LÓGICA I ANDRÉ PONTES
|
|
|
- Sara Deluca Gameiro
- 9 Há anos
- Visualizações:
Transcrição
1 LÓGICA I ANDRÉ PONTES
2 3. Introdução à Teoria dos Conjuntos
3 Um conjunto é uma coleção ou um agregado de objetos. Introduzindo Conjuntos Ex.: O conjunto das vogais; O conjuntos de pessoas na sala; O conjunto de números naturais; dentre outros. A relação entre um conjuntos e os objetos que o compõem caracteriza a relação de pertinência ( ). Seja A com conjunto e a um de seus elementos, dizemos que: a A A relação de pertinência é um primitivo, ou seja, é não definível. Ela é a base de definição de todas as outras noções da teoria dos conjuntos. Axioma da extensionalidade A=B x (x A x B}
4 Definição intensional e extensional Uma definição intensional de um conjunto é dada pela propriedade que seleciona os membros de um conjunto em questão: V = {x / x é uma vogal} B = {x / x é músico dos Beatles} Uma definição extensional de um conjunto é dada por intermédio de uma lista exaustiva dos membros do conjunto em questão. V = {a, e, i, o, u} B = {George Harrison; Ringo Star; Paul McCartney; John Lennon} Cardinalidade: consiste no número de elementos que um conjunto possui. OBS.: É possível determinar se dois conjunto possuem a mesma cardinalidade mesmo não sabendo qual o número de elementos cada um possui. Basta verificar se há uma correspondência biunívoca (um-a-um) entre seus elementos.
5 Correlacionando intensões a extensões Toda condição [ou propriedade] determina um conjunto cujos membros são apenas aqueles itens que satisfazem a condição [ou propriedade] em questão: Princípio ingênuo da compreensão x y (x y (x)) O princípio da compreensão foi posteriormente refutado pelo Paradoxo de Russell!
6 Alguns conjuntos especiais Conjunto unitário: um conjuntos com apenas um membro. Ex.: {1}; G = {x / x é o autor de Cem Anos de Solidão}; Conjunto vazio: o conjunto que não possui nenhum elemento. Usa-se os símbolos ou { } para representar o conjunto vazio. Conjunto Universo: pode-se falar de duas formas do conjunto universo, a saber, uma absoluta e outra relativa. Em termos absolutos o conjunto o universo é o conjunto de absolutamente tudo o que há. Não há nada que não pertença a ele. Em termos relativos, ele é entendido como o domínio ou universo do discurso. Conjuntos numéricos: conjunto dos naturais; conjuntos dos inteiros; conjunto dos pares; conjunto dos ímpares... Conjuntos infinitos: um conjunto é dito infinito quando seus elementos estão em uma relação biunívoca com os elementos de um subconjunto próprio. Conjuntos finitos: quando seus elementos não estão em uma relação biunívoca com os elementos de um subconjunto próprio.
7 3.1 Algumas operações com conjuntos
8 Continência de conjuntos ( ) Um conjunto A está contido em um conjunto B se todo elemento de A é também um elemento de B. A B x (x A x B) *Quando um conjunto A está contido em B, dizemos que A é um subconjunto de B! Alguns teoremas: A A [Todo conjunto está contido em si mesmo. Tudo conjunto é subconjunto de si mesmo] A=B (A B B A) (A B B C) A C IMPORTANTE: A relação de continência de conjuntos é sempre uma relação entre conjuntos! Quando um conjunto C é subconjunto de um conjunto D, mas não é idêntico a ele, dizemos que C é um subconjunto próprio de D.
9 União de conjuntos ( ) A união de dois conjuntos A e B quaisquer é um conjunto que possui como membros apenas elementos de A ou elementos de B. Alguns teoremas: A B x (x A x B) A A = A [idempotência] A B A B = B A = A A B = B A [comutatividade] A (B C) = (A B) C [associatividade] Grande União: A grande união de um conjunto C cujos membros são também conjuntos, é o conjunto formado por tudo que é elemento de pelo menos um dos conjuntos que são membros de C. C = {x / x A A C}
10 Interseção de conjuntos ( ) A interseção de dois conjuntos A e B quaisquer é um conjunto que possui como membros apenas os elementos que pertençam a ambos os conjuntos, A e B. A B x(x A x B) Alguns teoremas: A A = A Grande Interseção: A grande interseção de um conjunto C cujos membros são também conjuntos, é o conjunto formado por tudo que é elemento de todos os conjuntos que são membros de C. C = {x / x, ( C) * Onde é uma variável para conjuntos.
11 Complemento de um conjunto ( X) O complemento de um conjunto A é o conjunto de todos os elementos que pertencem ao universo do discurso e não pertencem a A. A = { x / x U x A} Alguns teoremas: X X = U X X =
12 Conjunto diferença (A - B) A diferença entre um conjunto A e um conjunto B é o conjunto que tem como membros todas aqueles itens que são elementos de A, mas não são elementos de B. A B = { x / x A x B} Alguns teoremas:
13 Produto cartesiano (AxB) O produto cartesiano de dois conjuntos AxB = { <x, y>/ x A y B} Alguns teoremas:
14 Conjunto Potência ( ) O conjunto potência de um conjunto A é o conjunto dos subconjuntos de A (A) = { x / x é um subconjunto de A} ex.: Se A = {1, 2, 3}, então (A) = {{1}; {2}; {3}; {1, 2}; {1, 3}; {2, 3}; {1, 2, 3}; } Teorema de Cantor: Dado qualquer conjunto A, não há uma correspondência biunívoca entre A e (A). A relação de cardinalidade entre um conjunto e seu conjunto potência é dada pela seguinte fórmula: (A) = 2 n, onde n = A IMPORTANTE: Isso põe um obstáculo ao conjunto universo (U). Se tal conj. existe, então (U) U, o que seria um absurdo!
15 Aplicações em Filosofia Indivíduos ou objetos podem ser entendidos enquanto conjuntos de propriedades. Interseção e as noções filosóficas de espécie; tipo natural; substância segunda. Uma espécie S é definida como um agregado de indivíduos que compartilham um conjunto C de propriedades características. Se cada indivíduo for descrito como um agregado de propriedades co-instanciadas, então uma espécie S pode ser definida como o conjunto de indivíduos cuja a interseção de suas propriedades instanciadas tenha como subconjunto o conjunto C. Axioma da Extensionalidade e os Princípios de Identidade de Leibniz [Discurso de Metafísica] Princípio de Identidade dos Indiscerníveis... x y ((Fx Fy) x = y) Princípio de Indiscernibilidade dos Idênticos... x y (x = y (Fx Fy)) Axioma da Extensionalidade... A = B x (x A x B) A diferença entre e e a metafísica de propriedades. expressa a relação de satisfação de uma propriedade por indivíduo, ao passo que expressa uma relação entre extensões de propriedades.
16 3.2 Sobre conjuntos numéricos e os infinitos de diferentes tamanhos
17 Infinitos enumeráveis Dizemos que um conjunto é infinito enumerável, caso seus elementos possam ser postos numa relação biunívoca correspondência um-a-um como os números naturais. N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Ní = {1, 3, 5, 7, 9, 11, 13, 15,...} Np = {2, 4, 6, 8, 10, 12, 14,...} Z = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4,...} Z = {0, 1, -1, 2, -2, 3, -3, 4, -4,...}
18 A enumerabilidade dos racionais Q = { p q / p, q Z, q 0} Q = { 1 1 ; 2 1 ; 1 2 ; 3 1 ; 2 2 ; 1 3 ; 4 1 ;...} N = {0, 1, 2, 3, 4, 5, 6, 7,...}
19 A não enumerabilidade dos irracionais (reais) N R 0 0, , , , , nº diagonal nº anti-diagonal (+1) Os conjuntos R e N são ambos infinitos, mas a cardinalidade de R é maior que a de N. Há infinitos de diferentes tamanhos! Sobre a cardinalidade de conjuntos infinitos: A cardinalidade dos naturais é ℵ 0. A cardinalidade dos reais é ℵ 1. Sendo que ℵ 1 ℵ 0 Hipótese do contínuo: a cardinalidade dos reais é a menor cardinalidade maior que a cardinalidade dos naturais.
20 O Paradoxo de Russell Em tese, há conjuntos que pertencem a si mesmos e conjuntos que não pertencem a si mesmos. Por exemplo, dados os conjunto A e B abaixo: A = { x / x é um conj. com mais de três elemento} Então, temos que: A A, mas B B Definimos intensionalmente o conjunto R de Russell da seguinte forma: B = { x / x é vencedor da Medalha Fields] R { x / x x} (1) x y (x y (x)) princípio da compreensão (2) x (x R x x) (3) R R R R (4) (R R) (R R) contradição!
21 O paradoxo de Russell: sobre barbeiros e o Pinóquio!
TEORIA DOS CONJUNTOS. Professor: Marcelo Silva Natal - RN, agosto de 2013.
TEORIA DOS CONJUNTOS Professor: Marcelo Silva [email protected] Natal - RN, agosto de 2013. 1 INTRODUÇÃO Um funcionário do departamento de seleção de pessoal de uma indústria automobilística, analisando
ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível
Conjuntos, cap. 4 de Introdução à Lógica (Mortari 2001) Luiz Arthur Pagani
Conjuntos, cap. 4 de Introdução à Lógica (Mortari 00) Luiz Arthur Pagani Caracterização de conjuntos conjunto coleção de objetos: A idéia básica é de que conjuntos são coleções de objetos. (Outros termos
Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos
Pode-se dizer que a é em grande parte trabalho de um único matemático: Georg Cantor (1845-1918). noção de conjunto não é suscetível de definição precisa a partir d noções mais simples, ou seja, é uma noção
Teoria dos Conjuntos. Prof. Jorge
Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do
Pensamento. (Provérbio Chinês) Prof. MSc. Herivelto Nunes
Aula Introdutória Matemática Básica- março 2017 Pensamento Não creio em números, não creio na palavra tudo e nem na palavra nada. São três afirmações exatas e imóveis: o mundo está sempre dando voltas.
Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS. Prof.: Marcelo Maraschin de Souza
Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS Prof.: Marcelo Maraschin de Souza 3. Conjuntos Definição: Um conjunto é uma coleção desordenada de zero ou mais objetos, denominados
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS
Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem
Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio.
CONJUNTOS Definição: Um ou mais elementos que tenham características iguais ou atendam a uma regra que lhes permitam fazer parte de um mesmo meio. Exemplos: A = {a, e, i, o, u} (conjunto das vogais do
MDI0001 Matemática Discreta Aula 04 Álgebra de Conjuntos
MDI0001 Matemática Discreta Aula 04 Álgebra de Conjuntos Karina Girardi Roggia [email protected] Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa
Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática
Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática 2014 Na teoria dos conjuntos três noções são aceitas sem denição (noção primitiva):: Conjunto;
Teoria dos Conjuntos. Matemática Discreta. Teoria dos Conjuntos - Parte I. Profa. Sheila Morais de Almeida DAINF-UTFPR-PG.
Matemática Discreta Teoria dos Conjuntos - Parte I Profa. Sheila Morais de Almeida DAINF-UTFPR-PG abril - 2017 Letras maiúsculas: conjuntos. Letras minúsculas: elementos do conjunto. Pertinência: o símbolo
Definição: Todo objeto parte de um conjunto é denominado elemento.
1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção
MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin
MATEMÁTICA Conjuntos Professor Marcelo Gonzalez Badin Alguns símbolos importantes Œ Pertence / Tal que œ Não Pertence : Tal que $ " fi Existe Não existe Qualquer (para todo) Portanto Se, e somente se,...(equivalência)
Por meio de uma figura fechada, dentro da qual podem-se escrever seus elementos. Diagrama de Venn-Euler.
REPRESENTAÇÕES Um conjunto pode ser representado da seguinte maneira: Enumerando seus elementos entre chaves, separados por vírgulas; Exemplos: A = { 1, 0, 1} N = {0, 1, 2, 3, 4,...} Indicando, entre chaves,
Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):
Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto
Teoria Ingênua dos Conjuntos (naive set theory)
Teoria Ingênua dos Conjuntos (naive set theory) MAT 131-2018 II Pouya Mehdipour 5 de outubro de 2018 Pouya Mehdipour 5 de outubro de 2018 1 / 22 Referências ALENCAR FILHO, E. Iniciação à Lógica Matemática,
A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.
Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos
Sumário. 1 CAPÍTULO 1 Revisão de álgebra
Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção
Funções. Funções. Cardinalidade de conjuntos. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.
Funções Funções. Cardinalidade de conjuntos. Referência: Capítulo: 3 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 FUNÇÕES Funções-2 Definição de função Uma função
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos
Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não
CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...
ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início
Aplicações da teoria de conjuntos álgebra booleana. Pontifícia Universidade Católica de Goiás Msc. Gustavo Siqueira Vinhal 2016/1
Aplicações da teoria de conjuntos álgebra booleana Pontifícia Universidade Católica de Goiás Msc. Gustavo Siqueira Vinhal 2016/1 CONJUNTOS Conjuntos são fundamentais para formalização de qualquer teoria.
INTRODUÇÃO À TEORIA DOS CONJUNTOS1
INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto
Teoria de Conjuntos Do vazio ao Axioma da Escolha
Teoria de Conjuntos Do vazio ao Axioma da Escolha Tiago Macedo I Workshop de Álgebra - UFG - CAC http://ssa_mat.catalao.ufg.br Teoria ingênua de conjuntos Teoria ingênua de conjuntos Um conjunto é uma
Introdução a Teoria de Conjuntos
Aula 01 Introdução a Teoria de Conjuntos A Teoria dos Conjuntos foi criada e desenvolvida pelo Matemático russo George Cantor (1845-1918), trata-se do estudo das propriedades dos conjuntos, relações entre
Aulas 10 e 11 / 18 e 20 de abril
1 Conjuntos Aulas 10 e 11 / 18 e 20 de abril Um conjunto é uma coleção de objetos. Estes objetos são chamados de elementos do conjunto. A única restrição é que em geral um mesmo elemento não pode contar
exemplos O conjunto das letras do nosso alfabeto; L= {a, b, c, d,..., z}. O conjunto dos dias da semana: S= {segunda, terça,... domingo}.
CONJUNTOS Conjunto: Representa uma coleção de objetos, geralmente representado por letras MAIÚSCULAS; não interessando a ordem e quantas vezes os elementos estão listados na coleção, e sempre são representados
MATEMÁTICA. Aula 2 Teoria dos Conjuntos. Prof. Anderson
MATEMÁTICA Aula 2 Teoria dos Conjuntos Prof. Anderson CONCEITO Na teoria dos conjuntos, um conjunto é descrito como uma coleção de objetos bem definidos. Estes objetos são chamados de elementos ou membros
Curso de Matemática Aplicada.
Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo
INTRODUÇÃO À TEORIA DOS CONJUNTOS
1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1
Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos
Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e
Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.
Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.
Bases Matemáticas. Definição ingênua de conjunto. Aula 3 Conjuntos. Rodrigo Hausen
1 ases Matemáticas ula 3 Conjuntos Rodrigo Hausen v. 2012-9-26 1/14 Definição ingênua de conjunto 2 Um conjunto é uma qualquer coleção de objetos, concretos ou abstratos, sem repetição. Dado um conjunto,
MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES
MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO
Fundamentos de Matemática
Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,
Generalidades sobre conjuntos
Generalidades sobre conjuntos E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos
Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO
SUMÁRIO MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova Newton José Vieira 21 de agosto de 2007 1 A NOÇÃO DE CONJUNTO
Generalidades sobre conjuntos
Generalidades sobre conjuntos E-mail: [email protected] Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos
Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados
Revisão de conceitos Matemáticos. Matemática e Fundamentos de Informática
Revisão de conceitos Matemáticos Matemática e Fundamentos de Informática 1 1 Conjuntos Teoria dos conjuntos Em Matemática, conjunto é uma coleção de objetos (chamados elementos). Os elementos podem representar
Matemática Conjuntos - Teoria
Matemática Conjuntos - Teoria 1 - Conjunto: Conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma de representar
Matemática para Ciência de Computadores
Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes [email protected] DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor
Teoria dos Conjuntos FBV. Prof. Rossini Bezerra
Teoria dos onjuntos FV Prof. Rossini ezerra Os resultados do trabalho de Georg Ferdinand Ludwing Phillip antor estabeleceram a teoria de conjuntos como uma disciplina matemática completamente desenvolvida
Em matemática definimos e estudamos conjuntos de números, pontos, retas curvas, funções etc.
INTRODUÇÃO Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 02 - Introdução, Plano Cartesiano, Pontos e Retas
RLM - PROFESSOR CARLOS EDUARDO AULA 3
AULA 3 Sucessões = sequências(numéricas) São conjuntos de números reais dispostos numa certa ordem. Uma sequência pode ser FINITA ou INFINITA. Ex: a) (3, 6, 9, 12) sequência finita P.A de razão 3 b) (5,
Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.
PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses
Conjuntos Enumeráveis e Não-Enumeráveis
Conjuntos Enumeráveis e Não-Enumeráveis João Antonio Francisconi Lubanco Thomé Bacharelado em Matemática - UFPR [email protected] Prof. Dr. Fernando de Ávila Silva (Orientador) Departamento de Matemática
Números Naturais. MA12 - Unidade 1. Os Axiomas de Peano. O Axioma da Indução. Exemplo: uma demonstração por indução
Os Números Naturais MA1 - Unidade 1 Números Naturais Paulo Cezar Pinto Carvalho PROFMAT - SBM January 7, 014 Números Naturais: modelo abstrato para contagem. N = {1,,3,...} Uma descrição precisa e concisa
Existem conjuntos em todas as coisas e todas as coisas são conjuntos de outras coisas.
MÓDULO 3 CONJUNTOS Saber identificar os conjuntos numéricos em diferentes situações é uma habilidade essencial na vida de qualquer pessoa, seja ela um matemático ou não! Podemos dizer que qualquer coisa
AULA DO CPOG. Teoria dos conjutos
AULA DO CPOG Teoria dos conjutos TEORIA DOS CONJUNTOS Professor Felipe Técnico de Operações P-25 Petrobras Contatos Felipe da Silva Cardoso [email protected] www.professorfelipecardoso.blogspot.com
Matemática Discreta para Ciência da Computação
Matemática Discreta para Ciência da Computação P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação
Matemática Discreta - 07
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis. Matemática 1. Revisão - Conjuntos e Relações v. 0.
Curso de Administração Centro de Ciências Sociais Aplicadas Universidade Católica de Petrópolis Matemática 1 Revisão - Conjuntos e Relações v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane
RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS
Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)
Matemática Elementar. Matemática Elementar por Inaldo Barbosa de Albuquerque
Matemática Elementar i Matemática Elementar por Inaldo Barbosa de Albuquerque Matemática Elementar ii COLLABORATORS TITLE : Matemática Elementar ACTION NAME DATE SIGNATURE WRITTEN BY Inaldo Barbosa de
Infinitos, Contínuo e Escolha: Teoria dos Conjuntos
Universidade Federal de São Carlos Centro de Ciências Exatas e de Tecnologia Departamento de Matemática Infinitos, Contínuo e Escolha: Teoria dos Conjuntos Autora: Orientador: Grace Alioska Kawakubo Santana
Matemática Discreta - 07
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav
IBM1088 Linguagens Formais e Teoria da Computação
IBM1088 Linguagens Formais e Teoria da Computação Conceitos fundamentais sobre Teoria dos Conjuntos Evandro Eduardo Seron Ruiz [email protected] Universidade de São Paulo E.E.S. Ruiz (USP) LFA 1 / 26 Frase
Notas de Aula de Probabilidade A
I- CONCEITOS INICIAIS. 1.1- INTRODUÇÃO. PROBABILIDADE POPULAÇÃO AMOSTRA ESTATÍSTICA 1.2- CONJUNTOS. 1.2.1- DEFINIÇÃO. Conjunto é uma coleção de objetos chamados de elementos do conjunto. Em geral denota-se
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
Enumerabilidade. Capítulo 6
Capítulo 6 Enumerabilidade No capítulo anterior, vimos uma propriedade que distingue o corpo ordenado dos números racionais do corpo ordenado dos números reais: R é completo, enquanto Q não é. Neste novo
Diagrama de Venn O diagrama de Venn representa conjunto da seguinte maneira:
Conjuntos Introdução Lembramos que conjunto, elemento e relação de pertinência são considerados conceitos primitivos, isto é, não aceitam definição. Intuitivamente, sabemos que conjunto é uma lista, coleção
Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017
Análise I Notas de Aula 1 Alex Farah Pereira 2 3 23 de Agosto de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Conjuntos 1 1.1 Números Naturais........................
Matemática I Conjuntos Conjuntos Numéricos. Prof.: Joni Fusinato 1
Matemática I Conjuntos Conjuntos Numéricos Prof.: Joni Fusinato [email protected] [email protected] 1 Teoria dos Conjuntos Teoria matemática dedicada ao estudo da associação entre objetos com
CONJUNTOS-REVISÃO UNIDADE SEMESTRE BLOCO TURMA
CURSO CONJUNTOS-REVISÃO UNIDDE SEMESTRE BLOCO TURM DISCIPLIN ESTUDNTE PROFESSOR () GÊNESIS SORES RÚJO DT Responda com responsabilidade os questionários da avaliação institucional! LEMBRE-SE: avaliar com
Aula 1 Conjuntos Numéricos
1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º
Slides de apoio: Fundamentos
Pré-Cálculo ECT2101 Slides de apoio: Fundamentos Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2017 Conjuntos Um conjunto é coleção de objetos, chamados de elememtos do conjunto. Nomeraremos conjuntos
RACIOCÍNIO LÓGICO. Aula 1 - Introdução a Teoria de Conjuntos. Prof.: Jorge Junior
RACIOCÍNIO LÓGICO Aula 1 - Introdução a Teoria de Conjuntos Prof.: Jorge Junior Conteúdo Programático desta aula Conjuntos e Elementos Representações Subconjuntos Pertinência e Inclusão Tipos de Conjunto
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA
PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos
LFA. Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos
LFA Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos Técnicas de Demonstração Um teorema é uma proposição do tipo: p q a qual, prova-se, é verdadeira sempre que: p q Técnicas de Demonstração
MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.
1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:
Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a
Exemplo (U(n)) Dado um inteiro positivo n, definimos U(n) como sendo o conjunto dos inteiros positivos menores que n e primos com n. Não é difícil ver que a multiplicação módulo n é uma operação binária
Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra
Universidade Federal de Goiás Câmpus Catalão Aluno: Bruno Castilho Rosa Orientador: Igor Lima Seminário Semanal de Álgebra Notas de aula 1. Título: Subgrupos finitos de. 2. Breve descrição da aula A aula
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO
DISCIPLINA: MATEMÁTICA BÁSICA PROF. ELIONARDO ROCHELLY TEC. ALIMENTOS TEC. SISTEMAS INTERNET MATUTINO/VESPERTINO Conjuntos A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem
Para Computação. Aula de Monitoria - Miniprova
Para Computação Aula de Monitoria - Miniprova 1 2013.1 Roteiro Provas e Proposições Conjuntos Provas e Proposições Proposição - Sentença que ou é verdadeira ou é falsa. ex: Hoje é sábado. -> É uma proposição.
Matemática Discreta para Ciência da Computação
Matemática Discreta para Ciência da Computação P. Blauth Menezes [email protected] Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação
Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares
Notas de Aulas 1 - Conjuntos Prof Carlos A S Soares 1 Preliminares Neste curso não temos a pretensão de apresentar a teoria de conjuntos e seus axiomas, tão somente pretendemos apresentar um pequeno esboço
Bases Matemáticas. Aula 4 Conjuntos Numéricos. Rodrigo Hausen. v /9
Bases Matemáticas Aula 4 Conjuntos Numéricos Rodrigo Hausen v. 2016-6-10 1/9 Números Naturais, Inteiros e Racionais naturais: inteiros: racionais: N = {0, 1, 2,...} Z = {... 2, 1, 0, 1, 2,...} { } p Q
Aula 4: Elementos da Teoria de Conjuntos
1 / 20 Elementos da Teoria de Conjuntos Bases Matemáticas - 3 o /2018 Dahisy Lima Aula 4: Elementos da Teoria de Conjuntos 2 / 20 Conjuntos Elementos da Teoria de Conjuntos Do ponto de vista ingênuo, um
Números naturais e cardinalidade
Números naturais e cardinalidade Roberto Imbuzeiro M. F. de Oliveira 5 de Janeiro de 2008 Resumo 1 Axiomas de Peano e o princípio da indução Intuitivamente, o conjunto N dos números naturais corresponde
Capítulo 2. Conjuntos Infinitos. 2.1 Existem diferentes tipos de infinito
Capítulo 2 Conjuntos Infinitos Um exemplo de conjunto infinito é o conjunto dos números naturais: mesmo tomando-se um número natural n muito grande, sempre existe outro maior, por exemplo, seu sucessor
Tópicos de Matemática. Teoria elementar de conjuntos
Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática
Matemática é a ciência das regularidades.
Matemática é a ciência das regularidades. Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Conjunto
Lista de Exercícios sobre Conjuntos
Universidade Federal de Ouro Preto UFOP Departamento de Computação e Sistemas DECSI Disciplina: Matemática Discreta - CSI 443 Professor: Bruno Hott ([email protected]) Revisão Lista de Exercícios sobre
Conjuntos e Funções. Ivan Eugênio da Cunha
Conjuntos e Funções Ivan Eugênio da Cunha 18/07/2011 1 Conteúdo Capítulo I Conjuntos e Relações... 5 1 Noções Elementares Sobre Conjuntos... 5 1.1 Conjunto e elemento... 5 1.2 Pertinência... 5 1.3 Representação...
Contando o Infinito: os Números Cardinais
Contando o Infinito: os Números Cardinais Sérgio Tadao Martins 4 de junho de 2005 No one will expel us from the paradise that Cantor has created for us David Hilbert 1 Introdução Quantos elementos há no
Prof.ª Dr.ª Donizete Ritter. MÓDULO III PARTE I: Conjuntos e Diagramas Lógicos
Bacharelado em Sistemas de Informação Disciplina: Lógica Prof.ª Dr.ª Donizete Ritter MÓDULO III PARTE I: Conjuntos e Diagramas Lógicos 1 Teoria de Conjuntos Conceitos Primitivos (não-definidos): Conjuntos
2019/01. Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG /01 1 / 76
Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG 2019/01 Estruturas Básicas: Conjuntos, Funções, Sequências, e Somatórios Área de Teoria DCC/UFMG - 2019/01 1 / 76
n. 25 DIAGRAMAS DE VENN
n. 25 DIAGRAMAS DE VENN Foi o matemático inglês John Venn (1834-1923) que criou os diagramas, com o intuito de facilitar a compreensão na relação de união e intersecção entre conjuntos. John Venn desenvolveu
2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }.
ASSUNTO DE MATEMATICA=CONJUNTOS REAIS E ETC. 2 - Conjunto: conceito primitivo; não necessita, portanto, de definição. Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12,... }. Esta forma
Roteiro da segunda aula presencial - ME
PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência
