associação entre objetos com uma mesma propriedade, elaborada no século XIX. Sua origem pode ser encontrada
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem
MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.
1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA
CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos
Teoria dos Conjuntos 1. Definição Hora do Exemplo:
1. Definição 2. Denotação 3. Representação 4. Diagrama de Venn 5. Relação de Pertinência 6. Família de Conjuntos 7. Igualdade de Conjuntos 8. Desigualdade de Conjuntos 2 1. Definição: Intuitivamente, por
1) Seja o conjunto A = (0;1). Quantas relações binárias distintas podem ser definidas sobre o conjunto A?
RESUMO A relação binária é uma relação entre dois elementos, sendo um conjunto de pares ordenados. As relações binárias são comuns em muitas áreas da matemática. Um par ordenado consiste de dois termos,
RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS
Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)
Introdução à Matemática
Universidade Estadual de Goiás Unidade Universitária de Ciências Sócio-Econômicas e Humanas de Anápolis Introdução à Matemática Conjuntos e Conjuntos Numéricos Introdução A noção de conjunto Propriedades,
1) Verifique as afirmativas abaixo e responda, qual é a correspondente ao conjunto infinito?
Resumo Os conjuntos podem ser finitos ou infinitos. Intuitivamente um conjunto é finito se consiste de um número específico de elementos diferentes, isto é, se ao contarmos os diferentes membros do conjunto
IBM1088 Linguagens Formais e Teoria da Computação
IBM1088 Linguagens Formais e Teoria da Computação Conceitos fundamentais sobre Teoria dos Conjuntos Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 26 Frase
Conjuntos e sua Representação
Conjuntos e sua Representação Professor: Nuno Rocha [email protected] Conjuntos Um conjunto é o agrupamento de vários elementos que possuem características semelhantes. Exemplos de conjuntos: Países
Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos
Pode-se dizer que a é em grande parte trabalho de um único matemático: Georg Cantor (1845-1918). noção de conjunto não é suscetível de definição precisa a partir d noções mais simples, ou seja, é uma noção
Tópicos de Matemática. Teoria elementar de conjuntos
Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática
AULA DO CPOG. Teoria dos conjutos
AULA DO CPOG Teoria dos conjutos TEORIA DOS CONJUNTOS Professor Felipe Técnico de Operações P-25 Petrobras Contatos Felipe da Silva Cardoso [email protected] www.professorfelipecardoso.blogspot.com
Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio.
CONJUNTOS Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. Exemplos: A = {a, e, i, o, u} (conjunto das vogais do
EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS
NOME: TURMA: SANTO ANDRÉ, DE DE EXERCICIOS COMPLEMENTARES OS CONJUNTOS NUMÉRICOS Conjunto dos números naturais -Representado pela letra N, este conjunto abrange todos os números inteiros positivos, incluindo
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Rafael Carvalho 7º Período Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos Rafael Carvalho 7º Período Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos
Hewlett-Packard CONJUNTOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard CONJUNTOS Aulas 01 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ano 2016 Sumário CONJUNTOS... 2 CONCEITOS PRIMITIVOS... 2 REPRESENTAÇÃO DE UM CONJUNTO... 2 RELAÇÃO DE PERTINÊNCIA...
Janeiro M A T E M Á T I C A CONJUNTOS TEORIA DOS CONJUNTOS. Sejam bem-vindos ao nosso primeiro dia de Cronograma.
VEST Janeiro @vestmapamental M A T E M Á T I C A CONJUNTOS TEORIA DOS CONJUNTOS Sejam bem-vindos ao nosso primeiro dia de Cronograma. Iniciando pela Matemática, uma disciplina exata, que requer muito compromisso,
Linguagem Básica de Conjuntos
Capítulo 1 Linguagem Básica de Conjuntos 1.1 A Noção de Conjunto A teoria dos conjuntos surgiu com os trabalhos de George Cantor no século XIX. Entretanto, tal teoria não se preocupava com muito rigor
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se
Em matemática, o conceito de conjunto é considerado primitivo e não se dá uma definição deste, portanto, a palavra CONJUNTO deve aceitar-se logicamente como um termo não definido. Um conjunto se pode entender
Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG.
Matemática Discreta Teoria dos Conjuntos - Parte I Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Letras maiúsculas: conjuntos. Letras minúsculas: elementos do conjunto. Pertinência: o símbolo
Aulas 10 e 11 / 18 e 20 de abril
1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar
Generalidades sobre conjuntos
Generalidades sobre conjuntos E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos
Noções de conjunto. Aluno (a): Data: / /
Conjuntos Noções de conjunto Aluno (a): Data: / / Um grupo de alunos de uma mesma escola e de uma mesma turma. Você sabe o que é um conjunto? Quando escolhemos ou selecionamos coisas semelhantes, parecidas,
Matemática Conjuntos - Teoria
Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar
Generalidades sobre conjuntos
Generalidades sobre conjuntos E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS
NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos serão, em geral, indicados por letras maiúsculas do alfabeto: A,B,C,...,
PROFESSOR: ALEXSANDRO DE SOUSA
E.E. Dona ntônia Valadares MTEMÁTIC 1º NO TEORI DOS CONJUNTOS PROFESSOR: LEXSNDRO DE SOUS http://donaantoniavaladares.comunidades.net Conjuntos: Não existe uma definição formalizada do que vem a ser um
Conjuntos: Noções Básicas Parte I
http://www.blogviche.com.br/2007/02/02/conjuntos-numericos/ em 05/02/2011 Conjuntos: Noções Básicas Parte I Publicado por Newton de Góes Horta Apresenta as principais propriedades da Teoria dos Conjuntos,
MAT105 - Fundamentos de Matemática Elementar I
MAT105 - Fundamentos de Matemática Elementar I Prof. Dr. Diogo Machado ([email protected]) 1o semestre de 2016 Universidade Federal de Viçosa - UFV Departamento de Matemática Um dos mais importantes
Aplicações da teoria de conjuntos álgebra booleana. Pontifícia Universidade Católica de Goiás Msc. Gustavo Siqueira Vinhal 2016/1
Aplicações da teoria de conjuntos álgebra booleana Pontifícia Universidade Católica de Goiás Msc. Gustavo Siqueira Vinhal 2016/1 CONJUNTOS Conjuntos são fundamentais para formalização de qualquer teoria.
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº PROFESSORA:
E. E. E. M. MATEMÁTICA PRIMEIRO ANO - PARTE UM CONTEÚDOS CONJUNTOS INTERVALOS NOME COMPLETO: Nº TURMA: TURNO: ANO: PROFESSORA: 1 1. Noção básica de conjuntos numéricos 1.1 Conceito de Conjunto Segundo
Em matemática definimos e estudamos conjuntos de números, pontos, retas curvas, funções etc.
INTRODUÇÃO Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 02 - Introdução, Plano Cartesiano, Pontos e Retas
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. João Victor Tenório Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Conjuntos João Victor Tenório Engenharia Civil Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto de todos os estudantes
a. O conjunto de todos os brasileiros. b. O conjunto de todos os números naturais. c. O conjunto de todos os números reais tal que x²-4=0.
Introdução aos conjuntos No estudo de Conjuntos, trabalhamos com alguns conceitos primitivos, que devem ser entendidos e aceitos sem definição. Para um estudo mais aprofundado sobre a Teoria dos Conjuntos,
CONJUNTOS CONJUNTOS NUMÉRICOS
ENCONTRO 01 E 02 CONJUNTOS Intuitivamente, conjunto é uma lista, coleção ou classe de objetos, números, pessoas etc. Indicamos os conjuntos por letras maiúsculas do nosso alfabeto e seus elementos por
Lógica e Matemática Discreta
Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 04 de Junho de 2010 Curso de Ciência da Computação Noções básicas Um conjunto designa-se geralmente por uma letra latina maiúscula:
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS
CONJUNTO DOS NÚMEROS NATURAIS... 2 RETA NUMERADA... 2 CONJUNTO DOS NÚMEROS INTEIROS... 4 SUBCONJUNTOS DE Z... 5 NÚMEROS OPOSTOS... 5 VALOR ABSOLUTO DE UM NÚMERO INTEIRO... 6 CONJUNTO DOS NÚMEROS RACIONAIS...
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane
Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática
Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática 2014 Na teoria dos conjuntos três noções são aceitas sem denição (noção primitiva):: Conjunto;
Aula 1 Conjuntos Numéricos
1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º
LÓGICA I ANDRÉ PONTES
LÓGICA I ANDRÉ PONTES 3. Introdução à Teoria dos Conjuntos Um conjunto é uma coleção ou um agregado de objetos. Introduzindo Conjuntos Ex.: O conjunto das vogais; O conjuntos de pessoas na sala; O conjunto
Operações com conjuntos: união, interseção e complementar
PREPARATÓRIO IFRN Cargo: Auxiliar em Administração Disciplina: Matemática Professor: Daniel Almeida Operações com conjuntos: união, interseção e complementar CONJUNTOS Formado pelo agrupamento ou ausência
CONJUNTOS. Matemática 1º Ano 1º Bimestre/2014 Plano de Trabalho 1 TAREFA 1 CURSISTA: FABIANA OLIVEIRA DA SILVA RODRIGUES
FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ Matemática 1º Ano 1º Bimestre/2014 Plano de Trabalho 1 CONJUNTOS TAREFA 1 CURSISTA: FABIANA OLIVEIRA DA SILVA RODRIGUES TUTOR: MARCELO
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Conjuntos. Isabelle Araujo 5º período de Engenharia de Produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Conjuntos Isabelle Araujo 5º período de Engenharia de Produção Definição Noção intuitiva: São coleções de elementos da mesma espécie. - O conjunto
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não
Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.
Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA
MAT1513 - Laboratório de Matemática - Diurno Professor David Pires Dias - 2017 Texto sobre Lógica (de autoria da Professora Iole de Freitas Druck) A LINGUAGEM DO DISCURSO MATEMÁTICO E SUA LÓGICA Iniciemos
LINGUAGENS FORMAIS E AUTÔMATOS
LINGUGENS FORMIS E UTÔMTOS Introdução reve Histórico Em 1936, lan Turing (matemático) propôs a possibilidade de se construir um computador digital através da formalização de um procedimento em tempo finito.
MANT _ EJA I. Aula 01. 1º Bimestre. Teoria dos Conjuntos Professor Luciano Nóbrega. DEUS criou os números naturais. O resto é obra dos homens.
MANT _ EJA I DEUS criou os números naturais. O resto é obra dos homens. Aula 01 Teoria dos Conjuntos Professor Luciano Nóbrega Leopold Kronecker (Matemático Alemão) 1 1º Bimestre 2 Observe a foto de um
Prof. a : Patrícia Caldana
CONJUNTOS ESPECIAIS Conjunto Vazio O Conjunto vazio é o conjunto que não possui elementos. Para representarmos o conjunto vazio usaremos os símbolos: { } ou. Atenção: Quando os símbolos { } ou, aparecerem
TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.
TEORIA DOS CONJUNTOS Professor: Marcelo Silva [email protected] Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando
Matemática Computacional
Matemática Computacional SLIDE V Professor Júlio Cesar da Silva [email protected] site: http://eloquium.com.br/ twitter: @profjuliocsilva facebook: https://www.facebook.com/paginaeloquium Google+:
Linguagens Formais e Autômatos
Linguagens Formais e Autômatos (notas da primeira aula 1 Definições básicas 1.1 Conjuntos Definição 1. Um conjunto é uma coleção de objetos, denominados elementos. Notação 1. Para indicar que um elemento
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1)
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Matemática (versão 2.1) A Matemática apresenta invenções tão sutis que poderão servir não só para
Bases Matemáticas. Definição ingênua de conjunto. Aula 3 Conjuntos. Rodrigo Hausen
1 ases Matemáticas ula 3 Conjuntos Rodrigo Hausen v. 2012-9-26 1/14 Definição ingênua de conjunto 2 Um conjunto é uma qualquer coleção de objetos, concretos ou abstratos, sem repetição. Dado um conjunto,
CAPÍTULO 3 OPERAÇÕES COM CONJUNTOS
CAPÍTULO 3 OPERAÇÕES COM CONJUNTOS 3.1) NOÇÃO DE CONJUNTO E DE ELEMENTO Como o próprio nome indica, conjunto dá ideia de coleção. Assim, toda coleção ou grupo de objetos, animais ou coisas forma um conjunto.
Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições)
Exemplos Definições Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014
FUNÇÃO. 4.1 Relação Binária. Definição 4.1
FUNÇÃO Apesar da formalização de função ter se efetivado com as reformas curriculares do século IX, seu uso já era freqüente desde a antiguidade, pelos babilônios. O conceito de função está presente em
Matemática CONJUNTOS NUMÉRICOS. Professor Dudan
Matemática CONJUNTOS NUMÉRICOS Professor Dudan Números Naturais (IN) Definição: N = {0, 1, 2, 3, 4,... } Subconjuntos N * = { 1, 2, 3, 4,... } naturais não nulos. Números Inteiros (Z) Definição Z = {...,
