Exercícios de Revisão de Conceitos Fundamentais

Tamanho: px
Começar a partir da página:

Download "Exercícios de Revisão de Conceitos Fundamentais"

Transcrição

1 Eercícios de Revisão de Conceitos Fundamentais. Números.. Números inteiros e números raccionários. Operações com números raccionários. Percentagens. ) Escreva as seguintes racções impróprias na orma de um número inteiro mais uma racção própria: a) 7 b) 9 c) d) 7 e) 7 ) 7 g) 9 ) Simpliique as seguintes racções: a) b) 8 c) d) e) ) 7 g) ) Eectue as seguintes operações:

2 a) 7 7 b) 9 9 c) d) 9 e) ) 7 g) h) 8 i) 7 j) 8 7 k) l) 7 m) n) o) p) 8 9 ) Eectue as seguintes operações: a) 7 b) 9 c) 8

3 d) e) 7 ) g) h) ) Eectue as seguintes operações: a) b) 7 8 c) d) e) 6) Eectue as seguintes operações: a) b) c) d) e) 7 9 ) 7 g)

4 7 8 h) 9 6 i) 6 j) 9 k) 8 7) Ponha em evidência o actor indicado em cada caso: a) em 7 b) em 9 c) em d) em 8 e) em 8 ) 8 em 8 g) em 7 9 h) em 7 i) em 7 8) Calcule: a) % de b) % de c) % de d) % de 7 e),% de ),% de g),% de 777 h),% de i) % de 7 j) % de k) % de 9) Calcule o valor de X sabendo que:

5 a) % de X são 7 b) % de X são c) % de X são d),% de X são e) % de X são ) Que percentagem representa a de b, sendo: a) a 7, b b) a, b 7 c) a, b d) a, b e) a, b ) a, b g) a, b.. Números positivos e negativos. Operações com números negativos. ) Eectue as seguintes operações: a) ( ) b) ( ) c) ( ) d) 7 e) ( ) ) 8 ( ) g) ( ) h) ( ) i) ( ) j) ( ) k) ( ) l) 7 ( ) ) Diga quais das seguintes airmações são verdadeiras: a) < 7 b) < c) 8< d) < e) <

6 ) < < g) 7 < h) 8 < i) 9 < j) 7 < k) ) Supondo que se tem a< b, sendo a e b números dierentes de, diga quais das seguintes airmações são verdadeiras: a) a< b b) a< b c) b< a < d) a b < e) b a.. Potências. Operações com potências. Casos notáveis da multiplicação. ) Calcule: a) b) c) d) e) ) g) h) i) j) ( ) k) ( ) l) ( ) m) ( )

7 n) ( ) o) ( ) p) ( )7 q) r) s) t) ) Calcule: a) b) c) d) e) 7 ) 6 g) h) i) j) 7 k) 8 6) Desenvolva, usando os casos notáveis da multiplicação: a) ( a b ) b) ( a b )

8 c) ( a b ) d) ( a b ) e) ( a b ) a b ab ) ( )( ) g) h) a a b b.. Raízes quadradas. Radiciação em geral. 7) Calcule: a) b) 6 c) d) e) ) 69 g) 8 h) 7 i) 6 j) 6 k) l) 6 8) Calcule: a) 9 b) 9 c) d).. Números irracionais. Números reais e números compleos. 9) Calcule: a) 7 7 ( b) ) ( c) )

9 ( d) ) e) 7 ) 9 ( ) g) ( ) h) ) Calcule: a) b) ) Diga quais das seguintes airmações são verdadeiras: a) b) 7 c) < d) ) Calcule: a) b) 9 c) 6 ) Calcule: i i a) ( ) ( ) i b) ( 8i) c) ( i) i i d) ( i) e) ( i) ( i) ) ( i) ( i) g) ( i)( i) h) ( 7i)( 7i)

10 i) ( 6 i) i j) ( i ) k) ( i ) l) i i m) n) i 6 o) i 7 p) i 8 q) i 7 r) i s) i i t) i i u) i. Equações.. Polinómios de coeicientes reais. Operações com polinómios. A regra de Ruini. Raízes de polinómios. ) Calcule: a) ( ) ( ) ( ) ( ) b) 6 7 ( ) ( ) c) 7 8 d) ( )( ) e) ( )( ) ) ( )( ) ( )( ) g) ( )( ) h) i) j)

11 k) l) m) n) o) p) 6 q) r) ) Use a regra de Ruini para calcular: a) b) 7 c) 8 d) 9 e) ) g) 7 h).. Equações polinomiais de primeiro grau com uma variável.

12 6) Resolva em IR as seguintes equações: a) b) c) 7 d) 6 e) ) 8.. Equações polinomiais de primeiro grau com duas variáveis. Representação gráica. 7) Represente graicamente as rectas de equações: a) y b) y c) y d) y e) y ) y g) y y h) y i) j) y k) y l) y m) y n) o) p) q) y r) y s) y t) y u) y v) y 9 w) y 8 8) Escreva as equações das rectas deinidas pelos seguintes pares de pontos:, a) (, ) e ( )

13 b) ( e ( c) ( e ( d) ( e ( e) ( e ( ) ( e ( g) ( e (.. Equações polinomiais de segundo grau com uma variável. A órmula resolvente da equação de segundo grau. Variação do sinal de um polinómio de segundo grau. 9) Resolva em IR as seguintes equações: a) b) c) 7 d) e) 6 ) g) h) i) j) k) l) m) ) Resolva em IR as seguintes equações: a) b) 6 8 c) d) 7 e) ) Estude a variação de sinal dos seguintes polinómios: a) b) 7 c) 6

14 d) e) 8 ) 7 g) h) i) 6.. Algumas equações polinomiais de segundo grau com duas variáveis. Representação gráica. Circunerências, parábolas, hipérboles. ) Represente graicamente as circunerências deinidas pelas seguintes equações: a) y b) y 9 c) y y d) ( ) ( ) e) ( ) ( ) y ) ( ) ( ) y g) ( ) ( y ) h) i) y y 6 6 y y 8 ) Represente graicamente as parábolas deinidas pelas seguintes equações: a) y b) y c) y d) y 7 y e) y ) y g) h) y i) y

15 j) k) l) m) n) o) y y y y y y y ( ) p) y ( ) q) y ( ) r) s) y t) y u) y y v) w) y ) y 6 y) y 8 z) y ) Represente graicamente as hipérboles deinidas pelas seguintes equações: a) y b) y c) y d) y e) y 7.6. Inequações (caso das inequações polinomiais de primeiro e segundo graus). ) Resolva em IR as seguintes inequações: a) < b) > c) < d) 7 e)

16 ) g) h) i) j) k) 9 < 7 < 6 9> < 6) Resolva em IR as seguintes inequações: < a) b) > c) d) > e) 9 8 ) 6 g).7. Equações polinomiais de grau superior ao segundo, com uma variável. 7) Resolva as seguintes equações: a) b) 6 c) 7 8 d). Funções reais de variável real.. Conceitos undamentais. O domínio de uma unção. 8) Determine os domínios das unções reais de variável real deinidas por: a) ( ) b) ( ) 7

17 c) d) e) ) g) h) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 7 9 i) ( ) j) ( ) k) ( ) l) ( ) m) 9 ( ) n) ( ) o) 9 8 p) ( ) q) ( ) ( ) r) s) ( ) 9 t) ( ) u) ( ) v) w) ( ) ( ) 6

18 ) y) z) ( ) ( ) ( ) ( ) 6.. O conceito de limite. 9) Calcule: lim( 7) a) lim b) lim c) lim d) lim e) 6 8 lim ) lim g) h) lim 7 i) lim 6 j) lim k) lim lim l) 6 lim m) 7 6 lim n).. O conceito de continuidade.

19 ) Represente graicamente as seguintes unções reais de variável real, indicando em que pontos cada uma delas é contínua: se < ( ) a) se se ( ) b) se > se ( ) c) se > se < ( ) se < < 7 se d) se < ( ) se se e) se < ( ) se se > ).. O conceito de derivada. ) Escreva as epressões das derivadas das seguintes unções: a) b) 7 7 c) 7 d) e) ) g) h) i) j) ( ) k) ( 7 )

20 l) ( 8 ) m) n) ( ) o) p) ( ) q) r) s) t) u) v) ( ) w) 8 ) y) z)

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

COMISSÃO DE EXAMES DE ADMISSÃO. Prova de Matemática

COMISSÃO DE EXAMES DE ADMISSÃO. Prova de Matemática COMISSÃO DE EXAMES DE ADMISSÃO Prova de Matemática Ano Acadêmico: 9 Duração : Minutos Curso: Engenharia de Minas. Sejam dados os pontos A ( ; ) e B ( m ; ). Sabendo que a distância entre eles é igual a

Leia mais

TEMA 4 FUNÇÕES FICHAS DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 4 FUNÇÕES FICHAS DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.acebook.com/mathsuccess TEMA 4 FUNÇÕES 016 017 Matemática A 11.º Ano Fichas de Trabalho Compilação

Leia mais

MATEMÁTICA A - 11o Ano

MATEMÁTICA A - 11o Ano MATEMÁTICA A - 11o Ano Funções racionais Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte da hipérbole que é o gráico de uma unção intersecta o

Leia mais

FUNÇÕES DE VÁRIAS VARIÁVEIS

FUNÇÕES DE VÁRIAS VARIÁVEIS FUNÇÕES DE VÁRIAS VARIÁVEIS Introdução Considere os seguintes enunciados: O volume V de um cilindro é dado por V r h onde r é o raio e h é a altura. Um circuito tem cinco resistores. A corrente deste circuito

Leia mais

Módulo 3 FUNÇÕES (1ª Parte)

Módulo 3 FUNÇÕES (1ª Parte) . Módulo 3 FUNÇÕES (ª Parte) Eercícios ) O esquema seguinte representa uma página da agenda teleónica da Maalda Objectivos Recordar: A (nomes) Médico (João) B (teleones) 397345 (casa) 3973456 (consultório)

Leia mais

FICHA DE TRABALHO N.º 8 MATEMÁTICA A - 10.º ANO FUNÇÕES REAIS DE VARIÁVEL REAL

FICHA DE TRABALHO N.º 8 MATEMÁTICA A - 10.º ANO FUNÇÕES REAIS DE VARIÁVEL REAL Função Inversa e Função Composta; Generalidades; Monotonia, Etremos e Concavidades FICHA DE TRABALH N.º 8 MATEMÁTICA A - 0.º AN FUNÇÕES REAIS DE VARIÁVEL REAL FUNÇÃ CMPSTA E FUNÇÃ INVERSA; GENERALIDADES;

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão)

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inleão) Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte do gráico de uma

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão)

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inleão) Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte do gráico de uma

Leia mais

AULA 16 Esboço de curvas (gráfico da função

AULA 16 Esboço de curvas (gráfico da função Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 6º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Proessor: José Tinoco 05/06/07 É permitido o uso de calculadora gráica Apresente o seu raciocínio de orma clara,

Leia mais

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência

Leia mais

Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x)

Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x) Capítulo II Funções reais de variável real. Conceitos Básicos sobre Funções Sejam D e B dois conjuntos. Uma unção deinida em D e tomando valores em B é uma regra que a cada elemento de D az corresponder

Leia mais

FUNÇÕES REAIS DE UMA VARIÁVEL REAL

FUNÇÕES REAIS DE UMA VARIÁVEL REAL FUNÇÕES REAIS DE UMA VARIÁVEL REAL Deinição inormal de unção Uma unção é uma regra que a cada elemento de um dado conjunto A associa um e um só elemento de um outro conjunto B. : A B ( ) Simbolicamente,

Leia mais

Funções polinomiais, racionais e trigonométricas

Funções polinomiais, racionais e trigonométricas Aula 04 FUNÇÕES (continuação) UFPA, 5 de março de 05 Funções polinomiais, racionais e trigonométricas No inal desta aula, você seja capaz de: Dizer o domínio das unções polinomiais, racionais e trigonométricas;

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 6º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Proessor: José Tinoco 05/06/07 É permitido o uso de calculadora gráica Apresente o seu raciocínio de orma clara,

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oiciais. Considere as unções e g, de domínio,0, deinidas por ln e g Recorrendo a processos eclusivamente analíticos, estude a unção quanto à eistência de do seu gráico e, caso

Leia mais

Minicurso de nivelamento de pré-cálculo:

Minicurso de nivelamento de pré-cálculo: Minicurso de nivelamento de pré-cálculo: 07. Quarta-feira Resolva os eercícios abaio, tomando bastante cuidado na maneira de escrever a resolução dos mesmos. Não use a calculadora, a idéia é que você treine

Leia mais

Integração Numérica. Cálculo Numérico

Integração Numérica. Cálculo Numérico Cálculo Numérico Integração Numérica Pro. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ucg.edu.br/~cnum/ Integração Numérica

Leia mais

5.1 Noção de derivada. Interpretação geométrica de derivada.

5.1 Noção de derivada. Interpretação geométrica de derivada. Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:

Leia mais

Teste Intermédio de Matemática A Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) 11.º Ano de Escolaridade

Teste Intermédio de Matemática A Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) 11.º Ano de Escolaridade Teste Intermédio de Matemática A Entrelinha 1,5 Teste Intermédio Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 06.03.2013 11.º Ano de Escolaridade Decreto-Lei

Leia mais

Exercícios sobre Polinômios

Exercícios sobre Polinômios uff Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Eercícios sobre Polinômios Prof Saponga Rua Mário Santos Braga

Leia mais

Interpolação Polinomial

Interpolação Polinomial Cálculo Numérico Interpolação Polinomial Parte I Pro. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG www.dsc.ucg.edu.br/~cnum/ Interpolação

Leia mais

Cálculo I - Lista 1: Números reais. Desigualdades. Funções.

Cálculo I - Lista 1: Números reais. Desigualdades. Funções. Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo Cálculo I - Lista : Números reais Desigualdades Funções Prof Responsável: Andrés Vercik Um inteiro positivo n é par se n k para

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oiciais. Considere a unção, de domínio, deinida por ln. Utilizando eclusivamente métodos analíticos, estude a unção quanto à eistência de do seu gráico paralelas aos eios coordenados.

Leia mais

Unidade 3. Funções de uma variável

Unidade 3. Funções de uma variável Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.

Leia mais

Matemática A. Previsão 2. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013

Matemática A. Previsão 2. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013 Previsão Exame Nacional de Matemática A 0 Previsão ª ase Matemática A Previsão Duração do teste: 80 minutos 7060 º Ano de Escolaridade Resoluções em vídeo em wwwexplicamatpt Previsão de Exame página/9

Leia mais

Matemática. Lic. em Enologia, 2009/2010

Matemática. Lic. em Enologia, 2009/2010 Universidade de Trás-os-Montes e Alto Douro Matemática Lic. em Enologia, 009/00 a Parte: Álgebra Linear Vectores em R n e em C n. Sejam u = (, 7,, v = ( 3, 0, 4 e w = (0, 5, 8. Calcule: a 3u 4v b u + 3v

Leia mais

Minicurso de nivelamento de pré-cálculo:

Minicurso de nivelamento de pré-cálculo: Minicurso de nivelamento de pré-cálculo: 07. Quinta-feira Resolva os eercícios abaio, tomando bastante cuidado na maneira de escrever a resolução dos mesmos. Não use a calculadora, a idéia é que você treine

Leia mais

2.2. Suponha que x=5. Determine: o perímetro do trapézio a medida da amplitude dos ângulos internos do trapézio.

2.2. Suponha que x=5. Determine: o perímetro do trapézio a medida da amplitude dos ângulos internos do trapézio. PAT MAT 007/008 MÓDULO - CÁLCULO ALGÉBRICO EXERCÍCIOS. Na figura está representada uma caia com a forma de um prisma recto e uma fita a envolvê-la. As dimensões da caia são: 5 5 4 (em decímetros). Calcule:..

Leia mais

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões: Lista de eercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho Questões: 0.(GV) Num polinômio P() do terceiro grau, o coeficiente de P() = 0, calcule o valor de P( ). é. Sabendo-se

Leia mais

EXERCÍCIOS ADICIONAIS

EXERCÍCIOS ADICIONAIS EXERCÍCIOS ADICIONAIS Capítulo Conjuntos numéricos e os números reais (x ) y Simplifique a expressão (assumindo que o denominador não é zero): 4 x y 6x A y 8x B y 8x C 4 y 6x D y Use a notação de intervalo

Leia mais

MONÓMIOS E POLINÓMIOS

MONÓMIOS E POLINÓMIOS MONÓMIOS E POLINÓMIOS POLINÓMIOS 1 6 a 3 3 7 4 y 4y 3 Eemplos de várias epressões algébricas. Uma epressão algébrica é constituída por um ou mais termos. No polinómio, às parcelas,, e y 4y 3 chamam-se

Leia mais

Plano de Recuperação Final EF2

Plano de Recuperação Final EF2 Plano de Recuperação Final EF Professores: Tamm, Rafael, M Laendle e Tiago Série: 8º ANO Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o ano nos quais apresentou

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho CÁLCULO DIFERENCIAL E INTEGRAL LIMITES Uma noção intuitiva de Limite Considere a unção () = 2 + 3. Quando assume uma ininidade de valores, aproimando cada vez mais de zero, 2 + 3 assume uma ininidade de

Leia mais

Prova Escrita de Matemática 3.º Ciclo do ensino Básico ; 9ºAno de escolaridade

Prova Escrita de Matemática 3.º Ciclo do ensino Básico ; 9ºAno de escolaridade ESCOLA SECUNDÁRIA C/3º CICLO DO ENSINO BÁSICO DE LOUSADA Prova Escrita de Matemática 3.º Ciclo do ensino Básico ; 9ºAno de escolaridade Duração da Prova: 90 minutos A PREENCHER PELO ALUNO Nome completo

Leia mais

Aula 13 de Bases Matemáticas

Aula 13 de Bases Matemáticas Aula 3 de Bases Matemáticas Rodrigo Hausen Versão: 8 de julho de 206 Catálogo de Funções Reais No estudo de unções é extremamente útil conhecer as propriedades e gráicos de algumas unções reais. Função

Leia mais

B { } e o produto. . Resolve a equação. x admite raízes m e a sua altura mede da base. Calcula o comprimento da diagonal

B { } e o produto. . Resolve a equação. x admite raízes m e a sua altura mede da base. Calcula o comprimento da diagonal Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data / / 010 Assunto: Preparação para o teste nº Lições nº, e Apresentação dos Conteúdos e Objectivos para o º Teste

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais

Matemática A. Previsão 3. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013

Matemática A. Previsão 3. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013 revisão Eame Nacional de Matemática A 01 revisão 1ª ase Matemática A revisão Duração do teste: 180 minutos 7.0.01 1.º Ano de Escolaridade Resoluções em vídeo em www.eplicamat.pt revisão de Eame página1/9

Leia mais

Cálculo diferencial, primitivas e cálculo integral de funções de uma variável

Cálculo diferencial, primitivas e cálculo integral de funções de uma variável Análise Matemática Cálculo diferencial, primitivas e cálculo integral de funções de uma variável (Soluções) Jorge Orestes Cerdeira, Isabel Martins, Ana Isabel Mesquita Instituto Superior de Agronomia -

Leia mais

MONÔMIOS E POLINÔMIOS

MONÔMIOS E POLINÔMIOS MONÔMIOS E POLINÔMIOS Problema: Observa as figuras. 6-9 6 4 Sabendo que as figuras são equivalentes, determina as dimensões do retângulo. Resolução: Se as figuras são equivalentes significa que têm a mesma

Leia mais

s: damasceno.

s:  damasceno. Matemática II 6. Pro.: Luiz Gonzaga Damasceno E-mails: [email protected] [email protected] [email protected] http://www.damasceno.ino www.damasceno.ino damasceno.ino - Derivadas Considere

Leia mais

Escola Secundária de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º

Escola Secundária de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º Escola Secundária de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o 3º Teste de Avaliação Lições nº e Data: /0/01 Apresentação dos Conteúdos e Objectivos para o 3º Teste

Leia mais

Funções de varias variáveis

Funções de varias variáveis F : R n R (1,,..., n ) w Funções de varias variáveis F( 1,,.., 3 ) Dom n ( F) S R S é um subconjunto de R n Eemplo 1: Seja F tal que F : R R (, ) w 1 Identiique o domínio e a imagem de F Eemplos Eemplos

Leia mais

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação

Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o º Teste de Avaliação Lições nº e Data: /11/011 Apresentação dos Conteúdos e Objectivos

Leia mais

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA

FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de orma clara, indicando todos os cálculos que tiver de eetuar e todas as justiicações necessárias. Quando, para

Leia mais

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6.

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6. mata Considere a representação gráica da unção Determine: A variação de em,4 A variação de em 0,6 tmv 0,6 4 Indique um intervalo do domínio onde a taa média de variação é A igura representa um reservatório

Leia mais

Utilize apenas caneta ou esferográfica, de tinta azul ou preta.

Utilize apenas caneta ou esferográfica, de tinta azul ou preta. Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 11.0.2014 11.º Ano de Escolaridade Indique de orma legível a versão do teste. Utilize apenas caneta ou eserográica, de tinta azul ou

Leia mais

Capítulo 1: Fração e Potenciação

Capítulo 1: Fração e Potenciação 1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática 10. O NO DE ESOLRIDDE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número

Leia mais

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 2 Universidade Portucalense Funções reais de variável real Deinição e generalidades Uma unção é uma correspondência que a qualquer elemento de um conjunto D az corresponder

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

UFF- EGM- GMA- Lista1 de Pré-Cálculo (7 páginas) LISTA 1

UFF- EGM- GMA- Lista1 de Pré-Cálculo (7 páginas) LISTA 1 UFF- EGM- GMA- Lista de Pré-Cálculo (7 páginas) 9- LISTA )Resolva, se possível, as equações, indicando em cada passo a propriedade algébrica dos números reais utilizada. i) ( + ) = ii) 5 = iii) + = iv)

Leia mais

Funções quadráticas. Definição. Função quadrática é toda a função de R em R que pode ser. (ou seja, é toda a função r.v.r. polinomial de grau 2).

Funções quadráticas. Definição. Função quadrática é toda a função de R em R que pode ser. (ou seja, é toda a função r.v.r. polinomial de grau 2). FUNÇÃO QUADRÁTICA Funções quadráticas Definição Função quadrática é toda a função de R em R que pode ser definida por uma expressão analítica da forma ax 2 + bx + c, com a, b, c R e a 0 (ou seja, é toda

Leia mais

UNIVERSIDADE DO ALGARVE

UNIVERSIDADE DO ALGARVE UNIVERSIDADE DO ALGARVE INSTITUTO SUPERIOR DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA LICENCIATURA EM ENGENHARIA ELÉCTRICA E ELECTRÓNICA ANÁLISE MATEMÁTICA I 00-0 Plano da Disciplina Bibliografia

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas

Leia mais

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 06.03.2013 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março Na sua olha de

Leia mais

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando 5 a Ficha de eercícios de Cálculo para Informática CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite quando h tende

Leia mais

Função IDÉIA INTUITIVA DE FUNÇÃO

Função IDÉIA INTUITIVA DE FUNÇÃO Função IDÉIA INTUITIVA DE FUNÇÃO O conceito de unção é um dos mais importantes da matemática. Ele está sempre presente na relação entre duas grandezas variáveis. Assim são eemplos de unções: - O valor

Leia mais

FUNÇÕES DE DUAS OU MAIS VARIÁVEIS

FUNÇÕES DE DUAS OU MAIS VARIÁVEIS FUNÇÕES DE DUAS OU MAIS VARIÁVEIS Uma unção de duas ou mais variáveis é simbolizada por uma epressão do tipo w z... que siniica que w é uma unção de z... Como ocorre nas unções de uma variável nas unções

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números

Leia mais

Faça no caderno Vá aos plantões

Faça no caderno Vá aos plantões PARTE I ) Determine as potências: a) = b) - = ) Escreva usando potência de base 0: a) 7 bilhões: b) um milionésimo: ) Transforme os números dados em potenciações e simplifique a epressão: 0000000 00000

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos. Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos. Propostas de resolução MTEMÁTIC - 1o no Funções - Eponenciais e loaritmos Resolução ráica de equações e problemas Propostas de resolução Eercícios de eames e testes intermédios 1. Como o ponto é o ponto de abcissa neativa (

Leia mais

PAESPE. Equação do 2º grau

PAESPE. Equação do 2º grau PAESPE Equação do º grau Equação Uma equação é uma igualdade entre duas epressões onde aparece pelo menos uma letra designada por incógnita ou variável. Eemplo: 3 4 1 34 7 5 y1 é equação não são equações

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3.

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3. Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 3 1. Resolver, da página 80 do seu manual, 1.1. as alíneas a), c) e e) dos

Leia mais

1. Escreve uma equação de 2º grau, na forma canónica que admita as raízes:

1. Escreve uma equação de 2º grau, na forma canónica que admita as raízes: Escola Secundária de Lousada Matemática do 9º ano FT 5 Data: / 0 / 0 Assunto: Fórmula Resolvente e outros métodos de resolução; Artifício do Quadrado do binómio e número de soluções de uma equação; Problemas..

Leia mais

MATEMÁTICA - 3o ciclo

MATEMÁTICA - 3o ciclo MTEMÁTI - 3o ciclo Função quadrática (9 o ano) Eercícios de provas nacionais e testes intermédios 1. Na iura ao lado, estão representados, em reerencial cartesiano, a unção quadrática e o triânulo [].

Leia mais