Logaritmo e Função Logarítmica
|
|
|
- Geraldo Pinho Lameira
- 9 Há anos
- Visualizações:
Transcrição
1 Logaritmo e Função Logarítmica. (Unifor 04) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t) Q 0 e, onde Q 0 é a capacidade máxima da carga e t é medido em segundos. O tempo que levará para o capacitor recarregar 90% da capacidade é de: ln0 =, a) segundos. b) segundos. c) 4 segundos. d) 5 segundos. e) 6 segundos.. (Unicamp 06) A solução da equação na variável real x, log x(x 6), é um número a) primo. b) par. c) negativo. d) irracional. TEXTO PARA A PRÓXIMA QUESTÃO: Leia o texto a seguir e responda à(s) questão(ões). Um dos principais impactos das mudanças ambientais globais é o aumento da frequência e da intensidade de fenômenos extremos, que quando atingem áreas ou regiões habitadas pelo homem, causam danos. Responsáveis por perdas significativas de caráter social, econômico e ambiental, os desastres naturais são geralmente associados a terremotos, tsunamis, erupções vulcânicas, furacões, tornados, temporais, estiagens severas, ondas de calor etc. (Disponível em: < Acesso em: 0 maio 05.). (Uel 06) Em relação aos tremores de terra, a escala Richter atribui um número para quantificar sua magnitude. Por exemplo, o terremoto no Nepal, em de maio de 05, teve magnitude 7, graus nessa escala. Sabendo-se que a magnitude y de um terremoto pode ser descrita por uma função logarítmica, na qual x representa a energia liberada pelo terremoto, em quilowatts-hora, assinale a alternativa que indica, corretamente, o gráfico dessa função. a) b) c) d) e) Página de
2 4. (Unesp 05) No artigo Desmatamento na Amazônia Brasileira: com que intensidade vem ocorrendo?, o pesquisador Philip M. Fearnside, do INPA, sugere como modelo matemático kt para o cálculo da área de desmatamento a função D(t) D(0) e, em que D(t) representa a área de desmatamento no instante t, sendo t medido em anos desde o instante inicial, D(0) a área de desmatamento no instante inicial t 0, e k a taxa média anual de desmatamento da região. Admitindo que tal modelo seja representativo da realidade, que a taxa média anual de desmatamento (k) da Amazônia seja 0,6% e usando a aproximação n 0,69, o número de anos necessários para que a área de desmatamento da Amazônia dobre seu valor, a partir de um instante inicial prefixado, é aproximadamente a) 5. b) 5. c) 5. d) 5. e). 5. (Pucrj 05) Se logx, então x x vale: a) 4 b) 6 c) 8 d) 50 e) (Fgv 04) Considere a aproximação: log 0,. É correto afirmar que a soma das raízes x da equação é: a) 7 b) c) 5 x d) 4 e) 7. (Mackenzie 04) Para quaisquer reais positivos A e B, o resultado da expressão logab logba é a) 0 b) 6 c) 8 d) A B e) 8. (Espm 04) Se a) 0 b) 0, c) 00 d) 0,0 e) 4 logx logx logx logx 0, o valor de x é: Página de
3 9. (Fuvest 06) Use as propriedades do logaritmo para simplificar a expressão S log 06 5 log 06 0 log 7 06 O valor de S é a) b) c) 5 d) 7 e) 0 0. (Ufrgs 05) Atribuindo para log o valor 0,, então o valor de a). b) 4. c) 8. d) 0. e).. (Pucrj 05) Seja x log log9 log7. Então, é correto afirmar que: a) 6 x 7 b) 7 x 8 c) 8 x 9 d) 9 x 0 e) x 0 0, 00 é. (Pucpr 05) Suponha que a vazão de água de um caminhão de bombeiros se dá pela t expressão V(t) V0, em que V 0 é o volume inicial de água contido no caminhão e t é o tempo de escoamento em horas. Qual é, aproximadamente, utilizando uma casa decimal, o tempo de escoamento necessário para que o volume de água escoado seja 0% do volume inicial contido no caminhão? (utilize: log 0,0.) a) h e 0 min. b) h e min. c) h e 8 min. d) h e 5 min. e) h e min. Página de
4 . (Uerj 05) Observe no gráfico a função logaritmo decimal definida por y = log(x). Admita que, no eixo x, 0 unidades correspondem a cm e que, no eixo y, a ordenada log(000) corresponde a 5 cm. A escala x:y na qual os eixos foram construídos equivale a: a) 5: b) 5: c) 50: d) 00: 4. (Unesp 05) O cálculo aproximado da área da superfície externa de uma pessoa pode ser necessário para a determinação da dosagem de algumas medicações. A área A (em cm ) da superfície externa de uma criança pode ser estimada por meio do seu peso P (em kg) e da sua altura H (em cm) com a seguinte fórmula, que envolve logaritmos na base 0 : loga 0,45logP 0,75logH,84 (Delafield Du Bois e Eugene Du Bois. A formula to estimate the approximate surface area if height and weight be known, 96. Adaptado.) Rafael, uma criança com m de altura e 6 kg de peso, precisa tomar uma medicação cuja dose adequada é de mg para cada 00 cm de área externa corporal. Determine a dose adequada dessa medicação para Rafael. Adote nos seus cálculos log 0,0 e a tabela a seguir. x x 0, 995,4 5,5 6,6 98,7 50,8 60, Página 4 de
5 5. (Ufsm 05) Quando um elemento radioativo, como o Césio 7, entra em contato com o meio ambiente, pode afetar o solo, os rios, as plantas e as pessoas. A radiação não torna o solo infértil, porém tudo que nele crescer estará contaminado. A expressão 0,0t Q(t) Q0e representa a quantidade, em gramas, de átomos radioativos de Césio 7 presentes no instante t, em dias, onde Q 0 é a quantidade inicial. O tempo, em dias, para que a quantidade de Césio 7 seja a metade da quantidade inicial é igual a Use In 0,69 a) 60. b) 0. c) 5. d) 5. e). 9 5 log 6. (G - cftmg 05) Se 5 log M (4 ) 4 então, o valor de M é igual a a) b) 9 c) 7 d) 8 7. (Uem 05) Dados a e b números reais positivos, com a, o logaritmo de b na base a, denotado por loga b, é o número real x tal que x a b, isto é, Considerando o exposto, assinale o que for correto. 4 0) log ( ). 9 0) A função f(x) log x é crescente para todo x no domínio de f. 04) Se loga b e logb 8, então a. log x log y log5 08) O sistema tem uma única solução. xy 8 6) O domínio da função f(x) log (x 6) é o conjunto {x ;x 4}. x loga b x a b. 8. (Pucpr 05) O número de bactérias N em um meio de cultura que cresce kt exponencialmente pode ser determinado pela equação N N0e em que N 0 é a quantidade inicial, isto é, N0 N (0) e k é a constante de proporcionalidade. Se inicialmente havia 5000 bactérias na cultura e 8000 bactérias 0 minutos depois, quanto tempo será necessário para que o número de bactérias se torne duas vezes maior que o inicial? (Dados: In 0,69 In 5,6) a) minutos e 5 segundos. b) minutos e 5 segundos. c) 5 minutos. d) 5 minutos. e) 5 minutos e 0 segundos. Página 5 de
6 9. (Fgv 05) Um investidor aplicou certa quantia, em reais, à taxa de juro composto de % ao mês. Neste problema, desprezando qualquer tipo de correção monetária devido à inflação, responda as perguntas a seguir. a) Neste investimento, após meses, seria possível resgatar o valor aplicado com lucro de R$ 4.00,00. Calcule o valor inicialmente aplicado. b) No investimento indicado, é possível resgatar um montante de 4 vezes o capital inicialmente aplicado em 9, meses. Caso o cálculo fosse feito adotando-se log 0,0 e log0,05, que são logaritmos com apenas casas decimais de aproximação, seria obtido um valor aproximado de t anos. Chamando de E t 9, ao erro cometido no cálculo devido ao uso de apenas casas decimais de aproximação nos logaritmos indicados, calcule E. 0. (G - ifce 04) Sejam x, y com x e y. A expressão log9 x log 6 6log9 y pode ser simplificada para 6x a) log 9. y x b) log 6. 6 y c) 9 d) log x 6 y. log x 6 y. e) log 6xy.. (Cefet MG 04) O conjunto dos valores de x para que log x x x como número real é x x ou x. a) b) x * x. c) x x ou x. x x. d) e) x * x. exista. (G - cftmg 04) Considere a função f :, definida por f(a) f(b), então a) a b. b) a b. c) a b. d) a b 4. f(x) log x. Se Página 6 de
7 Gabarito: Resposta da questão : [D] Questão anulada pelo gabarito oficial. Queremos calcular t, para o qual se tem Q(t) 0,9 Q 0. Lembrando que n a n b a b e c n a c n a, com a, b reais positivos e c real, vem: t t 0,9 Q0 Q 0( e ) e 0 t n e n 0 t n 0 t n 0. t =., = 4,6, aproximadamente 5 segundos. Resposta da questão : [A] c Sabendo que loga b c a b, para quaisquer a e b reais positivos, e a, temos log x(x 6) x x 6 0 x, que é um número primo. Resposta da questão : Se y f(x), então o gráfico que mais se assemelha ao de uma função logarítmica é o da alternativa. Resposta da questão 4: Queremos calcular o valor de t para o qual se tem D(t) D(0). Portanto, temos 0,006t 0,006t D(0) D(0) e n n e 0,006t 0,69 t 5. Resposta da questão 5: [E] log x x x 8 por tan to Página 7 de
8 Resposta da questão 6: [A] Completando os quadrados, obtemos x x x ( ) 4 x log5 x 0 ou x. log Daí, como 0 log5 log log0 log 0, 0,7, segue-se que log5 0,7 7. log 0, Portanto, a soma das raízes da equação x x é 7. Resposta da questão 7: Sejam a, b e c reais positivos, com a e c. b Sabendo que logca b logca e que logc a, temos loga c loga B logb A loga B logb A logb A 6 log B A 6. Observação: As condições A e B não foram observadas no enunciado. Resposta da questão 8: [D] Sabendo que b loga b loga, para todo a real positivo, vem 4 log x log x log x log x 0 0 log x 0 logx x 0 x 0,0. Página 8 de
9 Resposta da questão 9: [E] c Lembrando que logb a, logba loga b reais positivos diferentes de, temos c logba e logc ab logc a logc b, com a, b e c S log 06 5 log 06 0 log 7 06 (5 log 06 log 06 log 06 7) 0 log log Resposta da questão 0: log 0, log Resposta da questão : [D] x log log9 log7 x log 9 7 x log 79 Sabemos que log5 log 79 log04 Considerando que as opções são intervalos possíveis para x, podemos considerar como solução do exercício o intervalo 9 x 0. Resposta da questão : [C] t V(t) V0 t 0, V0 V0 t 0, Aplicando logaritmo na base 0 nos dois membros da igualdade, temos: t log0, log t log t 0, t,... Utilizando uma casa decimal, como foi pedido no enunciado encontramos o seguinte valor para t. t,h h e (0, 60)min h e 8min Página 9 de
10 Resposta da questão : [C] No eixo x: cm corresponde a 0 unidades; No eixo y: cm corresponde a (log000)/5 = /5 = /5 unidades. Logo, x/y = 50/. Resposta da questão 4: Considerando P 6 kg e H 00 cm, temos a seguinte equação: log A 0,45 log6 0,75 log00,84 4 log A 0,45 log 0,75,84 log A 0,45 4log,45,8 log A,7 0,,9 log A,8,8 A 0 A 60 cm Sabemos que Rafael deve tomar mg para cada diária de Rafael será dada por: 60 6,mg. 00 Resposta da questão 5: 0,0t Q(t) Q0e Q0 0,0t Q0 e 0,0t n ne n 0,0 t 0,69 0,0 t t 0 Resposta da questão 6: 00 cm de seu corpo. Portanto, a dose log log4 log45 log 5 9 log 5 9 M (4 ) (4 ) 5 9. Resposta da questão 7: =. [0] CORRETA. Fazendo 4 log ( ) x, 9 tem-se: x 4 x log ( ) x x Logo, log ( ). 9 Página 0 de
11 [0] INCORRETA. Como f(x) tem base ente zero e um, sabe-se que f(x) é decrescente. [04] CORRETA. Desenvolvendo as duas equações, tem-se: logb 8 b 8 b logab loga a a [08] CORRETA. Resolvendo o sistema: x x log x log y log5 log log5 5 x 5y y y y 5y y 4 xy 8 x y 4 x 5 xy 4 [6] INCORRETA. O domínio da função dada será {x x 4 ou x 4}. Resposta da questão 8: [C] kt N N0e kt 0k e e 6 Também sabemos que: x 6 0, ou seja 0k t t 4t e 6 ln ln 4 t t h 4 Ou seja, t = 5 minutos. Resposta da questão 9: a) Seja C o valor inicialmente aplicado. Tem-se que 400 C 400 C ( 0,0) C 0,00 C R$ ,00 b) Para M 4C, vem t t 4C C ( 0,0) (,0) t log log(,0) 0 log t log 00 t (log0 log0 ) log t (log0 log log0) log 0,0 t,05 0,0 0,0 t 0,00 t 50,5. Portanto, temos E 50,5 9,, meses. Página de
12 Resposta da questão 0: [A] b c Sabendo que loga b loga c log a(b c), loga b loga c log a, clogab logab, c logc b loga b e log c b loga b, para quaisquer a, b e c reais, vem logc a a c log 6 log x log 6 6 log y log x log ( y) log9 log9 x log9 6 log9 y log9 x log9 6 log9 y 6x log 9. y Resposta da questão : Das condições de existência dos logaritmos, deve-se ter x x 0 (x )(x ) 0 e x 0 x e x 0 e x e x e x 0 x e x 0. Portanto, o conjunto dos valores reais de x para que é x x. ( x) seja um número real log ( x x ) Resposta da questão : [C] f(a) f(b) log (a 0) log (b ) a b a b Página de
Logarítmos básicos. 3 x x 2 vale:
Logarítmos básicos. (Pucrj 05) Se log 3, então 3 vale: a) 34 b) 6 c) 8 d) 50 e) 66. (Unesp 05) No artigo Desmatamento na Amazônia Brasileira: com que intensidade vem ocorrendo?, o pesquisador Philip M.
4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS
LISTA EXATAMENTE LOGARÍTMOS 1. (Cesgranrio) O valor de log x (x x ) é: a) 3 4. b) 4 3. c) 3. d) 3. e) 4.. (Cesgranrio) Se log 10 (x - ) = 0, então x vale: a). b) 4. c) 3. d) 7/3. e) /. 3. (Fei) Se log
Logaritmos Exponenciais - Fatoração
Logaritmos Eponenciais - Fatoração Prof. Edson. Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t)
LISTA DE REVISÃO LOGARITMOS PROFESSOR SANDER
LISTA DE REVISÃO LOGARITMOS PROFESSOR SANDER 01. [Pucpr] Suponha que a vazão de água de um caminhão de bombeiros se dá pela expressão, em que é o volume inicial de água contido no caminhão e t é o tempo
b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada?
Professor Habib Lista de Matemática 1. (G1) Resolva a equação 2Ñ = 128 2. (G1) Calcule x de modo que se obtenha 10 Ñ = 1 3. (Uff) Resolva o sistema ý3ñ + 3Ò = 36 þ ÿ3ñ Ò = 243 4. (Ufsc) Determinar o valor
Logaritmo 2014/ (Uerj 2015) Observe no gráfico a função logaritmo decimal definida por y = log(x).
Logaritmo 04/05. (Uerj 05) Oserve no gráfico a função ritmo decimal definida por = log(x). Admita que, no eixo x, 0 unidades correspondem a cm e que, no eixo, a ordenada log(000) corresponde a 5 cm. A
MATEMÁTICA - 3 o ANO MÓDULO 13 FUNÇÃO LOGARÍTMICA
MATEMÁTICA - 3 o ANO MÓDULO 13 FUNÇÃO LOGARÍTMICA y a > 1 0 < a < 1 y 0 1 x 0 1 x Função crescente Função decrescente y a > 1 0 < a < 1 y 0 + 1 x - + 0 1 x - 0 < x < 1 log a x < 0 x = 1 log a x = 0 x >
Exercícios de Aprofundamento 2015 Mat Log/Exp/Teo. Num.
Eercícios de Aprofundamento 05 Mat Log/Ep/Teo. Num.. (Ita 05) Considere as seguintes afirmações sobre números reais: I. Se a epansão decimal de é infinita e periódica, então é um número racional. II..
Matemática - UNESP fase
Matemática - UNESP -015-014- fase 1. (Unesp 015) Um dado viciado, que será lançado uma única vez, possui seis faces, numeradas de 1 a 6. A tabela a seguir fornece a probabilidade de ocorrência de cada
1º trimestre - Matemática Data:20/04/2017. Sala de Estudo. Resposta: Resposta: números reais positivos, tais que. 1. (Ufjf-pism ) Sejam a, b, c
º trimestre - Matemática Data:0/04/07 Ensino Médio 3º ano classe: Profº. Maurício Sala de Estudo. e. (Ufjf-pism 07) Sejam a, b, c logb d 3. O valor da epressão a) b) c) 3 d) 4 e) 0 e d log números reais
Exercícios Propostos
Enem e Uesb Matemática Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 6 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Outubro
FUNÇÃO EXPONENCIAL. Definição. - {1}, a função f: R!! Chama-se função exponencial de base a, com a Є!! definida por f(x) =!!
Matemática Matemática Avançada 3 o ano João mar/1 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є!! - {1}, a função f: R!! definida por f(x) =!! Definições - O gráfico
EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS
EXPRESSÕES E FUNÇÕES EXPONENCIAIS E LOGARITMICAS - 06. (Unicamp 06) Considere a função f() 5, definida para todo número real. a) Esboce o gráfico de y f() no plano cartesiano para. b) Determine os valores
Questão 1 (FGV) Sendo A o conjunto solução da inequação (x 2-5x) (x 2-8x + 12) < 0, assinale a alternativa correta: a) ; b) ; c) ;
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (FGV) Sendo A o conjunto solução da inequação (x 2-5x) (x 2-8x + 12) < 0, assinale
Ciências da Natureza e Matemática
1 CEDAE Acompanhamento Escolar CEDAE Acompanhamento Escolar 3 CEDAE Acompanhamento Escolar 4 CEDAE Acompanhamento Escolar 1. Calcule o valor dos logaritmos: a) 104 log 18 b) log 3 65 65 c) log d) 0,008
FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) =
Matemática Matemática Avançada 3 o ano João mar/11 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є f: R definida por f(x) = - {1}, a função Definições - O gráfico da função
Lista de Revisão dos Vestibulares 3º EM e Alfa Professor: Leandro (Pinda)
Lista de Revisão dos Vestibulares º EM e Alfa Professor: Leandro (Pinda) 1. (Unesp 017) Leia a matéria publicada em junho de 016. Energia eólica deverá alcançar 10 GW nos próximos dias O dia mundial do
16 - Funçã o Exponenciãl e Funçã o Logãrí tmicã
16 - Funçã o Exponenciãl e Funçã o Logãrí tmicã Lista de Exercícios 1 01) (ESPCEX 2002) A solução de 2 (48/x) = 8 a) múltiplo de 16. b) múltiplo de 3. c) número primo. d) divisor de 8. e) divisor de 9.
Inequação Logarítmica
Inequação Logarítmica. (Fuvest 05) Resolva as inequações: 3 a) 6 0; 3 b) log 6.. (Uerj 05) Ao digitar corretamente a epressão log 0( ) em uma calculadora, o retorno obtido no visor corresponde a uma mensagem
AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018
CURSO DE BIOMEDICINA CENTRO DE CIÊNCIAS DA SAÚDE UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018 Professor: Luís Rodrigo E-mail: [email protected]
23- EXERCÍCIOS DE FUNÇÃO LOGARÍTIMA
1 23- EXERCÍCIOS DE FUNÇÃO LOGARÍTIMA 1) (F.G.V - 72) Seja x o número cujo logaritmo na base raiz cubica de 9 vale 0,75. Então x 2 1 vale: a) 4 b) 2 c) 3 d) 1 2) (PUC-SP-77) O número, cujo logaritmo na
Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r
Sequências. (Uem 03) Seja r um número inteiro positivo fixado. Considere a sequência numérica a definida por r e assinale o que for correto. an an a 0) A soma dos 50 primeiros termos da sequência (a, a,
Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação
Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes
Exercícios: Funções - Introdução Prof. André Augusto
Exercícios: Funções - Introdução Prof. André Augusto 1. EXERCÍCIOS BÁSICOS DE FUNÇÕES Exercício 1. Nos itens a seguir, diga se as associações f : X Y a seguir são funções ou não: 1 X = 0, 1, 2,, 4, X =
Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7
Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função
Mat. Monitor: Rodrigo Molinari
Mat. Professor: Gabriel Miranda Monitor: Rodrigo Molinari Logaritmo 09 ago RESUMO Definição: Definimos como logaritmo de um número positivo a na base b o valor do expoente da potência de base b que tem
Função Logarítmica. 1. (Fuvest 2013) Seja f uma função a valores reais, com domínio D, tal que. f(x) log (log (x x 1)),
Função Logarítmica 1. (Fuvest 01) Seja f uma função a valores reais, com domínio D, tal que 10 1 para todo x D. f(x) log (log (x x 1)), O conjunto que pode ser o domínio D é x ; 0 x 1 a) b) x ; x 0 ou
Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática APOSTILA 6
Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática APOSTILA 6 1. (Enem 2016) Em 2011, um terremoto de magnitude 9,0 na escala Richter causou um devastador tsunami no Japão, provocando
Função Inversa. f(x) é invertível. Assim,
Função Inversa. (Eear 07) Sabe-se que a função a) b) 4 c) 6 d) x f(x) é invertível. Assim, 5 f () é. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua x inversa. Sendo f :
Interbits SuperPro Web
. (Ufpr 07) Rafaela e Henrique participaram de uma atividade voluntária que consistiu na pintura da fachada de uma instituição de caridade. No final do dia, restaram duas latas de tinta idênticas (de mesmo
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU
FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.
LOGARITMOS. Mottola. 4) (FUVEST) Se log 10 8 = a então log 10 5 vale (a) a 3 (b) 5a - 1 (c) 2a/3 (d) 1 + a/3 (e) 1 - a/3
LOGARITMOS 1) (UFMG) Para a função f() = log a (1 + 2 ), com a > 1, assinale a alternativa incorreta. (a) A função é definida para todo R. (b) A função tem valor mínimo para = 0. (c) A função assume valores
Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores
Determinante. (Ime 0) Seja o determinante da matriz de x reais que anulam é a) 0 b) c) d) e) x x x. x x O número de possíveis valores. (Uepg 0) Sobre a matriz cos 0 sen 0 0) A sen 0 cos 0 0) det A. t cos
Prof. Valdex Santos. ph = log[h]
Aluno: Lista 1 - Prof. Valdex Santos I unidade Turmas 41/1 1. O ph de uma solução aquosa é definido pela expressão: ph = log[h] onde [H] representa a concentração em mol/l de íons de hidrogênio na solução.
Função Exponencial e Logaritmica
QUESTÕES. (UFRJ) Dados a e b números reais positivos, b 0, define-se logaritmo de a na base b como o número real x tal que b x = a, ou seja,. Para, um número real x log positivo, a tabela ao lado fornece
Mat.Semana 9. PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari)
Semana 9 PC Sampaio Alex Amaral Gabriel Ritter (Rodrigo Molinari) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos
COLÉGIO APROVAÇÃO LTDA. (21)
COLÉGIO APROVAÇÃO LTDA. ( 635-75 ALUNO/A: DATA: PROFESSOR: Victor Daniel Carvalho TURMA: PRÉ-VESTIBULAR DISCIPLINA: Matemática LISTA DE EXERCÍCIOS 7 (Logaritmos (UEPB A equação x + x + log (m + 3 = 0 não
Exercícios de Matemática Produtos Notáveis Fatoração
Exercícios de Matemática Produtos Notáveis Fatoração TEXTO PARA A PRÓXIMA QUESTÃO (Ufba) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p =
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.
Questão 1. Investindo a juros mensais de 8%, em quanto tempo seu capital dobrará? 33 = 903
Conteúdo: Matemática financeira (logaritmo, Tabela SAC e Tabela Price) Aluno(s):... N o(s) :... Professor: Fábio Vinícius Turma:... Data:... Nota:... [X] Para o lar [X] Individual [X] Dupla [X] Trio [X]
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira) (Gabriella Teles)
11 PC Sampaio Alex Amaral Rafael Jesus Semana (Roberta Teixeira) (Gabriella Teles) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira)
10 PC Sampaio Alex Amaral Rafael Jesus Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados.
EXPONENCIAL E LOGARITMO
EXPONENCIAL E LOGARITMO 1) (ENEM) Suponha que o modelo exponencial y = 363 e 0,03x, em que x = 0 corresponde ao ano 2000, x = 1 corresponde ao ano 2001, e assim sucessivamente, e que y é a população em
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Conteúdo: Recuperação do 4 Bimestre Matemática Prof. Leandro Capítulo 12: Função Logarítmica: Escala Richter, definição de logaritmo, propriedades operatórias dos
BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES
01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores
BLITZ PRÓ MASTER MATEMÁTICA A. em que N 0 é a quantidade inicial, isto é, N0
MATEMÁTICA A 01. (Pucpr) O número de bactérias N em um meio de cultura que cresce exponencialmente pode kt ser determinado pela equação N N0e em que N 0 é a quantidade inicial, isto é, N0 N (0) e k é a
Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.
Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)
a) 10 b) 7 c) 0 d) 3 e) 4 6. (G1 - cftmg 2013) A soma das raízes da equação a) 7. b) 4. c) 3. d) 5.
Equações Modulares 1. (Espcex (Aman) 015) O número de soluções da equação 1 x x = x, no conjunto, é a) 1. b). c). d) 4. e) 5.. (Ufsc 014) Assinale a(s) proposição(ões) CORRETA(S). x 1 01) O domínio da
PROF. LUIZ CARLOS MOREIRA SANTOS. Questão 01)
Questão 0) Um recipiente com capacidade para 5 litros está completamente cheio de leite puro. Uma pessoa retira 3 litros desse leite e completa o recipiente com 3 litros de água. Em seguida, retira 3 litros
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como
Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0
Circunferências 1. (Espcex (Aman) 014) Sejam dados a circunferência λ : x y 4x 10y 5 0 e o ponto P, que é simétrico de ( 1, 1) em relação ao eixo das abscissas. Determine a equação da circunferência concêntrica
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira)
10 PC Sampaio Alex Amaral Rafael Jesus Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados.
EXPONENCIAL E LOGARITMO
MATEMÁTICA EXPONENCIAL E LOGARITMO Para responder as questões e leia o texto seguinte....história de e. Impunha-se uma pergunta: O que é e?. A resposta os surpreendeu por sua simplicidade: e é um número!...
Matemática I Capítulo 13 Logaritmos
Nome: Nº Curso: Controle Ambiental Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /2017 Matemática I Capítulo 13 Logaritmos 13.1 - Logaritmos Chamamos de logaritmo de b na base a o expoente
MATEMÁTICA - 3 o ANO MÓDULO 12 LOGARITMO
MATEMÁTICA - 3 o ANO MÓDULO 12 LOGARITMO Como pode cair no enem Um dos grandes legados de Kepler para ciência foi a sua terceira lei: o quadrado do período de revolução de cada planeta é proporcional ao
f(x) ax b definida para todo número real x, onde a e b são números reais. Sabendo que f(4) 2,
Ensino Aluno (: Nº: Turma: ª série Bimestre: º Disciplina: Espanhol Atividade Complementar Funções Compostas e Inversas Professor (: Cleber Costa Data: / /. (Eear 07) Sabe-se que a função invertível. Assim,
Logaritmo como uma Função. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Logarítmica Logaritmo como uma Função 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Logarítmica Logaritmo como uma Função 1 Exercícios Introdutórios Exercício 1. Seja a função f : R
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.
Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano
O valor de que torna a expressão verdadeira é:
Exercício 1. (FUVEST SP/1994) O número real x que satisfaz a equação é: a) b) c) 2 e) Resposta: e Tags: Logaritmos, Funções, Ensino Médio, Álgebra, Matemática, FUVEST SP, 1994, Logarítmos Exercício 2.
Soluções dos Problemas do Capítulo 3
48 Temas e Problemas Soluções dos Problemas do Capítulo 3. A cada período de 5 anos, a população da cidade é multiplicada por,0. Logo, em 0 anos, ela é multiplicada por,0 4 =,084. Assim, o crescimento
Processo Seletivo 1.º semestre de 2015
F U N D A Ç Ã O GETULIO VARGAS EESP Escola de Economia de São Paulo Assinatura do Candidato 003. caderno 1 provas da 2.ª fase matemática processo seletivo 1.º semestre de 2015 Você recebeu este caderno
max(x 2x + 2; 1+ x ) = 50, é igual a:
. (Ufpr 0) Durante o mês de dezembro, uma loja de cosméticos obteve um total de R$ 900,00 pelas vendas de um certo perfume. Com a chegada do mês de janeiro, a loja decidiu dar um desconto para estimular
Nome Nº Ano/Série Ensino Turma. Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega
Nome Nº Ano/Série Ensino Turma 1 o Médio Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega Matemática 1 Tema: Júnior Lista de Exercícios The Fabulous World of Logarithms 3º /
Retas Tangentes à Circunferência
Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18
FUNÇÕES I Exercícios de Revisão 3 a SÉRIE - ENSINO MÉDIO
MATEMÁTICA I FUNÇÕES I Exercícios de Revisão a SÉRIE - ENSINO MÉDIO NOME :... NÚMERO :... TURMA :... 1) (PUC MG) - A soma dos números naturais que pertencem ao domínio de f(x) = igual a 1 5 - x é a) 5
Pré Vestibular Verbo Estudantil / Matemática - Prof. Marcus Leone Mota
LISTA 03 FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL, FUNÇÃO LOGARITMICA - EQUAÇÕES E INEQUAÇÕES. Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1 - (UFBA) Considerando-se a função
Interbits SuperPro Web
Lista ita eponencial e modulo Carlos Peioto. (Ita 07) Esboce o gráfico da função f: dada por f().. (Ita 07) Sejam S {(, y) : y } e área da região S S é S {(, y) : (y ) 5}. A a) 5. 4 π b) 5. 4 π c) 5. 4
Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),
Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa
Matemática Caderno 5
FUNÇÃO LOGARÍTMICA: Dado um número real a positivo e diferente de um (a > 0 e a 1), denominados função logarítmica de base a à função f() = log a definida para todo real positivo. D (f) = IR * + Im (f)
FUNÇÃO EXPONENCIAL & LOGARITMOS
FUNÇÃO EXPONENCIAL & LOGARITMOS MÓDULO 10 FUNÇÃO EXPONENCIAL MÓDULO 11 LOGARITMOS FUNÇÃO EXPONENCIAL Dado um número real a (a > 0 e a = 1) denomina-se função exponencial de base a uma função f : R R *
Grupo de exercícios I - Geometria plana- Professor Xanchão
Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos
LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO 2º TRIMESTRE
FUNÇÕES CONCEITOS INICIAIS LISTA DE RECUPERAÇÃO ÁLGEBRA 1º ANO º TRIMESTRE 1) (Espm) Numa população de 5000 alevinos de tambacu, estima-se que o número de elementos com comprimento maior ou igual a x cm
1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1.
1. (Uerj 2001) Mostre que, em 1 de outubro de 2000, a razão entre os números de eleitores de A e B era maior que 1. TEXTO PARA AS PRÓXIMAS 2 QUESTÕES. (Uerj 2001) Em um município, após uma pesquisa de
1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3
Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por
Resposta: f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo 5, 5 5, 5 3, 3. f(g(x) = x 5.
1. (Espcex (Aman) 016) Considere as funções reais f e g, tais que f(x) = x + 4 e f(g(x)) = x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis
DISCIPLINA: Matemática. Lista de Revisão 3º Bimestre. A arte da vida consiste em fazer da vida uma obra de arte...
ALUNO (A): PROFESSSOR (A): Carlos Alison DISCIPLINA: Matemática DATA: / / Lista de Revisão 3º Bimestre A arte da vida consiste em fazer da vida uma obra de arte... - Mahatma Gandhi 1. (Ufla) Uma loja vende
MATEMÁTICA - 1 o ANO MÓDULO 25 LOGARITMO: DEFINIÇÃO E PROPRIEDADES
MATEMÁTICA - 1 o ANO MÓDULO 25 LOGARITMO: DEFINIÇÃO E PROPRIEDADES Como pode cair no enem (ENEM) A Escala de Magnitude de Momento (abreviada como MMS e denotada como Mw), introduzida em 1979 por Thomas
FUNÇÃO EXPONENCIAL. Note que uma função exponencial tem uma base constante e um expoente variável.
FUNÇÃO EXPONENCIAL DEFINIÇÃO: Chama-se função exponencial qualquer função f: R R dada por uma lei da forma f(x) =a x, em que a é um número real dado, a>0 e a 1. Exemplos: y = 2 x ; f(x)=(1/3) x ; f(x)
Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a:
Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de A abscissa igual a B é igual a: 2A (a) 2 (b) (c) 2 (d) 4 Pelo gráfico, temos 2 pontos conhecidos da função f. Esses pontos são (-4,32)
Colégio Notre Dame de Campinas Congregação de Santa Cruz PLANTÕES DE JULHO MATEMÁTICA AULA 1
PLANTÕES DE JULHO MATEMÁTICA AULA 1 Nome: Nº: Série: 3º ANO Turma: Prof: Luis Felipe Bortoletto Data: JULHO 2018 Lista 1 1) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar
LISTA DE RECUPERAÇÃO ÁLGEBRA 1 ANO 3º TRIMESTRE
LISTA DE RECUPERAÇÃO ÁLGEBRA ANO 3º TRIMESTRE ) O valor de é: A) 3 B) 3 C) 3 D) E) ) A soma das raízes reais distintas da equação x é igual a A) 0 B) C) 4 D) 6 E) 8 3) O produto das raízes da equação abaixo
1º ANO 4º. 2. (Espcex (Aman) 2013) Na figura abaixo está representado o gráfico de uma função real do 1º grau f(x).
DISCIPLINA PROFESSOR DATA TURMA/TURNO MATEMÁTICA THIAGO PINHEIRO / 11 / 01 SÉRIE NÍVEL TOTAL ESC. ESC. OBT. NOTA BIM. MÉDIO 1º ANO 4º ALUNO 1. (Pucrj 01) Sejam f e g funções reais dadas por f(x) = x +
Exercícios de Matemática Funções Função Modular
Exercícios de Matemática Funções Função Modular TEXTO PARA A PRÓXIMA QUESTÃO (Ufsc) Na(s) questão(ões) a seguir escreva nos parênteses a soma dos itens corretos. 1. Considere a função f : IRë IR dada por
AULA 01. (B) 577 m. (C) 705 m. (D) 866 m. (E) 1732 m. Dessa forma conclui-se que a largura AB do rio é
AULA 01 O ponto A representa um barco com fiscais do IBAMA, eles emitem um sinal de alerta que é recebido por duas bases de fiscalização, B e C, distantes entre si 70 km. Sabendo que os ângulos AB C e
Inequação do Segundo Grau
Inequação do Segundo Grau 1. (Pucrj 01) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9. (G1 - ifce 014) O conjunto solução S da inequação 4 S,,1. 4 S,,1. 4 S, 1,. 4
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem LISTA FUNÇÕES
Questão 01 - A quantidade mensalmente vendida x, em toneladas, de certo produto, relaciona-se com seu preço por tonelada p, em reais, através da equação p = 2 000 0,5x. O custo de produção mensal em reais
Simulado 1 (Corrigido no Final)
Simulado 1 (Corrigido no Final) Mottola Resolver em horas, sem interrupções e sem consulta. Após este tempo, as questões não respondidas devem ser marcadas de forma aleatória. 1) O menor ângulo formado
Disponível em: Acesso em: 27 abr (adaptado).
EXERCÍCIOS DE REVISÃO GEOMETRIA MENSAL 1 ANO 1 TRIMESTRE 1. (Enem PPL) Médicos alertam sobre a importância de educar as crianças para terem hábitos alimentares saudáveis. Por exemplo, analisando-se uma
Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2
Números Complexos 1. (Epcar (Afa) 01) Considerando os números complexos z 1 e z, tais que: z 1 é a raiz cúbica de 8i que tem afixo no segundo quadrante z é raiz da equação x x 1 0 Pode-se afirmar que z1
Ciências da Natureza e Matemática
1 CEDAE Acompanhamento Escolar 2 CEDAE Acompanhamento Escolar 1. Resolva as equações abaixo: 3. Resolvas as equações exponenciais abaixo: 4.(ITA) A soma das raízes reais e positivas da equação vale: a)
5 d) . c. log. log 3. log log 6. x d) log 9. log2. log 2x. x b) log x. 1) Calcule: a) log. 2) Calcule o valor de x: 3) Calcule: b) log 7
1) Calcule: b) 15 a) 7 1 c) 5 4 d) 8 7 ) Calcule o valor de x: 1 16 a) x 8 b) x c) 5 1 x x d) 9 7 x e) ) Calcule: a) 5 b) 7 7 c) 5 7 5 d) 7 e) a. b 4) Dados a = 5, b = e c =, calcule. c 5) Sendo x = a,
Mat.Semana 8. Alex Amaral (Rodrigo Molinari)
Alex Amaral (Rodrigo Molinari) Semana 8 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/04
Exercícios de Matemática Funções Função Polinomial
Exercícios de Matemática Funções Função Polinomial 5. (Unesp) A figura a seguir mostra o gráfico da função polinomial f(x)=ax +x +x,(a 0). 1. (Ufpe) Seja F(x) uma função real, na variável real x, definida
MATEMÁTICA - 3 o ANO MÓDULO 11 FUNÇÃO EXPONENCIAL
MATEMÁTICA - 3 o ANO MÓDULO 11 FUNÇÃO EXPONENCIAL a >1 f(x) f(x) = a x 1 x f(x) = a x f(x) 1 x Como pode cair no enem Em setembro de 1987, Goiânia foi palco do maior acidente radioativo ocorrido no Brasil,
Matemática 6. Capítulo 1 3 = a) a + b = 1 b) a + b = 0 c) a b = 1 d) a = b + 1 e) a b = 0
Matemática 6 Exponencial e Logaritmos Capítulo 0. Resolvendo a equação x+ = 8, temos como solução x igual a: 7 7 a + b = a + b = 0 a b = a = b + a b = 0 PVD-07-MAT-6 V 0. UFSE Determine o conjunto verdade
d 2 h dt 2 = 9, 8 dh b) Para a altura inicial da massa h(0) = 200 metros e velocidade inicial v(0) = 9, 8m/s, onde v(t) = dh
TURMA 202: Modelagem Matemática PRA3 Prof. José A. Dávalos Chuquipoma Questão LER 04 LISTA DE EXERCÍCIOS RESOLVIDOS 04 Data para submissão na Plataforma Moodle: 22/09/204 Um objeto de massa m = se encontra
1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Logarítmica Exercícios de Função Logarítmica 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Logarítmica Exercícios de Função Logarítmica 1 Exercícios Introdutórios Exercício 1. Seja
SE18 - Matemática. LMAT 3A3 - Função exponencial. Questão 1. a) ,00. b) ,00. c) ,00. d) ,00. e) 49,683,00. f) Não sei.
SE18 - Matemática LMAT 3A3 - Função exponencial Questão 1 (Enem (Libras) 2017) Um modelo de automóvel tem seu valor depreciado em função do tempo de uso segundo a função f(t) = b a t com t em ano. Essa
Hewlett-Packard LOGARITMO. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard LOGARITMO Aulas 0 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário LOGARITMO... PRELIMINAR... LOGARITMO... EXERCÍCIOS FUNDAMENTAIS... CONSEQUÊNCIAS... CONSEQUÊNCIAS... EXERCÍCIOS
