Exercícios: Funções - Introdução Prof. André Augusto

Tamanho: px
Começar a partir da página:

Download "Exercícios: Funções - Introdução Prof. André Augusto"

Transcrição

1 Exercícios: Funções - Introdução Prof. André Augusto 1. EXERCÍCIOS BÁSICOS DE FUNÇÕES Exercício 1. Nos itens a seguir, diga se as associações f : X Y a seguir são funções ou não: 1 X = 0, 1, 2,, 4, X = 0, 1, 2,, 4, X = 0, 1, 2,, 4,, 6 X = 0, 1, 2,, 4, (a) Y = 0, 1, 2,, 4, (b) Y = 0, 1, 2,, 4,, 6 (c) Y = 0, 1, 2,, 4, (d) Y = de 0 a 10 f(x) = 2x X = 0, 1, 2,, 4, X = 0, 1, 2, X = 0, 1, 2, X = N (e) Y = de 0 a 10 f(x) = 1 (f) Y = de 0 a 10 (g) Y = de 0 a 10 (h) Y = N x X = N X = N X = N X = R X = R (i) Y = N (j) Y = N + x + 2 f(x) = (k) Y = R x f(x) = (l) Y = R x f(x) = (m) Y = R x + 27 X = R X = R + X = N (n) Y = R (o) Y = R (p) Y = R 1 f(x) = 1 x f(x) = + 27 x f(x) = + x e, ao mesmo tempo, x + 27 X = conjunto dos segmentos no plano X = R X = R (q) Y = conjunto das retas no plano (r) Y = R (s) Y = R f(x) = mediatriz de x f(x) = 1 x X = N Y = R (t) 2, se x é múltiplo de 2 (u) Y = população mundial f(x) =, se x é múltiplo de f(x) = irmão de x 0, caso x não seja múltiplo de 2 nem X = estados do Brasil (v) Y = R (w) Y = população do Brasil f(x) = altura de x (em centímetros) f(x) = governador do estado x (x) Y = perfis do Facebook (y) Y = signos do zodíaco f(x) = perifl da pessoa x no Facebook f(x) = signo da pessoa x Exercício 2. Seja 2 x + 4, g(x) = x 2 e h(x) = 8x. Calcule: (a) f(2) (b) f( 1) (c) g(4) (d) h(4) (e) h(10) (f) g(0) (g) f(4) h() (h) g( 2) h( ) (i) f(0) g(1) + h(2) (j) f(4) + h( ) (k) g(6) ( ) 2 (l) f(1) h(0) f( 9) g (m) f() h(1) g() 2. DOMÍNIO E CONTRADOMÍNIO DE FUNÇÕES Exercício. Determine o domínio e o contradomínio das seguintes funções: (a) f(x) = 10x (b) f(x) = 10x, onde x representa quantidade de livros (c) f(x) = x + 1 Observação: R + representa os números reais positivos

2 Exercícios: Funções - Introdução 2 (d) f(x) = x + (e), onde x representa quantidade de lanches. (f) f(x) = 12x + 6 (g) f(x) = 1x (l) f(x) = 7 x 2 x + 2 (h) f(x) = x (i) x + (m) f(x) = (x + 1) x 2 x 2 (n) f(x) = (j) f(x) = 4 x 1 (k) f(x) = x 1 1 x(x ) (o) x(x ). TESTES DE VESTIBULARES Exercício 4 (U.F.VIÇOSA). Considere a função f : R R definida por: O valor da expressão f( 2) + f ( ) f(π) (a) 2 (b) (c) 12 (d) , se x é racional; f(x) =, se x é irracional. 4 (e) 2 1 Exercício (VUNESP). Seja T C a temperatura em graus Celsius e T F a mesma temperatura em graus Fahrenheit. Essas duas escalas de temperatura estão relacionadas pela equação 9T C = T F 160. Considere agora T K a mesma temperatura na escala Kelvin. As escalas Kelvin e Celsius estão relacionados pela equação T K = T C A equação que relaciona as escalas Fahrenheit e Kelvin (a) T F = T K 11 (e) T F = 9T K 2617 (b) T F = 9T K 247 (c) T F = 9T K 2297 Exercício 6 (UFPI). Se f(x) = 2 x 1, p = 108 e q = 10 10, então o valor de (a) 10 8 (b) (c) 2 (d) 2 (e) 1 (d) T F = 9T K 267 f(p) f(q) q p Exercício 7 (VUNESP). Uma fórmula matemática para se calcular aproximadamente a área, em metros quadrados, da superfície corporal de uma pessoa, é dada por S(p) = p 2, onde p é a massa da pessoa em quilogramas. Considere uma criança de 8 kg. Determine: (a) a área da superfície corporal da criança. (b) a massa que a criança terá quando a área de sua superfície corporal duplicar (Use a aproximação 2 = 1, 4). Exercício 8 (UEL). Seja N = {0, 1, 2,,...}. Se n é um número do conjunto N, qual das regras de associação abaixo define uma função de N em N? (a) n é associado à sua metade. (b) n é associado a seu antecessor. (c) n é associado ao resto de sua divisão por 7. (d) n é associado a p tal que p é primo e p < n. (e) n é associado a m tal que m é múltiplo de n. Exercício 9 (FGV). Seja a função f : R R, definida por f(x) = x. Se f(a) = 8, então f ( a ) (a) 1 2 (b) 1 4 (c) 1 8 (d) 4 (e) 2

3 Exercícios: Funções - Introdução Exercício 10 (VUNESP). A unidade usual de medida para a energia contida nos alimentos é kcal (quilocaloria). Uma fórmula aproximada para o consumo diário de energia (em kcal) para meninos entre 1 e 18 anos é dada pela função f(h) = 17 h, onde h indica a altura em cm e, para meninas nessa mesma faixa de idade, pela função g(h) = (1, ).h. Paulo, usando a fórmula para meninos, calculou seu consumo diário de energia e obteve 2 97 kcal. Sabendo-se que Paulo é cm mais alto que sua namorada Carla (e que ambos têm idade entre 1 e 18 anos), o consumo diário de energia para Carla, de acordo com a fórmula, em kcal, (a) 201 (b) 2601 (c) 2770 (d) 287 (e) 2970 Exercício 11 (VUNESP). O desenvolvimento da gestação de uma determinada criança que nasceu com 40 semanas, 0, 6 cm de altura e com 446 gramas de massa foi modelado, a partir da vigésima semana, aproximadamente, pelas funções matemáticas h(t) = 1, t 9, 4 e p(t) =, 8t 2 72t + 246, onde t indica o tempo em semanas, t 20, h(t) a altura em centímetros e p(t) a massa em gramas. Admitindo o modelo matemático, determine quantos gramas tinha o feto quando sua altura era, 6 cm. Exercício 12 (Mackenzie). A função f : R R é tal que f(x) = f(x) para todo número real. Se f(9) = 4, então f(1) + f() é igual a: (a) (b) 10 (c) 1 (d) 20 (e) 2 Exercício 1 (FGV). Seja a função 2. O valor de f(m + n) f(m n) (a) 2m 2 + 2n 2 (b) 2n 2 (c) 4mn (d) 2m 2 (e) 0 Exercício 14 (UFMS). Seja f : R R uma função real tal que f(1) = A, f(e) = B e f(x+y) = f(x) (y), para todo x e y números reais. Então f(2 + e) é igual a: (a) A (b) B (c) A 2 B (d) AB 2 (e) A 2 B Exercício 1 (VUNESP). Uma função de variável real satisfaz a condição f(x + 2) = 2 f(x) + f(1), qualquer que seja a variável x. Sabendo-se que f() = 6, determine o valor de: (a) f(1) (b) f() Exercício 16 (FUVEST). As funções f e g são dadas por f(x) = x 1 e g(x) = 4 x + a. Sabe-se que f(0) g(0) = 1 ( ) 1. O valor de f() g (a) 0 (b) 1 (c) 2 (d) (e) 4 Exercício 17 (VUNESP). Considere a função f : R R, definida por f(x) = 2x 1. Determine todos os valores possíveis de m para os quais é válida a igualdade f(m 2 ) 2 f(m) + f(2m) = m 2. x+1 x+9 x+1 x Exercício 18 (FUVEST). Considere a função f dada por + 12 f.. Determine o domínio de Exercício 19 (FUVEST). Considere a função f(x) = 1 4x a qual está definida para x 1. Então, (x + 1) 2 para todo x 1, x 1, o produto f(x) f( x) é igual a: (a) 1 (b) 1 (c) x + 1 (d) x (e) (x 1) 2 4. DESAFIOS Exercício 20 (FUVEST). Uma função f satisfaz a identidade f(ax) = a f(x) para todos os números reais a e x. Além disso, sabe-se que f(4) = 2. Considere ainda a função g(x) = f(x 1) + 1 para todo número real x. (a) Calcule g().

4 Exercícios: Funções - Introdução 4 (b) Determine f(x), para todo x real. (c) Resolva a equação g(x) = 8. Exercício 21 (VUNESP). Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta do que para as pessoas que ficaram na Terra. Suponha que um pai astronauta, com 0 anos de idade, viaje numa nave espacial, numa velocidade constante, até o planeta recém-descoberto GL81c, e deixe na Terra seu filho com 10 anos de idade. O tempo t decorrido na Terra (para o filho) e o tempo T decorrido para o astronauta, em função da velocidade v dessa viagem (ida e volta, relativamente ao referencial da Terra e desprezando-se aceleração e desaceleração), são dados respectivamente pelas equações t = 40c v e T = 40c ( v ) 2, 1 onde c é uma constante que indica a velocidade da luz no vácuo e t e v c T são medidos em anos. Determine, em função de c, a que velocidade o pai deveria viajar de modo que, quando retornasse à Terra, ele e seu filho estivessem com a mesma idade. Gabarito: 1. No gabarito abaixo, Sim significa que a associação é função, enquanto Não significa que a associação não é função. (a) Sim (b) Sim (c) Não (d) Sim (e) Não (f) Sim (g) Não (h) Sim (i) Sim (j) Não (k) Sim (l) Não (m) Sim (n) Não (o) Sim (p) Não (q) Sim (r) Sim (s) Sim (t) Não (u) Não (v) Sim (w) Sim (x) Não (y) Sim 2. (a) 2 (b) 8 (c) 10 (d) 2 (e) 80 (f) 2 (g) 20 (h) 192 (i) 19 (j) 2 (k) 2 (l) zero (m) 2. Neste exercício, o contradomínio é sempre o conjunto R. (a) Domínio: R. (b) Domínio: N. (c) Domínio: R. (d) Domínio: números reais maiores ou iguais a. (e) Domínio: N. (f) Domínio: R. (g) Domínio: R {0}. (h) Domínio: { } R. (i) Domínio: números reais maiores ou iguais a 1. (j) Domínio: R. (k) Domínio: 29 R {1, 2}. (l) Domínio: R {2}. (m) Domínio: R {0, }. (n) Domínio: R {0, }. 4. (E). (C) 6. (D) 7. (a) S(8) = 0, 44 m 2 (b) p = 22, 4 kg 8. (C) 9. (A) 10. (B) gramas 12. (D) 1. (C) 14. (C) 1. (a) f(1) = 2 (b) f() = (E)

5 Exercícios: Funções - Introdução 17. m = 0 ou m = R {, 1, 0, 1} 19. (B) 20. (a) g() = 2 (b) 2 (c) x = v = 4 c

12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos.

12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos. 01)(UNESP/008)Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta

Leia mais

Funções Variadas. Sendo a e b constantes reais, a função que pode representar esse potencial é a) q(t) at b. b) c) q(t) a b.

Funções Variadas. Sendo a e b constantes reais, a função que pode representar esse potencial é a) q(t) at b. b) c) q(t) a b. Funções Variadas 1. (Unicamp 014) O gráfico abaixo exibe a curva de potencial biótico q(t) para uma população de micro-organismos, ao longo do tempo t. Sendo a e b constantes reais, a função que pode representar

Leia mais

Acadêmico(a) Turma: Capítulo 6: Funções

Acadêmico(a) Turma: Capítulo 6: Funções 1 Acadêmico(a) Turma: Capítulo 6: Funções Toda função envolve uma relação de dependência entre elementos, números e/ou incógnitas. Em toda função existe um elemento que pode variar livremente, chamado

Leia mais

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU

APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)

Leia mais

Aula 2 Função_Uma Ideia Fundamental

Aula 2 Função_Uma Ideia Fundamental 1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados

Leia mais

Função Polinomial do Primeiro Grau e Radiciação

Função Polinomial do Primeiro Grau e Radiciação Função Polinomial do Primeiro Grau e Radiciação Função Polinomial do Primeiro Grau e Radiciação FUNÇÃO POLINOMIAL DO 1º GRAU RADICIAÇÃO Exercícios de Aula FUNÇÃO POLINOMIAL DO 1º GRAU 1. (Unesp) Considere

Leia mais

4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS

4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS LISTA EXATAMENTE LOGARÍTMOS 1. (Cesgranrio) O valor de log x (x x ) é: a) 3 4. b) 4 3. c) 3. d) 3. e) 4.. (Cesgranrio) Se log 10 (x - ) = 0, então x vale: a). b) 4. c) 3. d) 7/3. e) /. 3. (Fei) Se log

Leia mais

COLÉGIO METODISTA IZABELA HENDRIX PROFESSOR (A):

COLÉGIO METODISTA IZABELA HENDRIX PROFESSOR (A): COLÉGIO METODISTA IZABELA HENDRIX PROFESSOR (A): Inez DISCIPLINA: Matemática II SÉRIE: 3º ano EM TIPO DE ATIVIDADE: Trabalho de Recuperação 1ª etapa VALOR: 6,0 pontos NOME: DATA: Este trabalho serve de

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

Logaritmo e Função Logarítmica

Logaritmo e Função Logarítmica Logaritmo e Função Logarítmica. (Unifor 04) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t) Q 0

Leia mais

b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada?

b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada? Professor Habib Lista de Matemática 1. (G1) Resolva a equação 2Ñ = 128 2. (G1) Calcule x de modo que se obtenha 10 Ñ = 1 3. (Uff) Resolva o sistema ý3ñ + 3Ò = 36 þ ÿ3ñ Ò = 243 4. (Ufsc) Determinar o valor

Leia mais

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1

Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1 Eercícios de Aprofundamento Matemática Equações e Inequações 1. (Mackenzie 013) A função f() a) S / 3 ou 1 3 b) S / 3 ou 1 3 c) S / 3 ou 1 3 d) S / 1 ou 1 3 e) S / 1 ou 1 3 9 tem como domínio o conjunto

Leia mais

DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /.

DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. 1. (Ufjf-pism 017) Qual é o polinômio que ao ser multiplicado por g(x) 3 x 2x 5x 4 tem como resultado o polinômio 6 5 4 h(x)

Leia mais

ROTEIRO DE ESTUDO DE MATEMÁTICA - 1º TRIMESTRE

ROTEIRO DE ESTUDO DE MATEMÁTICA - 1º TRIMESTRE Nome: Número: Turma: 3º Professor (a): Edson Data: 3 / 05 /17 Disciplina MATEMÁTICA Objetivo: Valor: 1,5 Nota: ROTEIRO DE ESTUDO DE MATEMÁTICA - 1º TRIMESTRE Recuperação: dia 3 /05/17 - Será realizada

Leia mais

TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 10.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I (B) (D)

TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 10.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I (B) (D) TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 0.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I Os cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções, das quais só uma

Leia mais

Exercícios de Matemática Produtos Notáveis Fatoração

Exercícios de Matemática Produtos Notáveis Fatoração Exercícios de Matemática Produtos Notáveis Fatoração TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p =

Leia mais

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016.

Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016. Roteiro da aula MA091 Matemática básica Aula 30. 1 Francisco A. M. Gomes UNICAMP - IMECC 2 Maio de 2016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Maio de 2016 1 / 26 Francisco A.

Leia mais

Exercícios para a Prova 3 de Matemática 1 Trimestre. 3. Os números naturais a e b, com a > b, são tais que a² - b² = 7.

Exercícios para a Prova 3 de Matemática 1 Trimestre. 3. Os números naturais a e b, com a > b, são tais que a² - b² = 7. Exercícios para a Prova 3 de Matemática 1 Trimestre 1. Sendo n um número natural, a expressão. é igual a a) 1 b) 3 n b) 2 n d) 6 n 2. Fatore a² + b² - c² + 2ab 3. Os números naturais a e b, com a > b,

Leia mais

LISTA DE EXERCÍCIOS. Humberto José Bortolossi

LISTA DE EXERCÍCIOS. Humberto José Bortolossi GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I A Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 03 Operações com funções: soma, diferença, produto, quociente, composição

Leia mais

RaizDoito 1. Considere f uma função ímpar de domínio IR. Indique, das seguintes afirmações, aquela que é necessariamente verdadeira.

RaizDoito 1. Considere f uma função ímpar de domínio IR. Indique, das seguintes afirmações, aquela que é necessariamente verdadeira. 1. Considere f uma função ímpar de domínio IR. Indique, das seguintes afirmações, aquela que é necessariamente verdadeira. f é não injetiva; (B) f é descontínua em x=0; (C) f(0) = 0; (D) f é injetiva;.

Leia mais

3 pode ser associado a letra C.

3 pode ser associado a letra C. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 8º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Na figura a seguir foram representados

Leia mais

Mat.Semana 3. Alex Amaral (Allan Pinho)

Mat.Semana 3. Alex Amaral (Allan Pinho) Alex Amaral (Allan Pinho) Semana 3 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/02 Introdução

Leia mais

CÁLCULO I. Lista Semanal 01 - Gabarito

CÁLCULO I. Lista Semanal 01 - Gabarito CÁLCULO I Prof. Márcio Nascimento Prof. Marcos Diniz Questão 1. Nos itens abaixo, diga se o problema pode ser resolvido com seus conhecimentos de ensino médio (vamos chamar de pré-cálculo) ou se são necessários

Leia mais

OFICINA DE MATEMÁTICA BÁSICA - MÓDULO II Lista 4

OFICINA DE MATEMÁTICA BÁSICA - MÓDULO II Lista 4 OFICINA DE MATEMÁTICA BÁSICA - MÓDULO II Lista 4 Data da lista: 03/12/2016 Preceptora: Natália Cursos atendidos: Todos Coordenador: Francisco 1. Dados os polinômios f(x) = 5x 4 + 3x 2 2x 1 e g(x) = 2x

Leia mais

p: João Alvaro w: e: Lista de exercícios de Matemática Função composta. Função inversa.

p: João Alvaro w:  e: Lista de exercícios de Matemática Função composta. Função inversa. p: João Alvaro w: www.matemaniacos.com.br e: [email protected] Lista de exercícios de Matemática Função composta. Função inversa. EXERCÍCIOS DE EMBASAMENTO 1. Dados A = { 1, 1, 0, 1, 2}, B = { 3,

Leia mais

temos que todos os elementos de A podem fazer parte do D(R),

temos que todos os elementos de A podem fazer parte do D(R), Matemática A Apostila 2 Semi 1. A={0, 2, 4, 6, 8} e B={1, 3, 5, 9} Assim 2. A={2, 5, 6}, B={1, 3, 4, 6, 8} e Como temos que todos os elementos de A podem fazer parte do D(R), então. Para Imagem, não poderemos

Leia mais

Matemática revisão férias segunda

Matemática revisão férias segunda 1. (G1 - cftrj 016) A seguir temos o gráfico de temperatura, em graus Celsius (eixo vertical), no Rio de Janeiro para os dias 1,, 3 e 4 de setembro de 015 (onde no eixo horizontal temos a marcação do início

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (Enem) As curvas de oferta e de demanda de um produto representam, respectivamente, as quantidades que vendedores e consumidores estão dispostos a comercializar em função do

Leia mais

Matemática. Exercícios de Revisão II. Eldimar. 1 a. 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x).

Matemática. Exercícios de Revisão II. Eldimar. 1 a. 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x). Nome: n o : E nsino: Médio S érie: T urma: Data: Prof(a): Eldimar 1 a Matemática Exercícios de Revisão II 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x). Com relação a f(x) pode-se

Leia mais

Matemática: Funções Vestibulares UNICAMP

Matemática: Funções Vestibulares UNICAMP Matemática: Funções Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t,

Leia mais

ROTEIRO DE ESTUDO DE MATEMÁTICA - 2º TRIMESTRE

ROTEIRO DE ESTUDO DE MATEMÁTICA - 2º TRIMESTRE Nome: Número: Turma: 1º Professor (a): Edson Data: / 09 /17 Disciplina MATEMÁTICA Objetivo: Recuperar o conteúdo desenvolvido no 2º trimestre. Valor: 1,5 Nota: ROTEIRO DE ESTUDO DE MATEMÁTICA - 2º TRIMESTRE

Leia mais

TRABALHO RECUPERAÇÃO FINAL 8º ano - MATEMÁTICA. Os conteúdos selecionados para a recuperação são:

TRABALHO RECUPERAÇÃO FINAL 8º ano - MATEMÁTICA. Os conteúdos selecionados para a recuperação são: TRABALHO RECUPERAÇÃO FINAL 8º ano - MATEMÁTICA Os conteúdos selecionados para a recuperação são: 8) RESOLVA os seguintes sistemas pelo método que achar conveniente: (Valor: 1,0). 9) CALCULE as adições

Leia mais

Estudo da Física. Prof. Railander Borges

Estudo da Física. Prof. Railander Borges Estudo da Física Prof. Railander Borges Fale com o Professor: Email: [email protected] Instagram: @rayllanderborges Facebook: Raylander Borges ASSUNTO: GRAVITAÇÃO 1. Ao ser examinado sobre

Leia mais

Funções potência da forma f (x) =x n, com n N

Funções potência da forma f (x) =x n, com n N Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções potência da forma f (x) =x n, com n N Parte 08 Parte 8 Matemática Básica 1

Leia mais

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática. Apostila 5: Função do 2º grau

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática. Apostila 5: Função do 2º grau Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática Apostila 5: Função do º grau 1. (Enem 016) Um túnel deve ser lacrado com uma tampa de concreto. A seção transversal do túnel e a tampa

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Exercícios de exames e testes intermédios 1. Seja g uma função contínua, de domínio R, tal que: para todo o número real x, (g g)(x) = x para um certo

Leia mais

Teste de Matemática A 2015 / 2016

Teste de Matemática A 2015 / 2016 Teste de Matemática A 2015 / 2016 Teste N.º 4 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em cada

Leia mais

EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES

EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES 3 a SÉRIE ENSINO MÉDIO - 009 ==================================================================================== 1) Para um número real fixo α, a função f(x) =

Leia mais

Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 1 Exercícios

Leia mais

Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista.

Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. Módulo 05. Exercícios Lista de exercícios do Módulo 05 Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. 1. Se A = { todos os números reais satisfazendo x 2 8 x+12=0 }, então:

Leia mais

Lista de Atividades. - semana 1. 4 a Avaliação

Lista de Atividades. - semana 1. 4 a Avaliação Lista de Atividades - semana 1 4 a Avaliação 1. (Fuvest-gv) Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B -

Leia mais

MATEMÁTICA I Prof. Emerson Dutra 2 semestre de 2017 EDIF01A. Lista 3 - Função Afim - 25/08/2017

MATEMÁTICA I Prof. Emerson Dutra 2 semestre de 2017 EDIF01A. Lista 3 - Função Afim - 25/08/2017 MATEMÁTICA I Prof. Emerson Dutra 2 semestre de 2017 EDIF01A Nome: RA: Lista 3 - Função Afim - 25/08/2017 Obs.: É importante fazer todos os exercícios e discutir as dúvidas existentes. 1. Dados os gráficos

Leia mais

Conteúdos Exame Final 2018

Conteúdos Exame Final 2018 Componente Curricular: Matemática Ano: 7º ANO Turmas: 17 A, B, C, D e E. Professoras: Fernanda, Kelly e Suziene Conteúdos Exame Final 2018 1. Números Racionais 2. Área e perímetro de figuras planas 3.

Leia mais

F I C H A D E D I A G N O S E. Curso CCS e CCT Componente de Formação Geral Data / / Nome Nº GRUPO I

F I C H A D E D I A G N O S E. Curso CCS e CCT Componente de Formação Geral Data / / Nome Nº GRUPO I COLÉGIO INTERNACIONAL DE VILAMOURA INTERNATIONAL SCHOOL Disciplina Matemática A T E S T E D E A V A L I A Ç Ã O F I C H A D E D I A G N O S E Ensino Secundário Ano 11º - A e B Duração 90 min Curso CCS

Leia mais

Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota:

Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota: Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Explique com as suas palavras por que zero é chamado de elemento neutro da adição. Questão 2 Qual é a única

Leia mais

CÁLCULO I. Lista Semanal 01 - Gabarito

CÁLCULO I. Lista Semanal 01 - Gabarito CÁLCULO I Prof. Tiago Coelho Prof. Emerson Veiga Questão 1. Esboce as seguintes regiões no plano xy: (a) 0 < x 6. A região representa todas os pontos onde x assume valores entre 0 e 6, sendo aberto em

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

MATEMÁTICA - 3o ciclo. Propostas de resolução

MATEMÁTICA - 3o ciclo. Propostas de resolução MATEMÁTICA - 3o ciclo Função afim e equação da reta (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Observando a representação das retas e as coordenadas dos pontos

Leia mais

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo) de cada uma das funções indicadas abaixo.

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo) de cada uma das funções indicadas abaixo. LISTA DE EXERCÍCIOS Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 04 Transformações de gráficos de funções, função raiz quadrada, funções potência [01] Determine o domínio

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0

Leia mais

Exercícios de Matemática Funções Função Polinomial

Exercícios de Matemática Funções Função Polinomial Exercícios de Matemática Funções Função Polinomial 5. (Unesp) A figura a seguir mostra o gráfico da função polinomial f(x)=ax +x +x,(a 0). 1. (Ufpe) Seja F(x) uma função real, na variável real x, definida

Leia mais

Plano de Recuperação 1º Semestre EF2-2011

Plano de Recuperação 1º Semestre EF2-2011 Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como

Leia mais

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 01 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Equação Exponencial... 1 Equação Exponencial... 1 Exemplo 1... 1 Método da redução à base comum...

Leia mais

Conteúdos Exame Final e Avaliação Especial 2017

Conteúdos Exame Final e Avaliação Especial 2017 Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..

Leia mais

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. 4º Teste de avaliação versão1 Grupo I As cinco questões deste

Leia mais

Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA

Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA Capítulo 3 Função afim 1.5 Função afim Uma função f: R R é função afim quando existem os números reais a e b tais que f(x) = ax + b para todo x R. Exemplos f(x) =, em que: a = e b = 6 g(x) = 7x, em que:

Leia mais

Nome Nº Ano/Série Ensino Turma. Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega

Nome Nº Ano/Série Ensino Turma. Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega Nome Nº Ano/Série Ensino Turma 1 o Médio Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega Matemática 1 Tema: Júnior Lista de Exercícios The Fabulous World of Logarithms 3º /

Leia mais

(a) Obtenha o valor de f( 1). (b) Estime o valor de f(2). (c) f(x) = 2 para quais valores de x? (d) Estime os valores de x para os quais f(x) = 0.

(a) Obtenha o valor de f( 1). (b) Estime o valor de f(2). (c) f(x) = 2 para quais valores de x? (d) Estime os valores de x para os quais f(x) = 0. Lista de Exercícios de Cálculo I para os cursos de Engenharia - Funções 1. Dado o gráfico de uma função: (a) Obtenha o valor de f( 1). (b) Estime o valor de f(). (c) f(x) = para quais valores de x? (d)

Leia mais

MATEMÁTICA - 3o ciclo Equações de grau 2 (9 o ano)

MATEMÁTICA - 3o ciclo Equações de grau 2 (9 o ano) MATEMÁTICA - o ciclo Equações de grau (9 o ano) Exercícios de provas nacionais e testes intermédios 1. Resolve a equação seguinte. 15x + x 1 = 0. Resolve a equação seguinte. 4x + x 1 = 0. Resolve a equação

Leia mais

MATEMÁTICA - 3o ciclo. Propostas de resolução

MATEMÁTICA - 3o ciclo. Propostas de resolução MATEMÁTICA - 3o ciclo Função afim e equação da reta (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como retas paralelas têm o mesmo declive, o declive da reta s,

Leia mais

TEMA 4 FUNÇÕES FICHAS DE TRABALHO 10.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 4 FUNÇÕES FICHAS DE TRABALHO 10.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO 10.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 4 FUNÇÕES 016 017 Matemática A 10.º Ano Fichas de Trabalho Compilação

Leia mais

Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2

Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2 Processo Seletivo Estendido 06 LISTA FUNÇÕES - Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Alexandre Trovon UFPR) A presente

Leia mais

Matemática em vestibulares recentes Prof. Rui

Matemática em vestibulares recentes Prof. Rui Matemática em vestibulares recentes Prof. Rui Questões por assunto 1)Trigonometria(3,8,9,1,15,1,18) )Porcentagem(1) 3)Funções (4,5,6,,13,16,19,0) 4)Lei de cossenos (,14) 5)Triângulos(10,) 6)Fatoração(11)

Leia mais

FICHA DE TRABALHO DE MATEMÁTICA 10.º ANO - FUNÇÕES

FICHA DE TRABALHO DE MATEMÁTICA 10.º ANO - FUNÇÕES FICHA DE TRABALHO DE MATEMÁTICA 10.º ANO - FUNÇÕES 1. Em IR qual das condições seguintes é equivalente à inequação x! < 4? (A) x < 2 (B) x < 4 (C) x < 2 (D) x < 4 Teste intermédio 2008 2. Considere, em

Leia mais

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo:

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Exercícios resolvidos e comentados 1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Plano Custo fixo mensal Custo adicional por minuto A R$ 35,00 R$ 0,50 B R$ 20,00 R$ 0,80

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo

Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo Cálculo Diferencial - 2016.2 - Lista de Problemas 1.1 1 Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo Questão 01 Encontre o domínio da função (a) f(x) = x + 4 x 2 9 (b) f(t) = 3 2t 1 (c)

Leia mais

6. Sendo A, B e C os respectivos domínios das

6. Sendo A, B e C os respectivos domínios das 1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,

Leia mais

FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3)

FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3) FUNÇÃO DE 2 GRAU 1-(ANGLO) O vértice da parábola y= 2x²- 4x + 5 é o ponto 1 11 1, 3 e) (1,3) a) (2,5) b) (, ) c) (-1,11) d) ( ) 2-(ANGLO) A função f(x) = x²- 4x + k tem o valor mínimo igual a 8. O valor

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 3.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma

Leia mais

1º ANO 4º. 2. (Espcex (Aman) 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x).

1º ANO 4º. 2. (Espcex (Aman) 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x). DISCIPLINA PROFESSOR DATA TURMA/TURNO MATEMÁTICA THIAGO PINHEIRO / 11 / 01 SÉRIE NÍVEL TOTAL ESC. ESC. OBT. NOTA BIM. MÉDIO 1º ANO 4º ALUNO 1. (Pucrj 01) Sejam f e g funções reais dadas por f(x) = x +

Leia mais

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:

QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma: QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência

Leia mais

Solução Comentada da Prova de Matemática

Solução Comentada da Prova de Matemática Solução Comentada da Prova de Matemática 01. Considere, no plano cartesiano, os pontos P(0,1) e Q(,3). A) Determine uma equação para a reta mediatriz do segmento de reta PQ. B) Determine uma equação para

Leia mais

Cálculo Diferencial Lista de Problemas 1.2 Prof. Marco Polo

Cálculo Diferencial Lista de Problemas 1.2 Prof. Marco Polo Cálculo Diferencial - 2016.2 - Lista de Problemas 1.2 1 Cálculo Diferencial Lista de Problemas 1.2 Prof. Marco Polo Questão 01 O ponto P (2, 1) está sobre a curva y = 1/(1 x). (a) Se Q é o ponto (x, 1/(1

Leia mais

Matemática I. Professor Cezar Rios

Matemática I. Professor Cezar Rios Matemática I 1710 Professor Cezar Rios 1. (Ufc) Os lados de um triângulo retângulo estão em progressão aritmética. Determine a tangente do menor ângulo agudo deste triângulo. 2. (Unicamp) Caminhando em

Leia mais

AULA 01. (B) 577 m. (C) 705 m. (D) 866 m. (E) 1732 m. Dessa forma conclui-se que a largura AB do rio é

AULA 01. (B) 577 m. (C) 705 m. (D) 866 m. (E) 1732 m. Dessa forma conclui-se que a largura AB do rio é AULA 01 O ponto A representa um barco com fiscais do IBAMA, eles emitem um sinal de alerta que é recebido por duas bases de fiscalização, B e C, distantes entre si 70 km. Sabendo que os ângulos AB C e

Leia mais

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa 1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz

Leia mais

Função Afim Fabio Licht

Função Afim Fabio Licht Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)

Leia mais

Função Quadrática ou Função do 2º grau

Função Quadrática ou Função do 2º grau Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato [email protected] [email protected] a: é o coeficiente de x 2 b: é o coeficiente de x c: é o termo independente Exemplos:

Leia mais

MATEMÁTICA - 3o ciclo Equações de grau 2 (9 o ano)

MATEMÁTICA - 3o ciclo Equações de grau 2 (9 o ano) MATEMÁTICA - o ciclo Equações de grau (9 o ano) Exercícios de provas nacionais e testes intermédios 1. Resolve a equação seguinte. x + 5x = 0 Prova Final o Ciclo 017, Época especial. Resolve a equação

Leia mais

SE18 - Matemática. LMAT 3A3 - Função exponencial. Questão 1. a) ,00. b) ,00. c) ,00. d) ,00. e) 49,683,00. f) Não sei.

SE18 - Matemática. LMAT 3A3 - Função exponencial. Questão 1. a) ,00. b) ,00. c) ,00. d) ,00. e) 49,683,00. f) Não sei. SE18 - Matemática LMAT 3A3 - Função exponencial Questão 1 (Enem (Libras) 2017) Um modelo de automóvel tem seu valor depreciado em função do tempo de uso segundo a função f(t) = b a t com t em ano. Essa

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Ufpr 07) Rafaela e Henrique participaram de uma atividade voluntária que consistiu na pintura da fachada de uma instituição de caridade. No final do dia, restaram duas latas de tinta idênticas (de mesmo

Leia mais

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo/maximal) de cada uma das funções indicadas abaixo.

LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo/maximal) de cada uma das funções indicadas abaixo. LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 Função raiz quadrada, funções da forma y = f(x) = a 2 x 2, funções potência [01] Determine o domínio

Leia mais

LISTA ZERO - Potenciação em Reais

LISTA ZERO - Potenciação em Reais LISTA ZERO - Potenciação em Reais 1. (FGV 003) Se x = 300000 e y = 0,0000, então x.y vale: a) 0,64 b) 6,4 c) 64 d) 640 e) 6400. (UNESP 199) O valor da expressão a) 0,3 b ) -0,1 c ) -0, d) 0, e) 0 3. (FUVEST

Leia mais

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,

f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2, Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,

Leia mais

a) Os números inteiros. b) Os números racionais na forma de fração. c) Os números racionais na forma decimal. d) As dízimas periódicas.

a) Os números inteiros. b) Os números racionais na forma de fração. c) Os números racionais na forma decimal. d) As dízimas periódicas. Estudante: Educadora: Lilian Nunes 7 Ano/Turma: C. Curricular: Matemática CONJUNTOS NUMÉRICOS 01) Dados os números racionais 2,3; 3 ; 8; 2, ; 4,0; 1,6; 1 ; 0,222, escreva: 7 6 a) Os números inteiros. b)

Leia mais

OFICINA DE MATEMÁTICA BÁSICA Lista 3

OFICINA DE MATEMÁTICA BÁSICA Lista 3 OFICINA DE MATEMÁTICA BÁSICA Lista 3 Data da lista: 29/06/2017 Preceptora: Natália Cursos atendidos: Todos Coordenador: Francisco 1. Demonstre que cada uma das seguintes igualdades são identidades. (a)

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y). MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros

Leia mais

Tecnologia em Mecatrônica - Lista de exercícios Funções Matemática Carlos Bezerra

Tecnologia em Mecatrônica - Lista de exercícios Funções Matemática Carlos Bezerra TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos parenteses a soma dos itens corretos. 1. Considerando-se as funções reais f(x)=log (x-1) e g(x)=2ñ, é verdade: (01) Para todo

Leia mais