Exercícios: Funções - Introdução Prof. André Augusto
|
|
|
- Maria do Mar Custódio Graça
- 9 Há anos
- Visualizações:
Transcrição
1 Exercícios: Funções - Introdução Prof. André Augusto 1. EXERCÍCIOS BÁSICOS DE FUNÇÕES Exercício 1. Nos itens a seguir, diga se as associações f : X Y a seguir são funções ou não: 1 X = 0, 1, 2,, 4, X = 0, 1, 2,, 4, X = 0, 1, 2,, 4,, 6 X = 0, 1, 2,, 4, (a) Y = 0, 1, 2,, 4, (b) Y = 0, 1, 2,, 4,, 6 (c) Y = 0, 1, 2,, 4, (d) Y = de 0 a 10 f(x) = 2x X = 0, 1, 2,, 4, X = 0, 1, 2, X = 0, 1, 2, X = N (e) Y = de 0 a 10 f(x) = 1 (f) Y = de 0 a 10 (g) Y = de 0 a 10 (h) Y = N x X = N X = N X = N X = R X = R (i) Y = N (j) Y = N + x + 2 f(x) = (k) Y = R x f(x) = (l) Y = R x f(x) = (m) Y = R x + 27 X = R X = R + X = N (n) Y = R (o) Y = R (p) Y = R 1 f(x) = 1 x f(x) = + 27 x f(x) = + x e, ao mesmo tempo, x + 27 X = conjunto dos segmentos no plano X = R X = R (q) Y = conjunto das retas no plano (r) Y = R (s) Y = R f(x) = mediatriz de x f(x) = 1 x X = N Y = R (t) 2, se x é múltiplo de 2 (u) Y = população mundial f(x) =, se x é múltiplo de f(x) = irmão de x 0, caso x não seja múltiplo de 2 nem X = estados do Brasil (v) Y = R (w) Y = população do Brasil f(x) = altura de x (em centímetros) f(x) = governador do estado x (x) Y = perfis do Facebook (y) Y = signos do zodíaco f(x) = perifl da pessoa x no Facebook f(x) = signo da pessoa x Exercício 2. Seja 2 x + 4, g(x) = x 2 e h(x) = 8x. Calcule: (a) f(2) (b) f( 1) (c) g(4) (d) h(4) (e) h(10) (f) g(0) (g) f(4) h() (h) g( 2) h( ) (i) f(0) g(1) + h(2) (j) f(4) + h( ) (k) g(6) ( ) 2 (l) f(1) h(0) f( 9) g (m) f() h(1) g() 2. DOMÍNIO E CONTRADOMÍNIO DE FUNÇÕES Exercício. Determine o domínio e o contradomínio das seguintes funções: (a) f(x) = 10x (b) f(x) = 10x, onde x representa quantidade de livros (c) f(x) = x + 1 Observação: R + representa os números reais positivos
2 Exercícios: Funções - Introdução 2 (d) f(x) = x + (e), onde x representa quantidade de lanches. (f) f(x) = 12x + 6 (g) f(x) = 1x (l) f(x) = 7 x 2 x + 2 (h) f(x) = x (i) x + (m) f(x) = (x + 1) x 2 x 2 (n) f(x) = (j) f(x) = 4 x 1 (k) f(x) = x 1 1 x(x ) (o) x(x ). TESTES DE VESTIBULARES Exercício 4 (U.F.VIÇOSA). Considere a função f : R R definida por: O valor da expressão f( 2) + f ( ) f(π) (a) 2 (b) (c) 12 (d) , se x é racional; f(x) =, se x é irracional. 4 (e) 2 1 Exercício (VUNESP). Seja T C a temperatura em graus Celsius e T F a mesma temperatura em graus Fahrenheit. Essas duas escalas de temperatura estão relacionadas pela equação 9T C = T F 160. Considere agora T K a mesma temperatura na escala Kelvin. As escalas Kelvin e Celsius estão relacionados pela equação T K = T C A equação que relaciona as escalas Fahrenheit e Kelvin (a) T F = T K 11 (e) T F = 9T K 2617 (b) T F = 9T K 247 (c) T F = 9T K 2297 Exercício 6 (UFPI). Se f(x) = 2 x 1, p = 108 e q = 10 10, então o valor de (a) 10 8 (b) (c) 2 (d) 2 (e) 1 (d) T F = 9T K 267 f(p) f(q) q p Exercício 7 (VUNESP). Uma fórmula matemática para se calcular aproximadamente a área, em metros quadrados, da superfície corporal de uma pessoa, é dada por S(p) = p 2, onde p é a massa da pessoa em quilogramas. Considere uma criança de 8 kg. Determine: (a) a área da superfície corporal da criança. (b) a massa que a criança terá quando a área de sua superfície corporal duplicar (Use a aproximação 2 = 1, 4). Exercício 8 (UEL). Seja N = {0, 1, 2,,...}. Se n é um número do conjunto N, qual das regras de associação abaixo define uma função de N em N? (a) n é associado à sua metade. (b) n é associado a seu antecessor. (c) n é associado ao resto de sua divisão por 7. (d) n é associado a p tal que p é primo e p < n. (e) n é associado a m tal que m é múltiplo de n. Exercício 9 (FGV). Seja a função f : R R, definida por f(x) = x. Se f(a) = 8, então f ( a ) (a) 1 2 (b) 1 4 (c) 1 8 (d) 4 (e) 2
3 Exercícios: Funções - Introdução Exercício 10 (VUNESP). A unidade usual de medida para a energia contida nos alimentos é kcal (quilocaloria). Uma fórmula aproximada para o consumo diário de energia (em kcal) para meninos entre 1 e 18 anos é dada pela função f(h) = 17 h, onde h indica a altura em cm e, para meninas nessa mesma faixa de idade, pela função g(h) = (1, ).h. Paulo, usando a fórmula para meninos, calculou seu consumo diário de energia e obteve 2 97 kcal. Sabendo-se que Paulo é cm mais alto que sua namorada Carla (e que ambos têm idade entre 1 e 18 anos), o consumo diário de energia para Carla, de acordo com a fórmula, em kcal, (a) 201 (b) 2601 (c) 2770 (d) 287 (e) 2970 Exercício 11 (VUNESP). O desenvolvimento da gestação de uma determinada criança que nasceu com 40 semanas, 0, 6 cm de altura e com 446 gramas de massa foi modelado, a partir da vigésima semana, aproximadamente, pelas funções matemáticas h(t) = 1, t 9, 4 e p(t) =, 8t 2 72t + 246, onde t indica o tempo em semanas, t 20, h(t) a altura em centímetros e p(t) a massa em gramas. Admitindo o modelo matemático, determine quantos gramas tinha o feto quando sua altura era, 6 cm. Exercício 12 (Mackenzie). A função f : R R é tal que f(x) = f(x) para todo número real. Se f(9) = 4, então f(1) + f() é igual a: (a) (b) 10 (c) 1 (d) 20 (e) 2 Exercício 1 (FGV). Seja a função 2. O valor de f(m + n) f(m n) (a) 2m 2 + 2n 2 (b) 2n 2 (c) 4mn (d) 2m 2 (e) 0 Exercício 14 (UFMS). Seja f : R R uma função real tal que f(1) = A, f(e) = B e f(x+y) = f(x) (y), para todo x e y números reais. Então f(2 + e) é igual a: (a) A (b) B (c) A 2 B (d) AB 2 (e) A 2 B Exercício 1 (VUNESP). Uma função de variável real satisfaz a condição f(x + 2) = 2 f(x) + f(1), qualquer que seja a variável x. Sabendo-se que f() = 6, determine o valor de: (a) f(1) (b) f() Exercício 16 (FUVEST). As funções f e g são dadas por f(x) = x 1 e g(x) = 4 x + a. Sabe-se que f(0) g(0) = 1 ( ) 1. O valor de f() g (a) 0 (b) 1 (c) 2 (d) (e) 4 Exercício 17 (VUNESP). Considere a função f : R R, definida por f(x) = 2x 1. Determine todos os valores possíveis de m para os quais é válida a igualdade f(m 2 ) 2 f(m) + f(2m) = m 2. x+1 x+9 x+1 x Exercício 18 (FUVEST). Considere a função f dada por + 12 f.. Determine o domínio de Exercício 19 (FUVEST). Considere a função f(x) = 1 4x a qual está definida para x 1. Então, (x + 1) 2 para todo x 1, x 1, o produto f(x) f( x) é igual a: (a) 1 (b) 1 (c) x + 1 (d) x (e) (x 1) 2 4. DESAFIOS Exercício 20 (FUVEST). Uma função f satisfaz a identidade f(ax) = a f(x) para todos os números reais a e x. Além disso, sabe-se que f(4) = 2. Considere ainda a função g(x) = f(x 1) + 1 para todo número real x. (a) Calcule g().
4 Exercícios: Funções - Introdução 4 (b) Determine f(x), para todo x real. (c) Resolva a equação g(x) = 8. Exercício 21 (VUNESP). Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta do que para as pessoas que ficaram na Terra. Suponha que um pai astronauta, com 0 anos de idade, viaje numa nave espacial, numa velocidade constante, até o planeta recém-descoberto GL81c, e deixe na Terra seu filho com 10 anos de idade. O tempo t decorrido na Terra (para o filho) e o tempo T decorrido para o astronauta, em função da velocidade v dessa viagem (ida e volta, relativamente ao referencial da Terra e desprezando-se aceleração e desaceleração), são dados respectivamente pelas equações t = 40c v e T = 40c ( v ) 2, 1 onde c é uma constante que indica a velocidade da luz no vácuo e t e v c T são medidos em anos. Determine, em função de c, a que velocidade o pai deveria viajar de modo que, quando retornasse à Terra, ele e seu filho estivessem com a mesma idade. Gabarito: 1. No gabarito abaixo, Sim significa que a associação é função, enquanto Não significa que a associação não é função. (a) Sim (b) Sim (c) Não (d) Sim (e) Não (f) Sim (g) Não (h) Sim (i) Sim (j) Não (k) Sim (l) Não (m) Sim (n) Não (o) Sim (p) Não (q) Sim (r) Sim (s) Sim (t) Não (u) Não (v) Sim (w) Sim (x) Não (y) Sim 2. (a) 2 (b) 8 (c) 10 (d) 2 (e) 80 (f) 2 (g) 20 (h) 192 (i) 19 (j) 2 (k) 2 (l) zero (m) 2. Neste exercício, o contradomínio é sempre o conjunto R. (a) Domínio: R. (b) Domínio: N. (c) Domínio: R. (d) Domínio: números reais maiores ou iguais a. (e) Domínio: N. (f) Domínio: R. (g) Domínio: R {0}. (h) Domínio: { } R. (i) Domínio: números reais maiores ou iguais a 1. (j) Domínio: R. (k) Domínio: 29 R {1, 2}. (l) Domínio: R {2}. (m) Domínio: R {0, }. (n) Domínio: R {0, }. 4. (E). (C) 6. (D) 7. (a) S(8) = 0, 44 m 2 (b) p = 22, 4 kg 8. (C) 9. (A) 10. (B) gramas 12. (D) 1. (C) 14. (C) 1. (a) f(1) = 2 (b) f() = (E)
5 Exercícios: Funções - Introdução 17. m = 0 ou m = R {, 1, 0, 1} 19. (B) 20. (a) g() = 2 (b) 2 (c) x = v = 4 c
12)(UNIFESP/2008) A tabela mostra a distância s em centímetros que uma bola percorre descendo por um plano inclinado em t segundos.
01)(UNESP/008)Segundo a Teoria da Relatividade de Einstein, se um astronauta viajar em uma nave espacial muito rapidamente em relação a um referencial na Terra, o tempo passará mais devagar para o astronauta
Funções Variadas. Sendo a e b constantes reais, a função que pode representar esse potencial é a) q(t) at b. b) c) q(t) a b.
Funções Variadas 1. (Unicamp 014) O gráfico abaixo exibe a curva de potencial biótico q(t) para uma população de micro-organismos, ao longo do tempo t. Sendo a e b constantes reais, a função que pode representar
Acadêmico(a) Turma: Capítulo 6: Funções
1 Acadêmico(a) Turma: Capítulo 6: Funções Toda função envolve uma relação de dependência entre elementos, números e/ou incógnitas. Em toda função existe um elemento que pode variar livremente, chamado
APOSTILA FUNÇÃO DO 1º GRAU - PROF. CARLINHOS FUNÇÃO DO 1º GRAU
FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0. Eemplos: f() = 3, onde a = e b = 3 (função afim) f() = 6, onde a = 6 e b = 0 (função linear)
Aula 2 Função_Uma Ideia Fundamental
1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados
Função Polinomial do Primeiro Grau e Radiciação
Função Polinomial do Primeiro Grau e Radiciação Função Polinomial do Primeiro Grau e Radiciação FUNÇÃO POLINOMIAL DO 1º GRAU RADICIAÇÃO Exercícios de Aula FUNÇÃO POLINOMIAL DO 1º GRAU 1. (Unesp) Considere
4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS
LISTA EXATAMENTE LOGARÍTMOS 1. (Cesgranrio) O valor de log x (x x ) é: a) 3 4. b) 4 3. c) 3. d) 3. e) 4.. (Cesgranrio) Se log 10 (x - ) = 0, então x vale: a). b) 4. c) 3. d) 7/3. e) /. 3. (Fei) Se log
COLÉGIO METODISTA IZABELA HENDRIX PROFESSOR (A):
COLÉGIO METODISTA IZABELA HENDRIX PROFESSOR (A): Inez DISCIPLINA: Matemática II SÉRIE: 3º ano EM TIPO DE ATIVIDADE: Trabalho de Recuperação 1ª etapa VALOR: 6,0 pontos NOME: DATA: Este trabalho serve de
ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto
Logaritmo e Função Logarítmica
Logaritmo e Função Logarítmica. (Unifor 04) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t) Q 0
b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada?
Professor Habib Lista de Matemática 1. (G1) Resolva a equação 2Ñ = 128 2. (G1) Calcule x de modo que se obtenha 10 Ñ = 1 3. (Uff) Resolva o sistema ý3ñ + 3Ò = 36 þ ÿ3ñ Ò = 243 4. (Ufsc) Determinar o valor
Exercícios de Aprofundamento Matemática Equações e Inequações Modulares e Quadráticas 1
Eercícios de Aprofundamento Matemática Equações e Inequações 1. (Mackenzie 013) A função f() a) S / 3 ou 1 3 b) S / 3 ou 1 3 c) S / 3 ou 1 3 d) S / 1 ou 1 3 e) S / 1 ou 1 3 9 tem como domínio o conjunto
DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /.
DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /. 1. (Ufjf-pism 017) Qual é o polinômio que ao ser multiplicado por g(x) 3 x 2x 5x 4 tem como resultado o polinômio 6 5 4 h(x)
ROTEIRO DE ESTUDO DE MATEMÁTICA - 1º TRIMESTRE
Nome: Número: Turma: 3º Professor (a): Edson Data: 3 / 05 /17 Disciplina MATEMÁTICA Objetivo: Valor: 1,5 Nota: ROTEIRO DE ESTUDO DE MATEMÁTICA - 1º TRIMESTRE Recuperação: dia 3 /05/17 - Será realizada
TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 10.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I (B) (D)
TESTE DE AVALIAÇÃO GLOBAL - MATEMÁTICA A 0.º ANO DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I Os cinco itens deste grupo são de escolha múltipla. Em cada um deles, são indicadas quatro opções, das quais só uma
Exercícios de Matemática Produtos Notáveis Fatoração
Exercícios de Matemática Produtos Notáveis Fatoração TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p =
Roteiro da aula. MA091 Matemática básica. Exemplo 1. Exemplo 1. Aula 30 Função inversa. Francisco A. M. Gomes. Maio de 2016.
Roteiro da aula MA091 Matemática básica Aula 30. 1 Francisco A. M. Gomes UNICAMP - IMECC 2 Maio de 2016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Maio de 2016 1 / 26 Francisco A.
Exercícios para a Prova 3 de Matemática 1 Trimestre. 3. Os números naturais a e b, com a > b, são tais que a² - b² = 7.
Exercícios para a Prova 3 de Matemática 1 Trimestre 1. Sendo n um número natural, a expressão. é igual a a) 1 b) 3 n b) 2 n d) 6 n 2. Fatore a² + b² - c² + 2ab 3. Os números naturais a e b, com a > b,
LISTA DE EXERCÍCIOS. Humberto José Bortolossi
GMA DEPARTAMENTO DE MATEMÁTICA APLICADA LISTA DE EXERCÍCIOS Cálculo I A Humberto José Bortolossi http://wwwprofessoresuffbr/hjbortol/ 03 Operações com funções: soma, diferença, produto, quociente, composição
RaizDoito 1. Considere f uma função ímpar de domínio IR. Indique, das seguintes afirmações, aquela que é necessariamente verdadeira.
1. Considere f uma função ímpar de domínio IR. Indique, das seguintes afirmações, aquela que é necessariamente verdadeira. f é não injetiva; (B) f é descontínua em x=0; (C) f(0) = 0; (D) f é injetiva;.
3 pode ser associado a letra C.
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 8º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Na figura a seguir foram representados
Mat.Semana 3. Alex Amaral (Allan Pinho)
Alex Amaral (Allan Pinho) Semana 3 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/02 Introdução
CÁLCULO I. Lista Semanal 01 - Gabarito
CÁLCULO I Prof. Márcio Nascimento Prof. Marcos Diniz Questão 1. Nos itens abaixo, diga se o problema pode ser resolvido com seus conhecimentos de ensino médio (vamos chamar de pré-cálculo) ou se são necessários
OFICINA DE MATEMÁTICA BÁSICA - MÓDULO II Lista 4
OFICINA DE MATEMÁTICA BÁSICA - MÓDULO II Lista 4 Data da lista: 03/12/2016 Preceptora: Natália Cursos atendidos: Todos Coordenador: Francisco 1. Dados os polinômios f(x) = 5x 4 + 3x 2 2x 1 e g(x) = 2x
p: João Alvaro w: e: Lista de exercícios de Matemática Função composta. Função inversa.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected] Lista de exercícios de Matemática Função composta. Função inversa. EXERCÍCIOS DE EMBASAMENTO 1. Dados A = { 1, 1, 0, 1, 2}, B = { 3,
temos que todos os elementos de A podem fazer parte do D(R),
Matemática A Apostila 2 Semi 1. A={0, 2, 4, 6, 8} e B={1, 3, 5, 9} Assim 2. A={2, 5, 6}, B={1, 3, 4, 6, 8} e Como temos que todos os elementos de A podem fazer parte do D(R), então. Para Imagem, não poderemos
Matemática revisão férias segunda
1. (G1 - cftrj 016) A seguir temos o gráfico de temperatura, em graus Celsius (eixo vertical), no Rio de Janeiro para os dias 1,, 3 e 4 de setembro de 015 (onde no eixo horizontal temos a marcação do início
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (Enem) As curvas de oferta e de demanda de um produto representam, respectivamente, as quantidades que vendedores e consumidores estão dispostos a comercializar em função do
Matemática. Exercícios de Revisão II. Eldimar. 1 a. 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x).
Nome: n o : E nsino: Médio S érie: T urma: Data: Prof(a): Eldimar 1 a Matemática Exercícios de Revisão II 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x). Com relação a f(x) pode-se
Matemática: Funções Vestibulares UNICAMP
Matemática: Funções Vestibulares 015-011 - UNICAMP 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t,
ROTEIRO DE ESTUDO DE MATEMÁTICA - 2º TRIMESTRE
Nome: Número: Turma: 1º Professor (a): Edson Data: / 09 /17 Disciplina MATEMÁTICA Objetivo: Recuperar o conteúdo desenvolvido no 2º trimestre. Valor: 1,5 Nota: ROTEIRO DE ESTUDO DE MATEMÁTICA - 2º TRIMESTRE
TRABALHO RECUPERAÇÃO FINAL 8º ano - MATEMÁTICA. Os conteúdos selecionados para a recuperação são:
TRABALHO RECUPERAÇÃO FINAL 8º ano - MATEMÁTICA Os conteúdos selecionados para a recuperação são: 8) RESOLVA os seguintes sistemas pelo método que achar conveniente: (Valor: 1,0). 9) CALCULE as adições
Estudo da Física. Prof. Railander Borges
Estudo da Física Prof. Railander Borges Fale com o Professor: Email: [email protected] Instagram: @rayllanderborges Facebook: Raylander Borges ASSUNTO: GRAVITAÇÃO 1. Ao ser examinado sobre
Funções potência da forma f (x) =x n, com n N
Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções potência da forma f (x) =x n, com n N Parte 08 Parte 8 Matemática Básica 1
Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática. Apostila 5: Função do 2º grau
Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática Apostila 5: Função do º grau 1. (Enem 016) Um túnel deve ser lacrado com uma tampa de concreto. A seção transversal do túnel e a tampa
MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano
MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Exercícios de exames e testes intermédios 1. Seja g uma função contínua, de domínio R, tal que: para todo o número real x, (g g)(x) = x para um certo
Teste de Matemática A 2015 / 2016
Teste de Matemática A 2015 / 2016 Teste N.º 4 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em cada
EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES
EXERCÍCIOS DE REVISÃO ASSUNTO : FUNÇÕES 3 a SÉRIE ENSINO MÉDIO - 009 ==================================================================================== 1) Para um número real fixo α, a função f(x) =
Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 1 Exercícios
Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista.
Módulo 05. Exercícios Lista de exercícios do Módulo 05 Observação: Todos os cálculos e desenvolvimentos deverão acompanhar a Lista. 1. Se A = { todos os números reais satisfazendo x 2 8 x+12=0 }, então:
Lista de Atividades. - semana 1. 4 a Avaliação
Lista de Atividades - semana 1 4 a Avaliação 1. (Fuvest-gv) Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B -
MATEMÁTICA I Prof. Emerson Dutra 2 semestre de 2017 EDIF01A. Lista 3 - Função Afim - 25/08/2017
MATEMÁTICA I Prof. Emerson Dutra 2 semestre de 2017 EDIF01A Nome: RA: Lista 3 - Função Afim - 25/08/2017 Obs.: É importante fazer todos os exercícios e discutir as dúvidas existentes. 1. Dados os gráficos
Conteúdos Exame Final 2018
Componente Curricular: Matemática Ano: 7º ANO Turmas: 17 A, B, C, D e E. Professoras: Fernanda, Kelly e Suziene Conteúdos Exame Final 2018 1. Números Racionais 2. Área e perímetro de figuras planas 3.
F I C H A D E D I A G N O S E. Curso CCS e CCT Componente de Formação Geral Data / / Nome Nº GRUPO I
COLÉGIO INTERNACIONAL DE VILAMOURA INTERNATIONAL SCHOOL Disciplina Matemática A T E S T E D E A V A L I A Ç Ã O F I C H A D E D I A G N O S E Ensino Secundário Ano 11º - A e B Duração 90 min Curso CCS
Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota:
Abril Educação Conjuntos numéricos Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Explique com as suas palavras por que zero é chamado de elemento neutro da adição. Questão 2 Qual é a única
CÁLCULO I. Lista Semanal 01 - Gabarito
CÁLCULO I Prof. Tiago Coelho Prof. Emerson Veiga Questão 1. Esboce as seguintes regiões no plano xy: (a) 0 < x 6. A região representa todas os pontos onde x assume valores entre 0 e 6, sendo aberto em
13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:
1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular
MATEMÁTICA - 3o ciclo. Propostas de resolução
MATEMÁTICA - 3o ciclo Função afim e equação da reta (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Observando a representação das retas e as coordenadas dos pontos
LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo) de cada uma das funções indicadas abaixo.
LISTA DE EXERCÍCIOS Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 04 Transformações de gráficos de funções, função raiz quadrada, funções potência [01] Determine o domínio
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Propostas de resolução
MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Propostas de resolução Exercícios de exames e testes intermédios. Como a função é contínua em R, também é contínua em x 0, pelo que Temos que fx f0
Exercícios de Matemática Funções Função Polinomial
Exercícios de Matemática Funções Função Polinomial 5. (Unesp) A figura a seguir mostra o gráfico da função polinomial f(x)=ax +x +x,(a 0). 1. (Ufpe) Seja F(x) uma função real, na variável real x, definida
Plano de Recuperação 1º Semestre EF2-2011
Professor: Marcelo, Cebola e Natália Ano: 9º Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Matemática nos quais apresentou defasagens e os quais lhe servirão como
Hewlett-Packard FUNÇÃO EXPONENCIAL. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard FUNÇÃO EXPONENCIAL Aulas 01 a 06 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Equação Exponencial... 1 Equação Exponencial... 1 Exemplo 1... 1 Método da redução à base comum...
Conteúdos Exame Final e Avaliação Especial 2017
Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..
ÁLGEBRA. Aula 4 _ Classificação das Funções Professor Luciano Nóbrega. Maria Auxiliadora
1 ÁLGEBRA Aula 4 _ Classificação das Funções Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO INJETORA É quando quaisquer dois elementos diferentes do conjunto A têm imagens diferentes no conjunto
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.
Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. 4º Teste de avaliação versão1 Grupo I As cinco questões deste
Capítulo 3. Função afim. ANOTAÇÕES EM AULA Capítulo 3 Função afim 1.5 CONEXÕES COM A MATEMÁTICA
Capítulo 3 Função afim 1.5 Função afim Uma função f: R R é função afim quando existem os números reais a e b tais que f(x) = ax + b para todo x R. Exemplos f(x) =, em que: a = e b = 6 g(x) = 7x, em que:
Nome Nº Ano/Série Ensino Turma. Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega
Nome Nº Ano/Série Ensino Turma 1 o Médio Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega Matemática 1 Tema: Júnior Lista de Exercícios The Fabulous World of Logarithms 3º /
(a) Obtenha o valor de f( 1). (b) Estime o valor de f(2). (c) f(x) = 2 para quais valores de x? (d) Estime os valores de x para os quais f(x) = 0.
Lista de Exercícios de Cálculo I para os cursos de Engenharia - Funções 1. Dado o gráfico de uma função: (a) Obtenha o valor de f( 1). (b) Estime o valor de f(). (c) f(x) = para quais valores de x? (d)
MATEMÁTICA - 3o ciclo Equações de grau 2 (9 o ano)
MATEMÁTICA - o ciclo Equações de grau (9 o ano) Exercícios de provas nacionais e testes intermédios 1. Resolve a equação seguinte. 15x + x 1 = 0. Resolve a equação seguinte. 4x + x 1 = 0. Resolve a equação
MATEMÁTICA - 3o ciclo. Propostas de resolução
MATEMÁTICA - 3o ciclo Função afim e equação da reta (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como retas paralelas têm o mesmo declive, o declive da reta s,
TEMA 4 FUNÇÕES FICHAS DE TRABALHO 10.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FICHAS DE TRABALHO 10.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 4 FUNÇÕES 016 017 Matemática A 10.º Ano Fichas de Trabalho Compilação
Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2
Processo Seletivo Estendido 06 LISTA FUNÇÕES - Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Alexandre Trovon UFPR) A presente
Matemática em vestibulares recentes Prof. Rui
Matemática em vestibulares recentes Prof. Rui Questões por assunto 1)Trigonometria(3,8,9,1,15,1,18) )Porcentagem(1) 3)Funções (4,5,6,,13,16,19,0) 4)Lei de cossenos (,14) 5)Triângulos(10,) 6)Fatoração(11)
FICHA DE TRABALHO DE MATEMÁTICA 10.º ANO - FUNÇÕES
FICHA DE TRABALHO DE MATEMÁTICA 10.º ANO - FUNÇÕES 1. Em IR qual das condições seguintes é equivalente à inequação x! < 4? (A) x < 2 (B) x < 4 (C) x < 2 (D) x < 4 Teste intermédio 2008 2. Considere, em
1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo:
Exercícios resolvidos e comentados 1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Plano Custo fixo mensal Custo adicional por minuto A R$ 35,00 R$ 0,50 B R$ 20,00 R$ 0,80
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como
Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo
Cálculo Diferencial - 2016.2 - Lista de Problemas 1.1 1 Cálculo Diferencial Lista de Problemas 1.1 Prof. Marco Polo Questão 01 Encontre o domínio da função (a) f(x) = x + 4 x 2 9 (b) f(t) = 3 2t 1 (c)
6. Sendo A, B e C os respectivos domínios das
1 FGV. Seja f uma função tal que f(xy) = f (x) y todos os números reais positivos x e y. Se f(300) = 5, então, f(700) é igual a: A) 15/7 B) 16/7 C) 17/7 D) 8/3 E) 11/4 para 5 Insper. O conjunto A = {1,,
FUNÇÃO DE 2 GRAU. 1, 3 e) (1,3)
FUNÇÃO DE 2 GRAU 1-(ANGLO) O vértice da parábola y= 2x²- 4x + 5 é o ponto 1 11 1, 3 e) (1,3) a) (2,5) b) (, ) c) (-1,11) d) ( ) 2-(ANGLO) A função f(x) = x²- 4x + k tem o valor mínimo igual a 8. O valor
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 2
FICHA de AVALIAÇÃO de MATEMÁTICA A 3.º Teste 0.º Ano de escolaridade Versão Nome: N.º Turma: Professor: José Tinoco 0/0/07 É permitido o uso de calculadora científica Apresente o seu raciocínio de forma
1º ANO 4º. 2. (Espcex (Aman) 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x).
DISCIPLINA PROFESSOR DATA TURMA/TURNO MATEMÁTICA THIAGO PINHEIRO / 11 / 01 SÉRIE NÍVEL TOTAL ESC. ESC. OBT. NOTA BIM. MÉDIO 1º ANO 4º ALUNO 1. (Pucrj 01) Sejam f e g funções reais dadas por f(x) = x +
QUESTÕES-AULA 37. (a) O período da função F (x) é T = 3 0 = 3. Dividimos a reta em intervalos da forma:
QUESTÕES-AULA 37 1. Considere a função f(x) = 4 x, 0 x < 3. 3 (a) Construa uma função periódica F (x) definida em todo o R, tal que F (x) = f(x) para todo x [0, 3). (b) Determine o período, a frequência
Solução Comentada da Prova de Matemática
Solução Comentada da Prova de Matemática 01. Considere, no plano cartesiano, os pontos P(0,1) e Q(,3). A) Determine uma equação para a reta mediatriz do segmento de reta PQ. B) Determine uma equação para
Cálculo Diferencial Lista de Problemas 1.2 Prof. Marco Polo
Cálculo Diferencial - 2016.2 - Lista de Problemas 1.2 1 Cálculo Diferencial Lista de Problemas 1.2 Prof. Marco Polo Questão 01 O ponto P (2, 1) está sobre a curva y = 1/(1 x). (a) Se Q é o ponto (x, 1/(1
Matemática I. Professor Cezar Rios
Matemática I 1710 Professor Cezar Rios 1. (Ufc) Os lados de um triângulo retângulo estão em progressão aritmética. Determine a tangente do menor ângulo agudo deste triângulo. 2. (Unicamp) Caminhando em
AULA 01. (B) 577 m. (C) 705 m. (D) 866 m. (E) 1732 m. Dessa forma conclui-se que a largura AB do rio é
AULA 01 O ponto A representa um barco com fiscais do IBAMA, eles emitem um sinal de alerta que é recebido por duas bases de fiscalização, B e C, distantes entre si 70 km. Sabendo que os ângulos AB C e
Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa
1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz
Função Afim Fabio Licht
Função Afim Fabio Licht Definição da Função Afim ou Linear Gráfico da Função Afim Podemos representar os pares ordenados no plano cartesiano e fazer o gráfico da função. y-> eixo das ordenadas B P (a,b)
Função Quadrática ou Função do 2º grau
Bhaskara Função Quadrática ou Função do 2º grau Prof.: Joni Fusinato [email protected] [email protected] a: é o coeficiente de x 2 b: é o coeficiente de x c: é o termo independente Exemplos:
MATEMÁTICA - 3o ciclo Equações de grau 2 (9 o ano)
MATEMÁTICA - o ciclo Equações de grau (9 o ano) Exercícios de provas nacionais e testes intermédios 1. Resolve a equação seguinte. x + 5x = 0 Prova Final o Ciclo 017, Época especial. Resolve a equação
SE18 - Matemática. LMAT 3A3 - Função exponencial. Questão 1. a) ,00. b) ,00. c) ,00. d) ,00. e) 49,683,00. f) Não sei.
SE18 - Matemática LMAT 3A3 - Função exponencial Questão 1 (Enem (Libras) 2017) Um modelo de automóvel tem seu valor depreciado em função do tempo de uso segundo a função f(t) = b a t com t em ano. Essa
Interbits SuperPro Web
. (Ufpr 07) Rafaela e Henrique participaram de uma atividade voluntária que consistiu na pintura da fachada de uma instituição de caridade. No final do dia, restaram duas latas de tinta idênticas (de mesmo
LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo/maximal) de cada uma das funções indicadas abaixo.
LISTA DE EXERCÍCIOS Matemática Básica Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 06 Função raiz quadrada, funções da forma y = f(x) = a 2 x 2, funções potência [01] Determine o domínio
LISTA ZERO - Potenciação em Reais
LISTA ZERO - Potenciação em Reais 1. (FGV 003) Se x = 300000 e y = 0,0000, então x.y vale: a) 0,64 b) 6,4 c) 64 d) 640 e) 6400. (UNESP 199) O valor da expressão a) 0,3 b ) -0,1 c ) -0, d) 0, e) 0 3. (FUVEST
f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,
Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,
a) Os números inteiros. b) Os números racionais na forma de fração. c) Os números racionais na forma decimal. d) As dízimas periódicas.
Estudante: Educadora: Lilian Nunes 7 Ano/Turma: C. Curricular: Matemática CONJUNTOS NUMÉRICOS 01) Dados os números racionais 2,3; 3 ; 8; 2, ; 4,0; 1,6; 1 ; 0,222, escreva: 7 6 a) Os números inteiros. b)
OFICINA DE MATEMÁTICA BÁSICA Lista 3
OFICINA DE MATEMÁTICA BÁSICA Lista 3 Data da lista: 29/06/2017 Preceptora: Natália Cursos atendidos: Todos Coordenador: Francisco 1. Demonstre que cada uma das seguintes igualdades são identidades. (a)
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros
Tecnologia em Mecatrônica - Lista de exercícios Funções Matemática Carlos Bezerra
TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos parenteses a soma dos itens corretos. 1. Considerando-se as funções reais f(x)=log (x-1) e g(x)=2ñ, é verdade: (01) Para todo
