Exercícios de Revisão de Conceitos Fundamentais
|
|
|
- Vítor Gabriel Van Der Vinne Barata
- 8 Há anos
- Visualizações:
Transcrição
1 Eercícios de Revisão de Conceitos Fundamentais. Números.. Números inteiros e números raccionários. Operações com números raccionários. Percentagens. ) Escreva as seguintes racções impróprias na orma de um número inteiro mais uma racção própria: a) 7 b) 9 c) d) 7 e) 7 ) 7 g) 9 ) Simpliique as seguintes racções: a) b) 8 c) d) e) ) 7 g) ) Eectue as seguintes operações:
2 a) 7 7 b) 9 9 c) d) 9 e) ) 7 g) h) 8 i) 7 j) 8 7 k) l) 7 m) n) o) p) 8 9 ) Eectue as seguintes operações: a) 7 b) 9 c) 8
3 d) e) 7 ) g) h) ) Eectue as seguintes operações: a) b) 7 8 c) d) e) 6) Eectue as seguintes operações: a) b) c) d) e) 7 9 ) 7 g)
4 7 8 h) 9 6 i) 6 j) 9 k) 8 7) Ponha em evidência o actor indicado em cada caso: a) em 7 b) em 9 c) em d) em 8 e) em 8 ) 8 em 8 g) em 7 9 h) em 7 i) em 7 8) Calcule: a) % de b) % de c) % de d) % de 7 e),% de ),% de g),% de 777 h),% de i) % de 7 j) % de k) % de 9) Calcule o valor de X sabendo que:
5 a) % de X são 7 b) % de X são c) % de X são d),% de X são e) % de X são ) Que percentagem representa a de b, sendo: a) a 7, b b) a, b 7 c) a, b d) a, b e) a, b ) a, b g) a, b.. Números positivos e negativos. Operações com números negativos. ) Eectue as seguintes operações: a) ( ) b) ( ) c) ( ) d) 7 e) ( ) ) 8 ( ) g) ( ) h) ( ) i) ( ) j) ( ) k) ( ) l) 7 ( ) ) Diga quais das seguintes airmações são verdadeiras: a) < 7 b) < c) 8< d) < e) <
6 ) < < g) 7 < h) 8 < i) 9 < j) 7 < k) ) Supondo que se tem a< b, sendo a e b números dierentes de, diga quais das seguintes airmações são verdadeiras: a) a< b b) a< b c) b< a < d) a b < e) b a.. Potências. Operações com potências. Casos notáveis da multiplicação. ) Calcule: a) b) c) d) e) ) g) h) i) j) ( ) k) ( ) l) ( ) m) ( )
7 n) ( ) o) ( ) p) ( )7 q) r) s) t) ) Calcule: a) b) c) d) e) 7 ) 6 g) h) i) j) 7 k) 8 6) Desenvolva, usando os casos notáveis da multiplicação: a) ( a b ) b) ( a b )
8 c) ( a b ) d) ( a b ) e) ( a b ) a b ab ) ( )( ) g) h) a a b b.. Raízes quadradas. Radiciação em geral. 7) Calcule: a) b) 6 c) d) e) ) 69 g) 8 h) 7 i) 6 j) 6 k) l) 6 8) Calcule: a) 9 b) 9 c) d).. Números irracionais. Números reais e números compleos. 9) Calcule: a) 7 7 ( b) ) ( c) )
9 ( d) ) e) 7 ) 9 ( ) g) ( ) h) ) Calcule: a) b) ) Diga quais das seguintes airmações são verdadeiras: a) b) 7 c) < d) ) Calcule: a) b) 9 c) 6 ) Calcule: i i a) ( ) ( ) i b) ( 8i) c) ( i) i i d) ( i) e) ( i) ( i) ) ( i) ( i) g) ( i)( i) h) ( 7i)( 7i)
10 i) ( 6 i) i j) ( i ) k) ( i ) l) i i m) n) i 6 o) i 7 p) i 8 q) i 7 r) i s) i i t) i i u) i. Equações.. Polinómios de coeicientes reais. Operações com polinómios. A regra de Ruini. Raízes de polinómios. ) Calcule: a) ( ) ( ) ( ) ( ) b) 6 7 ( ) ( ) c) 7 8 d) ( )( ) e) ( )( ) ) ( )( ) ( )( ) g) ( )( ) h) i) j)
11 k) l) m) n) o) p) 6 q) r) ) Use a regra de Ruini para calcular: a) b) 7 c) 8 d) 9 e) ) g) 7 h).. Equações polinomiais de primeiro grau com uma variável.
12 6) Resolva em IR as seguintes equações: a) b) c) 7 d) 6 e) ) 8.. Equações polinomiais de primeiro grau com duas variáveis. Representação gráica. 7) Represente graicamente as rectas de equações: a) y b) y c) y d) y e) y ) y g) y y h) y i) j) y k) y l) y m) y n) o) p) q) y r) y s) y t) y u) y v) y 9 w) y 8 8) Escreva as equações das rectas deinidas pelos seguintes pares de pontos:, a) (, ) e ( )
13 b) ( e ( c) ( e ( d) ( e ( e) ( e ( ) ( e ( g) ( e (.. Equações polinomiais de segundo grau com uma variável. A órmula resolvente da equação de segundo grau. Variação do sinal de um polinómio de segundo grau. 9) Resolva em IR as seguintes equações: a) b) c) 7 d) e) 6 ) g) h) i) j) k) l) m) ) Resolva em IR as seguintes equações: a) b) 6 8 c) d) 7 e) ) Estude a variação de sinal dos seguintes polinómios: a) b) 7 c) 6
14 d) e) 8 ) 7 g) h) i) 6.. Algumas equações polinomiais de segundo grau com duas variáveis. Representação gráica. Circunerências, parábolas, hipérboles. ) Represente graicamente as circunerências deinidas pelas seguintes equações: a) y b) y 9 c) y y d) ( ) ( ) e) ( ) ( ) y ) ( ) ( ) y g) ( ) ( y ) h) i) y y 6 6 y y 8 ) Represente graicamente as parábolas deinidas pelas seguintes equações: a) y b) y c) y d) y 7 y e) y ) y g) h) y i) y
15 j) k) l) m) n) o) y y y y y y y ( ) p) y ( ) q) y ( ) r) s) y t) y u) y y v) w) y ) y 6 y) y 8 z) y ) Represente graicamente as hipérboles deinidas pelas seguintes equações: a) y b) y c) y d) y e) y 7.6. Inequações (caso das inequações polinomiais de primeiro e segundo graus). ) Resolva em IR as seguintes inequações: a) < b) > c) < d) 7 e)
16 ) g) h) i) j) k) 9 < 7 < 6 9> < 6) Resolva em IR as seguintes inequações: < a) b) > c) d) > e) 9 8 ) 6 g).7. Equações polinomiais de grau superior ao segundo, com uma variável. 7) Resolva as seguintes equações: a) b) 6 c) 7 8 d). Funções reais de variável real.. Conceitos undamentais. O domínio de uma unção. 8) Determine os domínios das unções reais de variável real deinidas por: a) ( ) b) ( ) 7
17 c) d) e) ) g) h) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 7 9 i) ( ) j) ( ) k) ( ) l) ( ) m) 9 ( ) n) ( ) o) 9 8 p) ( ) q) ( ) ( ) r) s) ( ) 9 t) ( ) u) ( ) v) w) ( ) ( ) 6
18 ) y) z) ( ) ( ) ( ) ( ) 6.. O conceito de limite. 9) Calcule: lim( 7) a) lim b) lim c) lim d) lim e) 6 8 lim ) lim g) h) lim 7 i) lim 6 j) lim k) lim lim l) 6 lim m) 7 6 lim n).. O conceito de continuidade.
19 ) Represente graicamente as seguintes unções reais de variável real, indicando em que pontos cada uma delas é contínua: se < ( ) a) se se ( ) b) se > se ( ) c) se > se < ( ) se < < 7 se d) se < ( ) se se e) se < ( ) se se > ).. O conceito de derivada. ) Escreva as epressões das derivadas das seguintes unções: a) b) 7 7 c) 7 d) e) ) g) h) i) j) ( ) k) ( 7 )
20 l) ( 8 ) m) n) ( ) o) p) ( ) q) r) s) t) u) v) ( ) w) 8 ) y) z)
Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5
Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva
COMISSÃO DE EXAMES DE ADMISSÃO. Prova de Matemática
COMISSÃO DE EXAMES DE ADMISSÃO Prova de Matemática Ano Acadêmico: 9 Duração : Minutos Curso: Engenharia de Minas. Sejam dados os pontos A ( ; ) e B ( m ; ). Sabendo que a distância entre eles é igual a
TEMA 4 FUNÇÕES FICHAS DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FICHAS DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.acebook.com/mathsuccess TEMA 4 FUNÇÕES 016 017 Matemática A 11.º Ano Fichas de Trabalho Compilação
MATEMÁTICA A - 11o Ano
MATEMÁTICA A - 11o Ano Funções racionais Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte da hipérbole que é o gráico de uma unção intersecta o
FUNÇÕES DE VÁRIAS VARIÁVEIS
FUNÇÕES DE VÁRIAS VARIÁVEIS Introdução Considere os seguintes enunciados: O volume V de um cilindro é dado por V r h onde r é o raio e h é a altura. Um circuito tem cinco resistores. A corrente deste circuito
Módulo 3 FUNÇÕES (1ª Parte)
. Módulo 3 FUNÇÕES (ª Parte) Eercícios ) O esquema seguinte representa uma página da agenda teleónica da Maalda Objectivos Recordar: A (nomes) Médico (João) B (teleones) 397345 (casa) 3973456 (consultório)
FICHA DE TRABALHO N.º 8 MATEMÁTICA A - 10.º ANO FUNÇÕES REAIS DE VARIÁVEL REAL
Função Inversa e Função Composta; Generalidades; Monotonia, Etremos e Concavidades FICHA DE TRABALH N.º 8 MATEMÁTICA A - 0.º AN FUNÇÕES REAIS DE VARIÁVEL REAL FUNÇÃ CMPSTA E FUNÇÃ INVERSA; GENERALIDADES;
MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão)
MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inleão) Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte do gráico de uma
MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão)
MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inleão) Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte do gráico de uma
AULA 16 Esboço de curvas (gráfico da função
Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A 6º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Proessor: José Tinoco 05/06/07 É permitido o uso de calculadora gráica Apresente o seu raciocínio de orma clara,
1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo
ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência
Capítulo II. Funções reais de variável real. 2.1 Conceitos Básicos sobre Funções. ( x)
Capítulo II Funções reais de variável real. Conceitos Básicos sobre Funções Sejam D e B dois conjuntos. Uma unção deinida em D e tomando valores em B é uma regra que a cada elemento de D az corresponder
FUNÇÕES REAIS DE UMA VARIÁVEL REAL
FUNÇÕES REAIS DE UMA VARIÁVEL REAL Deinição inormal de unção Uma unção é uma regra que a cada elemento de um dado conjunto A associa um e um só elemento de um outro conjunto B. : A B ( ) Simbolicamente,
Funções polinomiais, racionais e trigonométricas
Aula 04 FUNÇÕES (continuação) UFPA, 5 de março de 05 Funções polinomiais, racionais e trigonométricas No inal desta aula, você seja capaz de: Dizer o domínio das unções polinomiais, racionais e trigonométricas;
Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5
Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 1
FICHA de AVALIAÇÃO de MATEMÁTICA A 6º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Proessor: José Tinoco 05/06/07 É permitido o uso de calculadora gráica Apresente o seu raciocínio de orma clara,
Exercícios de exames e provas oficiais
Eercícios de eames e provas oiciais. Considere as unções e g, de domínio,0, deinidas por ln e g Recorrendo a processos eclusivamente analíticos, estude a unção quanto à eistência de do seu gráico e, caso
Minicurso de nivelamento de pré-cálculo:
Minicurso de nivelamento de pré-cálculo: 07. Quarta-feira Resolva os eercícios abaio, tomando bastante cuidado na maneira de escrever a resolução dos mesmos. Não use a calculadora, a idéia é que você treine
Integração Numérica. Cálculo Numérico
Cálculo Numérico Integração Numérica Pro. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ucg.edu.br/~cnum/ Integração Numérica
5.1 Noção de derivada. Interpretação geométrica de derivada.
Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:
Teste Intermédio de Matemática A Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) 11.º Ano de Escolaridade
Teste Intermédio de Matemática A Entrelinha 1,5 Teste Intermédio Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 06.03.2013 11.º Ano de Escolaridade Decreto-Lei
Exercícios sobre Polinômios
uff Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Eercícios sobre Polinômios Prof Saponga Rua Mário Santos Braga
Interpolação Polinomial
Cálculo Numérico Interpolação Polinomial Parte I Pro. Jorge Cavalcanti [email protected] MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG www.dsc.ucg.edu.br/~cnum/ Interpolação
Cálculo I - Lista 1: Números reais. Desigualdades. Funções.
Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo Cálculo I - Lista : Números reais Desigualdades Funções Prof Responsável: Andrés Vercik Um inteiro positivo n é par se n k para
Exercícios de exames e provas oficiais
Eercícios de eames e provas oiciais. Considere a unção, de domínio, deinida por ln. Utilizando eclusivamente métodos analíticos, estude a unção quanto à eistência de do seu gráico paralelas aos eios coordenados.
Unidade 3. Funções de uma variável
Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.
Matemática A. Previsão 2. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013
Previsão Exame Nacional de Matemática A 0 Previsão ª ase Matemática A Previsão Duração do teste: 80 minutos 7060 º Ano de Escolaridade Resoluções em vídeo em wwwexplicamatpt Previsão de Exame página/9
Matemática. Lic. em Enologia, 2009/2010
Universidade de Trás-os-Montes e Alto Douro Matemática Lic. em Enologia, 009/00 a Parte: Álgebra Linear Vectores em R n e em C n. Sejam u = (, 7,, v = ( 3, 0, 4 e w = (0, 5, 8. Calcule: a 3u 4v b u + 3v
Minicurso de nivelamento de pré-cálculo:
Minicurso de nivelamento de pré-cálculo: 07. Quinta-feira Resolva os eercícios abaio, tomando bastante cuidado na maneira de escrever a resolução dos mesmos. Não use a calculadora, a idéia é que você treine
2.2. Suponha que x=5. Determine: o perímetro do trapézio a medida da amplitude dos ângulos internos do trapézio.
PAT MAT 007/008 MÓDULO - CÁLCULO ALGÉBRICO EXERCÍCIOS. Na figura está representada uma caia com a forma de um prisma recto e uma fita a envolvê-la. As dimensões da caia são: 5 5 4 (em decímetros). Calcule:..
Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:
Lista de eercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho Questões: 0.(GV) Num polinômio P() do terceiro grau, o coeficiente de P() = 0, calcule o valor de P( ). é. Sabendo-se
EXERCÍCIOS ADICIONAIS
EXERCÍCIOS ADICIONAIS Capítulo Conjuntos numéricos e os números reais (x ) y Simplifique a expressão (assumindo que o denominador não é zero): 4 x y 6x A y 8x B y 8x C 4 y 6x D y Use a notação de intervalo
MONÓMIOS E POLINÓMIOS
MONÓMIOS E POLINÓMIOS POLINÓMIOS 1 6 a 3 3 7 4 y 4y 3 Eemplos de várias epressões algébricas. Uma epressão algébrica é constituída por um ou mais termos. No polinómio, às parcelas,, e y 4y 3 chamam-se
Plano de Recuperação Final EF2
Plano de Recuperação Final EF Professores: Tamm, Rafael, M Laendle e Tiago Série: 8º ANO Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o ano nos quais apresentou
CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho
CÁLCULO DIFERENCIAL E INTEGRAL LIMITES Uma noção intuitiva de Limite Considere a unção () = 2 + 3. Quando assume uma ininidade de valores, aproimando cada vez mais de zero, 2 + 3 assume uma ininidade de
Prova Escrita de Matemática 3.º Ciclo do ensino Básico ; 9ºAno de escolaridade
ESCOLA SECUNDÁRIA C/3º CICLO DO ENSINO BÁSICO DE LOUSADA Prova Escrita de Matemática 3.º Ciclo do ensino Básico ; 9ºAno de escolaridade Duração da Prova: 90 minutos A PREENCHER PELO ALUNO Nome completo
Aula 13 de Bases Matemáticas
Aula 3 de Bases Matemáticas Rodrigo Hausen Versão: 8 de julho de 206 Catálogo de Funções Reais No estudo de unções é extremamente útil conhecer as propriedades e gráicos de algumas unções reais. Função
B { } e o produto. . Resolve a equação. x admite raízes m e a sua altura mede da base. Calcula o comprimento da diagonal
Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data / / 010 Assunto: Preparação para o teste nº Lições nº, e Apresentação dos Conteúdos e Objectivos para o º Teste
Apostila de Cálculo I
Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.
Matemática A. Previsão 3. Duração do teste: 180 minutos º Ano de Escolaridade. Previsão Exame Nacional de Matemática A 2013
revisão Eame Nacional de Matemática A 01 revisão 1ª ase Matemática A revisão Duração do teste: 180 minutos 7.0.01 1.º Ano de Escolaridade Resoluções em vídeo em www.eplicamat.pt revisão de Eame página1/9
Cálculo diferencial, primitivas e cálculo integral de funções de uma variável
Análise Matemática Cálculo diferencial, primitivas e cálculo integral de funções de uma variável (Soluções) Jorge Orestes Cerdeira, Isabel Martins, Ana Isabel Mesquita Instituto Superior de Agronomia -
MONÔMIOS E POLINÔMIOS
MONÔMIOS E POLINÔMIOS Problema: Observa as figuras. 6-9 6 4 Sabendo que as figuras são equivalentes, determina as dimensões do retângulo. Resolução: Se as figuras são equivalentes significa que têm a mesma
s: damasceno.
Matemática II 6. Pro.: Luiz Gonzaga Damasceno E-mails: [email protected] [email protected] [email protected] http://www.damasceno.ino www.damasceno.ino damasceno.ino - Derivadas Considere
Escola Secundária de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º
Escola Secundária de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o 3º Teste de Avaliação Lições nº e Data: /0/01 Apresentação dos Conteúdos e Objectivos para o 3º Teste
Funções de varias variáveis
F : R n R (1,,..., n ) w Funções de varias variáveis F( 1,,.., 3 ) Dom n ( F) S R S é um subconjunto de R n Eemplo 1: Seja F tal que F : R R (, ) w 1 Identiique o domínio e a imagem de F Eemplos Eemplos
Escola Secundária com 3º CEB de Lousada. Ficha de Trabalho de Matemática do 9.º Ano N.º. Assunto: Preparação para o 2º Teste de Avaliação
Escola Secundária com 3º CEB de Lousada Ficha de Trabalho de Matemática do 9.º Ano N.º Assunto: Preparação para o º Teste de Avaliação Lições nº e Data: /11/011 Apresentação dos Conteúdos e Objectivos
FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA
Equações Eponenciais: FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Chamamos de equações eponenciais toda equação na qual a incógnita aparece em epoente. Para resolver equações eponenciais, devemos realizar
FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3
FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de orma clara, indicando todos os cálculos que tiver de eetuar e todas as justiicações necessárias. Quando, para
1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6.
mata Considere a representação gráica da unção Determine: A variação de em,4 A variação de em 0,6 tmv 0,6 4 Indique um intervalo do domínio onde a taa média de variação é A igura representa um reservatório
Utilize apenas caneta ou esferográfica, de tinta azul ou preta.
Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 11.0.2014 11.º Ano de Escolaridade Indique de orma legível a versão do teste. Utilize apenas caneta ou eserográica, de tinta azul ou
Capítulo 1: Fração e Potenciação
1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.
Proposta de teste de avaliação
Proposta de teste de avaliação Matemática 10. O NO DE ESOLRIDDE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número
Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense
Curso Satélite de Matemática Sessão n.º 2 Universidade Portucalense Funções reais de variável real Deinição e generalidades Uma unção é uma correspondência que a qualquer elemento de um conjunto D az corresponder
1. FUNÇÕES REAIS DE VARIÁVEL REAL
1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções
UFF- EGM- GMA- Lista1 de Pré-Cálculo (7 páginas) LISTA 1
UFF- EGM- GMA- Lista de Pré-Cálculo (7 páginas) 9- LISTA )Resolva, se possível, as equações, indicando em cada passo a propriedade algébrica dos números reais utilizada. i) ( + ) = ii) 5 = iii) + = iv)
Funções quadráticas. Definição. Função quadrática é toda a função de R em R que pode ser. (ou seja, é toda a função r.v.r. polinomial de grau 2).
FUNÇÃO QUADRÁTICA Funções quadráticas Definição Função quadrática é toda a função de R em R que pode ser definida por uma expressão analítica da forma ax 2 + bx + c, com a, b, c R e a 0 (ou seja, é toda
UNIVERSIDADE DO ALGARVE
UNIVERSIDADE DO ALGARVE INSTITUTO SUPERIOR DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA LICENCIATURA EM ENGENHARIA ELÉCTRICA E ELECTRÓNICA ANÁLISE MATEMÁTICA I 00-0 Plano da Disciplina Bibliografia
Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira
Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009
Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.
Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 06.03.2013 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março Na sua olha de
CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando
5 a Ficha de eercícios de Cálculo para Informática CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite quando h tende
Função IDÉIA INTUITIVA DE FUNÇÃO
Função IDÉIA INTUITIVA DE FUNÇÃO O conceito de unção é um dos mais importantes da matemática. Ele está sempre presente na relação entre duas grandezas variáveis. Assim são eemplos de unções: - O valor
FUNÇÕES DE DUAS OU MAIS VARIÁVEIS
FUNÇÕES DE DUAS OU MAIS VARIÁVEIS Uma unção de duas ou mais variáveis é simbolizada por uma epressão do tipo w z... que siniica que w é uma unção de z... Como ocorre nas unções de uma variável nas unções
Cálculo Diferencial e Integral I
Cálculo Diferencial e Integral I Prof. Lino Marcos da Silva Atividade 1 - Números Reais Objetivos De um modo geral, o objetivo dessa atividade é fomentar o estudo de conceitos relacionados aos números
Faça no caderno Vá aos plantões
PARTE I ) Determine as potências: a) = b) - = ) Escreva usando potência de base 0: a) 7 bilhões: b) um milionésimo: ) Transforme os números dados em potenciações e simplifique a epressão: 0000000 00000
Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar
Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)
MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos. Propostas de resolução
MTEMÁTIC - 1o no Funções - Eponenciais e loaritmos Resolução ráica de equações e problemas Propostas de resolução Eercícios de eames e testes intermédios 1. Como o ponto é o ponto de abcissa neativa (
PAESPE. Equação do 2º grau
PAESPE Equação do º grau Equação Uma equação é uma igualdade entre duas epressões onde aparece pelo menos uma letra designada por incógnita ou variável. Eemplo: 3 4 1 34 7 5 y1 é equação não são equações
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3.
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 3 1. Resolver, da página 80 do seu manual, 1.1. as alíneas a), c) e e) dos
1. Escreve uma equação de 2º grau, na forma canónica que admita as raízes:
Escola Secundária de Lousada Matemática do 9º ano FT 5 Data: / 0 / 0 Assunto: Fórmula Resolvente e outros métodos de resolução; Artifício do Quadrado do binómio e número de soluções de uma equação; Problemas..
MATEMÁTICA - 3o ciclo
MTEMÁTI - 3o ciclo Função quadrática (9 o ano) Eercícios de provas nacionais e testes intermédios 1. Na iura ao lado, estão representados, em reerencial cartesiano, a unção quadrática e o triânulo [].
