Logaritmo como uma Função. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
|
|
|
- Giovanni Chagas Paiva
- 7 Há anos
- Visualizações:
Transcrição
1 Função Logarítmica Logaritmo como uma Função 1 ano E.M. Professores Cleber Assis e Tiago Miranda
2 Função Logarítmica Logaritmo como uma Função 1 Exercícios Introdutórios Exercício 1. Seja a função f : R + R, sendo f (x) = x, determine: a) f (1). b) f (2). c) f (8). d) f (2 k ). Exercício 2. a) f (x) = log 3 b) g(x) = log 2 c) h(x) = log 5 2 d) p(x) = log 1 π e) q(x) = (x 1). Exercício 3. Exercício 4. a) f (x) = (3x 9). b) g(x) = log (x 4) 4. Qual das funções abaixo é decrescente? Determine a soma das raízes da função: f (x) = log 4 ( x x 15). Determine o domínio das funções abaixo. 2 Exercícios de Fixação Exercício ( ) 8. Dadas as funções f (x) = log 3 (3x) e g(x) = 1 log 3, determine: x a) f (3). b) g(81). c) g f (9)). Exercício 9. a) f (x) = log 5 b) g(x) = log 1 3 c) h(x) = log 1 2 (x + 2). Esboce o gráfico das funções abaixo. Exercício 10. Determine o domínio e o conjunto imagem das funções abaixo. a) f (x) = log(x 1). b) g(x) = log 1 3 (x + 2). c) h(x) = 3 + log 3 (2x 1). Exercício 11. Seja a função f (x) = log 3 (a + x) e o ponto F(5, 1) pertencente à f. Determine o valor de a. c) p(x) = log 4 (x 2 7x). Exercício 5. A raiz da função f (x) = log 3 (2x + 7) é: a) 4. b) 4. c) 3. d) 3. e) 2. Exercício 6. O domínio da função f (x) = log 3 (x 2 9) é: a) [ 3, 3]. b) [0, 3]. c) R [0, 3]. d) R [ 3, 3]. e). Exercício 7. Resolva o sistema: x + y = 10 x + y = 4. Exercício 12. Seja a função f (x) = a + log 4 (b x), onde a e b são números reais. Se os pontos G(3, 2) e H(0, 3) pertencem à f, determine os valores de a e b. 1 [email protected]
3 Exercício 13. Se f : A B é uma função bijetora, sendo f (x) = 3 + log(x 2), determine f 1 (x). Exercício 14. Sejam f, g e f g, funções definidas em seus respectivos domínios, sendo f (x) = log x e f g(x) = 2x 1. Determine a lei de associação da função g. Exercício 15. Sejam f, g e f g, funções definidas em seus respectivos domínios, sendo g(x) = 2 x 1 e f g(x) = 5 2 Determine a lei de associação da função f. 3 Exercícios de Aprofundamento e de Exames Exercício 16. A curva abaixo representa o gráfico da função x, com x > 0. Calcule a soma das áreas dos retângulos destacados. Exercício 17. As populações de duas cidades, A e B, são dadas em milhares de habitantes pelas funções A(t) = log 8 (1 + t) 6 e B(t) = (4t + 4), em que a variável t representa o tempo em ano. a) Qual é a população de cada uma das cidades nos instantes t = 1 e t = 7? Exercício 19. Os átomos de um elemento químico radioativo têm a tendência natural de se desintegrar (emitindo partículas e transformando-se em outro elemento). Assim, com o passar do tempo, a quantidade original desse elemento diminui. Suponhamos que certa quantidade de um elemento radioativo, com inicialmente m o gramas de massa, decomponha-se conforme a equação matemática m(t) = m o 10 t, em que m(t) é a quantidade de massa radioativa restante no tempo t (em ano). Usando a aproximação = 0, 3, determine: a) log 8. b) Quantos anos demorará para que esse elemento se decomponha até atingir um oitavo da massa inicial. Exercício 20. Terremotos são eventos naturais que não têm relação com eventos climáticos extremos, mas podem ter consequências ambientais devastadoras, especialmente quando seu epicentro ocorre no mar, provocando tsunamis. Uma das expressões para se calcular a violência de um terremoto na escala Richter é: M = 2 ( ) E 3 log 10, onde M é a magnitude do terremoto, E é a energia liberada (em joules) e = 10 4,5 joules é a energia liberada por um pequeno terremoto usado como referência. Qual foi a ordem de grandeza da energia liberada pelo terremoto do Japão de 11 de março de 2011, que atingiu magnitude 9 na escala Richter? a) joules. b) joules. c) joules. d) joules. e) joules. b) Após certo instante t, a população de uma dessas cidades é sempre maior que a da outra. Determinar esse instante t e especificar a cidade cuja população é a maior após esse instante. Exercício 18. As populações A e B de duas cidades são determinadas em milhares de habitantes pelas funções: A(t) = log 4 (2 + t) 5 e B(t) = (2t + 4) 2, nas quais a variável t representa o tempo em anos. Essas cidades terão o mesmo número de habitantes no ano t, que é igual a: a) 6. b) 8. c) 10. d) 12. e) 14. Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino [email protected] 2 [email protected]
4 1. Respostas e Soluções. 9. a) f (1) = 1 = 0. b) f (2) = 2 = 1. c) f (8) = 8 = 3. d) f (2 k ) = 2 k = k. 2. D. 3. log 4 ( x x 15) = 0 x x 15 = 4 0 x x 15 = 1 x x 16 = 0 x 2 10x + 16 = 0 x 1 = 2 x 2 = 8. a) Portanto, a soma das raízes é = a) 3x 9 > 0, segue que x > 3. D f = (3, + ). b) x 4 = 1 e x 4 > 0, segue que x = 5 e x > 4. D g = (4, + ) {5}. c) x 2 7x > 0, segue que x < 0 ou x > 7. D p = (, 0) (7, + ). b) 5. log 3 (2x + 7) = 0 2x + 7 = 3 0 2x + 7 = 1 2x = 6 x = 3. Resposta D. 6. Se x 2 9 > 0, então x < 3 ou x > 3. Portanto, o domínio de f é D f = (, 3) (3, + ). Resposta D. 7. Pela segunda equação temos (xy) = 4, donde xy = 16 e, substituindo a primeira equação, chegamos a x(10 x) = 16, que é o mesmo que x 2 10x + 16 = 0, cujas raízes são x 1 = 2 e x 2 = 8 e, consequentemente, y 1 = 8 e y 2 = 2. Portanto, S = {(2, 8), (8, 2)}. 8. a) f (3) = log 3 (3 3) = log 3 9 = 2. ( ) 1 b) g(81) = log 3 = log = 4. c) g f (9) = g( f (9)) = g(log 3 27) = g(3) = log = c) a) D f = (1, + ) e Im f = R. b) D g = ( 2, + ) e Im g = R. ( ) 1 c) D h = 2, + e Im h = R. 11. Se F(5, 1) pertence a f, então: log 3 (a + 5) = 1 a + 5 = 3 1 a + 5 = 3 a = [email protected]
5 12. Substituindo G(3, 2), temos a + log 4 (b 3) = 2, segue que b 3 = 4 2 a (I) e, substituindo H(0, 3), temos a + log 4 (b 0) = 3, segue que b = 4 3 a, donde, substituindo em (I), chegamos: Se a = 2, então b = = a 3 = 4 2 a a 42 4 a = = 3 4 a = 3 4 a 48 = 3 4 a 4 a = 16 a = Para determinarmos a inversa de f, temos: x = 3 + log(y 2) x 3 = log(y 2) 10 x 3 = y 2 Portanto, f 1 (x) = 10 x y = 10 x f (x) = log x f (g(x)) = log(g(x)) 2x 1 = log(g(x)) 2x 4 = 2 log(g(x)) x 2 = log(g(x)) g(x) = 10 x 2. f (g(x)) = 5 2x ( f 2 x 1) = 5 2x ( f 2 x 1) 2 = 5 2( 2x) ( f 2 log x) 2 = x f (x) = (Extraído da UFPE) As alturas dos retângulos são 2 = 1 e 4 = 2. Portanto, a soma das áreas é = = (Extraído da Unicamp-SP) a) A(1) = log = log = 2 (dois mil habitantes); B(1) = (4 + 4) = 3 (três mil habitantes); A(7) = log = 6 (seis mil habitantes); B(7) = 32 = 5 (cinco mil habitantes). b) Após 1 ano, a população de A é menor, mas após 7 anos, a população de A é maior, então, em algum momento t, a população de A é igual à população de B e, a partir deste momento, A passa a ser maior. Temos, assim: log 8 (1 + t) 6 = (4t + 4) (1 + t) 2 = (4t + 4) (1 + t) 2 = 4t t + t 2 = 4t + 4 t 2 2t 3 = 0 t 1 = 1 t 2 = 3. Portanto, a partir de 3 anos, a população de A passa a ser maior que a população de B. 18. (Extraído da UFPA) Resposta E. 19. (Extraído da VUNESP) log 4 (2 + t) 5 = (2t + 4) 2 log 4 (2 + t) 5 = log 4 (2t + 4) 4 (t + 2) 5 = (2t + 4) 4 (t + 2) 5 = 2 4 (t + 2) 4 t + 2 = 2 4 t = 14. a) log 8 = 3 = 3 = 3 0, 3 = 0, 9. b) m(t) = m o 10 t 1 8 m o = m o 10 t 2 3 = 10 t 3 = log 10 t ( 3) = t ( 3) 0, 3 = t 0, 9 = t t = 0, 9 t = 63. Portanto, depois de 63 anos este elemento irá se decompor à oitava parte. 4 [email protected]
6 20. (Extraído da UPE) Se M = 9, temos: M = 2 ( ) E 3 log 10 9 = 2 ( ) E 3 log 10 ( ) 27 E = log E 2 = 10 4,5 Resposta D ,5+4,5 = E E = Elaborado por Cleber Assis e Tiago Miranda Produzido por Arquimedes Curso de Ensino [email protected] 5 [email protected]
1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Logarítmica Exercícios de Função Logarítmica 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Logarítmica Exercícios de Função Logarítmica 1 Exercícios Introdutórios Exercício 1. Seja
Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 3 ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Teorema da Decomposição 1 Exercícios
Função Logarítmica e Propriedades. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Logarítmica Função Logarítmica e Propriedades ano E.M. Professores Cleber Assis e Tiago Miranda Função Logarítmica Função Logarítmica e Propriedades Exercícios Introdutórios Exercício. 4. b) log
FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) =
Matemática Matemática Avançada 3 o ano João mar/11 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є f: R definida por f(x) = - {1}, a função Definições - O gráfico da função
Praticando as Propriedades. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Logarítmica Praticando as Propriedades ano E.M. Professores Cleber Assis e Tiago Miranda Função Logarítmica Praticando as Propriedades Eercícios Introdutórios Eercício. Determine o valor dos logaritmos
FUNÇÃO EXPONENCIAL. Definição. - {1}, a função f: R!! Chama-se função exponencial de base a, com a Є!! definida por f(x) =!!
Matemática Matemática Avançada 3 o ano João mar/1 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є!! - {1}, a função f: R!! definida por f(x) =!! Definições - O gráfico
Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Dispositivo de Briot-Ruffini
Funções Polinomiais com Coeficientes Complexos. Divisão de Funções Polinomiais. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Divisão de Funções Polinomiais
Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Teorema do Resto 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Teorema do Resto 1 Exercícios Introdutórios
Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes e Consequências 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Quantidade de Raízes
9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Funções - Noções Básicas Resolução de Exercícios 9 ano E.F. Professores Cleber Assis e Tiago Miranda Funções - Noções Básicas Resolução de Exercícios 1 Exercícios Introdutórios Exercício 1. Três
M odulo de Fun c oes - No c oes B asicas Fun c oes - No c oes B asicas. 9o ano E.F.
Módulo de Funções - Noções Básicas Funções - Noções Básicas. 9 o ano E.F. Funções - Noções Básicas 1 Exercícios Introdutórios Exercício 1. Em um certo dia, três mães deram à luz em uma maternidade. Uma
Equações Exponenciais. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Exponencial Equações Exponenciais 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Exponencial Equações Exponenciais d) R Q. Exercício 8. Quantas raízes reais possui a equação 1 Exercícios
MATEMÁTICA - 1 o ANO MÓDULO 25 LOGARITMO: DEFINIÇÃO E PROPRIEDADES
MATEMÁTICA - 1 o ANO MÓDULO 25 LOGARITMO: DEFINIÇÃO E PROPRIEDADES Como pode cair no enem (ENEM) A Escala de Magnitude de Momento (abreviada como MMS e denotada como Mw), introduzida em 1979 por Thomas
Inequações Exponenciais. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Exponencial Inequações Exponenciais 1 ano E.M. Professores Cleber Assis e Tiago Miranda Função Exponencial Inequações Exponenciais 1 Exercícios Introdutórios Exercício 1. a) x > 16. b) 5 x 15. c)
3 ano E.M. Professores Cleber Assis e Tiago Miranda
Cônicas Hipérbole ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Hipérbole b) (y 1)2 (x + )2 1 Exercícios Introdutórios Exercício 1. de equação a) (1, 2). O ponto que representa o centro da
Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes
Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.
Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício
Funções Polinomiais com Coeficientes Complexos. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Funções Polinomiais com Coeficientes Complexos Definições Básicas de Funções Polinomiais Complexas 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Definições
Equações Algébricas - Propriedades das Raízes. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Equações Algébricas - Propriedades das Raízes Equações Algébricas ano E.M. Professores Cleber Assis e Tiago Miranda Equações Algébricas - Propriedades das Raízes Equações Algébricas 1 Exercícios Introdutórios
1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Noções Básicas: Definição, Máximos e Mínimos 1 Exercícios
Trigonometria III. Funções Secante e Cossecante. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria III Funções Secante e Cossecante ano EM Professores Cleber Assis e Tiago Miranda Trigonometria III Funções Secante e Cossecante Exercícios Introdutórios Exercício a o quadrante b o quadrante
FUNÇÃO EXPONENCIAL. Note que uma função exponencial tem uma base constante e um expoente variável.
FUNÇÃO EXPONENCIAL DEFINIÇÃO: Chama-se função exponencial qualquer função f: R R dada por uma lei da forma f(x) =a x, em que a é um número real dado, a>0 e a 1. Exemplos: y = 2 x ; f(x)=(1/3) x ; f(x)
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:
Trigonometria I. Círculo Trigonométrico. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria I Círculo Trigonométrico ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Círculo Trigonométrico b) 6 1 Exercícios Introdutórios Exercício 1. Qual dos arcos abaixo é côngruo
Elipse. 3 ano E.M. Professores Cleber Assis e Tiago Miranda
Cônicas Elipse ano E.M. Professores Cleber Assis e Tiago Miranda Cônicas Elipse c) (x 1) (y ) 1 Exercícios Introdutórios Exercício 1. O ponto que representa o centro da elipse de (x 1) (y ) equação = 1
Módulo de Plano Cartesiano e Sistemas de Equações. Discussão de Sistemas de Equações. Professores: Tiago Miranda e Cleber Assis
Módulo de Plano Cartesiano e Sistemas de Equações Discussão de Sistemas de Equações 7 ano E.F. Professores: Tiago Miranda e Cleber Assis Plano Cartesiano e Sistemas de Equações O Plano Cartesiano 1 Exercícios
1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Função Quadrática Gráfico de uma Função Quadrática a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Gráfico de uma Função Quadrática Eercícios Introdutórios Eercício. Determine
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como
AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018
CURSO DE BIOMEDICINA CENTRO DE CIÊNCIAS DA SAÚDE UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018 Professor: Luís Rodrigo E-mail: [email protected]
Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart Relação de Stewart 9 ano E.F. Professores Cleber Assis e Tiago Miranda Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart Relação
EXPONENCIAL E LOGARITMO
MATEMÁTICA EXPONENCIAL E LOGARITMO Para responder as questões e leia o texto seguinte....história de e. Impunha-se uma pergunta: O que é e?. A resposta os surpreendeu por sua simplicidade: e é um número!...
Trigonometria III. Exercícios de Funções Trigonométricas I. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria III Exercícios de Funções Trigonométricas I ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria III Exercícios de Funções Trigonométricas I 1 Exercícios Introdutórios Exercício
a) log 2 x = 5 b) 3 = log 4 x a) log 5 x c) log 2 (2x + 1) d) log 4 (x 2 16) a) log x 5 10 b) log 2x 1 3 c) log 3x 5 2
Lista de Exercícios - 04 Pré Universitário Uni-Anhanguera Aluno (: Nº. Professor: Flávio Série: º ano (Ensino médio) Disciplina: Matemática Data de entrega: 0/06/04 Observação: A lista deverá apresentar
Trigonometria III. Exercícios de Funções Trigonométricas II. 2 ano E.M. Professores Cleber Assis e Tiago Miranda
Trigonometria III Exercícios de Funções Trigonométricas II ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria III Exercícios de Funções Trigonométricas II 1 Exercícios Introdutórios Exercício
9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Função Quadrática Noções Básicas 9 ano E.F. Professores Cleber Assis e Tiago Miranda Função Quadrática Noções Básicas 1 Exercícios Introdutórios Exercício 1. Os coeficientes de x (a), de x (b) e
Função Exponencial e Propriedades. 1 ano E.M. Professores Cleber Assis e Tiago Miranda
Função Exponencial Função Exponencial e Propriedades 1 ano EM Professores Cleber Assis e Tiago Miranda Função Exponencial Função Exponencial e Propriedades 1 Exercícios Introdutórios Exercício 1 a) 11
Exponenciais e Logaritmos - Notas de Aulas 3(2016) Prof Carlos Alberto S Soares
Exponenciais e Logaritmos - Notas de Aulas 3(206) Prof Carlos Alberto S Soares Função Logarítmica Iniciamos estas propondo um exercício que evidenciará a relação entre uma função e sua inversa quanto ao
Matemática 6. Capítulo 1 3 = a) a + b = 1 b) a + b = 0 c) a b = 1 d) a = b + 1 e) a b = 0
Matemática 6 Exponencial e Logaritmos Capítulo 0. Resolvendo a equação x+ = 8, temos como solução x igual a: 7 7 a + b = a + b = 0 a b = a = b + a b = 0 PVD-07-MAT-6 V 0. UFSE Determine o conjunto verdade
Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática APOSTILA 6
Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática APOSTILA 6 1. (Enem 2016) Em 2011, um terremoto de magnitude 9,0 na escala Richter causou um devastador tsunami no Japão, provocando
Módulo de Geometria Anaĺıtica 1. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.
Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m.
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Pirâmide ano/em Pirâmide Geometria Espacial II - volumes e áreas de prismas e pirâmides 1 Exercícios Introdutórios Exercício 1 Determine
Exercícios sobre Inequações. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 7 ano E.F. Professores Cleber Assis e Tiago Miranda Equações e Inequações do Primeiro Grau Eercícios sobre Inequações 1 Eercícios
8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau
8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 9. Quais das seguintes funções são polinomiais? Justifique. a) ( ) b) ( ) c) ( ) d) ( ) e) ( ) 10. Sendo ( ), calcule:
1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Função Quadrática Resolução de Exercícios 1 a série E.M. Professores Tiago Miranda e Cleber Assis Função Quadrática Exercícios de Função Quadrática 1 Exercícios Introdutórios Exercício 1. Considere
Módulo de Progressões Geométricas. Exercícios de Aprofundamento. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Progressões Geométricas Exercícios de Aprofundamento 1 a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Geométrica Exercícios de Aprofundamento 1 Exercícios Introdutórios Exercício
Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas. Redução ao Primeiro Quadrante. 7 ano E.F. Professores Tiago Miranda e Cleber Assis
Módulo de Redução ao Primeiro Quadrante e Funções Trigonométricas Redução ao Primeiro Quadrante 7 ano E.F. Professores Tiago Miranda e Cleber Assis Redução ao Primeiro Quadrante e Funções Trigonométricas
MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano
MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Exercícios de exames e testes intermédios 1. Seja g uma função contínua, de domínio R, tal que: para todo o número real x, (g g)(x) = x para um certo
Módulo de Progressões Aritméticas. Soma dos termos de uma P.A. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Progressões Aritméticas Soma dos termos de uma PA 1 a série EM Professores Tiago Miranda e Cleber Assis Progressões Aritméticas Soma dos termos de uma PA 1 Exercícios Introdutórios Exercício
7 o ano/6 a série E.F.
Módulo de Notação Algébrica e Introdução às Equações Sentenças Matemáticas e Notação Algébrica. 7 o ano/6 a série E.F. Sentenc as Matema ticas e Notac a o Alge brica Notac a o Alge brica e Introduc a o
MATEMÁTICA - 3 o ANO MÓDULO 13 FUNÇÃO LOGARÍTMICA
MATEMÁTICA - 3 o ANO MÓDULO 13 FUNÇÃO LOGARÍTMICA y a > 1 0 < a < 1 y 0 1 x 0 1 x Função crescente Função decrescente y a > 1 0 < a < 1 y 0 + 1 x - + 0 1 x - 0 < x < 1 log a x < 0 x = 1 log a x = 0 x >
COLÉGIO APROVAÇÃO LTDA. (21)
COLÉGIO APROVAÇÃO LTDA. ( 635-75 ALUNO/A: DATA: PROFESSOR: Victor Daniel Carvalho TURMA: PRÉ-VESTIBULAR DISCIPLINA: Matemática LISTA DE EXERCÍCIOS 7 (Logaritmos (UEPB A equação x + x + log (m + 3 = 0 não
Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.
Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine
Módulo Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 2 ano/e.m.
Módulo Binômio de Newton e o Triângulo de Pascal Desenvolvimento Multinomial. 2 ano/e.m. Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 1 Exercícios Introdutórios Exercício 1.
Funções Racionais, Exponenciais e Logarítmicas
Funções Racionais, Exponenciais e Logarítmicas Aula 3 590253 Plano da Aula Definição de Função Racional Função Exponencial e Logarítmica Função Inversa Exercícios Referências James Stewart Cálculo Volume
Módulo Divisibilidade. Conjunto e Quantidade de Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade Conjunto e Quantidade de Divisores 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Conjunto e Quantidade de Divisores 1 Exercícios Introdutórios Exercício 1. de:
Módulo de Geometria Anaĺıtica Parte 2. Circunferência. Professores Tiago Miranda e Cleber Assis
Módulo de Geometria Anaĺıtica Parte Circunferência a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Circunferência 1 Exercícios Introdutórios Exercício 1. Em cada item abaixo,
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas
Regras de Divisibilidade. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Regras de Divisibilidade 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Regras de Divisibilidade 1 Exercícios Introdutórios Exercício 1. de:
Números Inteiros e Números Racionais. Números Racionais e Exercícios. 7 ano E.F. Professores Cleber Assis e Tiago Miranda
Números Inteiros e Números Racionais Números Racionais e Exercícios 7 ano E.F. Professores Cleber Assis e Tiago Miranda Números Inteiros e Números Racionais Números Racionais e Exercícios Exercícios Introdutórios
Módulo Divisibilidade. Conjunto e Quantidade de Divisores. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Divisibilidade Conjunto e Quantidade de Divisores 6 ano E.F. Professores Cleber Assis e Tiago Miranda Divisibilidade Conjunto e Quantidade de Divisores 1 Exercícios Introdutórios Exercício 1. de:
Logaritmo e Função Logarítmica
Logaritmo e Função Logarítmica. (Unifor 04) Após acionar um flash de uma câmera, a bateria imediatamente começa a recarregar o capacitor do flash, o qual armazena uma carga elétrica dada por t Q(t) Q 0
Logaritmo. 4 Logaritmos decimais. 2 Consequências imediatas. 3 Propriedades. 5 Logaritmos neperianos. 1.1 Nomenclatura. 3.1 Casos particulares
Definição Logaritmo Sejam a R + e b R + {}. Nessas condições, define-se: Logaritmo de a na base b é o expoente x que satisfaz a igualdade b x = a.. Nomenclatura x: logaritmo log b a = x b x = a 4 Logaritmos
Questão 1. Se necessário, utilize 0,005 como aproximação para log 1,013; 2,602 como aproximação para 400; 2,525 como aproximação para log 335.
SE18 - Matemática LMAT 4A2 - Logaritmos e propriedades dos logaritmos Questão 1 Para realizar a viagem dos sonhos, uma pessoa precisava fazer um empréstimo no valor de R$ 5.000,00. Para pagar as prestações,
Prof. Valdex Santos. ph = log[h]
Aluno: Lista 1 - Prof. Valdex Santos I unidade Turmas 41/1 1. O ph de uma solução aquosa é definido pela expressão: ph = log[h] onde [H] representa a concentração em mol/l de íons de hidrogênio na solução.
Lista 8 - Bases Matemáticas
Lista 8 - Bases Matemáticas Funções - Parte Funções Quadráticas, Exponenciais, Logarítmicas e Trigonométricas Funções Quadráticas 1 Esboce o gráfico das seguintes funções, indicando em quais intervalos
CÁLCULO I. Lista Semanal 01 - Gabarito
CÁLCULO I Prof. Tiago Coelho Prof. Emerson Veiga Questão 1. Esboce as seguintes regiões no plano xy: (a) 0 < x 6. A região representa todas os pontos onde x assume valores entre 0 e 6, sendo aberto em
Módulo de Números Inteiros e Números Racionais. Números Racionais e Suas Operações. 7 ano E.F.
Módulo de Números Inteiros e Números Racionais Números Racionais e Suas Operações. ano E.F. Números Inteiros e Números Racionais Números Racionais e Suas Operações. Exercícios Introdutórios Exercício.
Teorema Chinês dos Restos. Sistema de Congruências. Tópicos Adicionais
Teorema Chinês dos Restos Sistema de Congruências Tópicos Adicionais Teorema Chinês dos Restos Sistema de Congruências 1 Exercícios Introdutórios Exercício 1. Para cada um dos itens abaixo, encontre todos
23- EXERCÍCIOS DE FUNÇÃO LOGARÍTIMA
1 23- EXERCÍCIOS DE FUNÇÃO LOGARÍTIMA 1) (F.G.V - 72) Seja x o número cujo logaritmo na base raiz cubica de 9 vale 0,75. Então x 2 1 vale: a) 4 b) 2 c) 3 d) 1 2) (PUC-SP-77) O número, cujo logaritmo na
Módulo Quadriláteros. Relação de Euler para Quadriláteros. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Quadriláteros Relação de Euler para Quadriláteros 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros 2 Exercícios de Fixação Exercício 5. Seja
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 0/11/014 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES:
Módulo de Plano Cartesiano e Sistemas de Equações. Exercícios de Sistemas de Equações. Professores Tiago Miranda e Cleber Assis
Módulo de Plano Cartesiano e Sistemas de Equações Exercícios de Sistemas de Equações 7 ano E.F. Professores Tiago Miranda e Cleber Assis Plano Cartesiano e Sistemas de Equações Exercícios de Sistemas de
Exercícios de Matemática Funções Função Polinomial
Exercícios de Matemática Funções Função Polinomial 5. (Unesp) A figura a seguir mostra o gráfico da função polinomial f(x)=ax +x +x,(a 0). 1. (Ufpe) Seja F(x) uma função real, na variável real x, definida
Módulo de Matemática Financeira. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Matemática Financeira Taxa Real e Inflação 1 a série E.M. Professores Tiago Miranda e Cleber Assis Matemática Financeira Taxa Real e Inflação 1 Exercícios Introdutórios Exercício 1. O conceito
7 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Noções Básicas de Estatística Introdução à Estatística 7 ano E.F. Professores Cleber Assis e Tiago Miranda Noções Básicas de Estatística Introdução à Estatística 1 Exercícios Introdutórios Exercício
b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicada a energia liberada?
Professor Habib Lista de Matemática 1. (G1) Resolva a equação 2Ñ = 128 2. (G1) Calcule x de modo que se obtenha 10 Ñ = 1 3. (Uff) Resolva o sistema ý3ñ + 3Ò = 36 þ ÿ3ñ Ò = 243 4. (Ufsc) Determinar o valor
Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano
Módulo de Equações do Segundo Grau Relações entre coeficientes e raízes. Nono Ano Relações entre Coeficientes e Raízes. Exercícios Introdutórios Exercício. Fazendo as operações de soma e de produto entre
Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional
Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,
Equações Exponenciais e Logarítmicas
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Equações Exponenciais e Logarítmicas
5 d) . c. log. log 3. log log 6. x d) log 9. log2. log 2x. x b) log x. 1) Calcule: a) log. 2) Calcule o valor de x: 3) Calcule: b) log 7
1) Calcule: b) 15 a) 7 1 c) 5 4 d) 8 7 ) Calcule o valor de x: 1 16 a) x 8 b) x c) 5 1 x x d) 9 7 x e) ) Calcule: a) 5 b) 7 7 c) 5 7 5 d) 7 e) a. b 4) Dados a = 5, b = e c =, calcule. c 5) Sendo x = a,
Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7
Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função
Função Logarítmica. 1. (Fuvest 2013) Seja f uma função a valores reais, com domínio D, tal que. f(x) log (log (x x 1)),
Função Logarítmica 1. (Fuvest 01) Seja f uma função a valores reais, com domínio D, tal que 10 1 para todo x D. f(x) log (log (x x 1)), O conjunto que pode ser o domínio D é x ; 0 x 1 a) b) x ; x 0 ou
Exercícios Variados. 8 ano/e.f.
Módulo Miscelânea Eercícios Variados. 8 ano/e.f. Miscelânea. Eercícios Variados. 1 Eercícios Introdutórios Eercício 1. Um número par tem 10 algarismos e a soma desses algarismos é 8. Qual é o algarismo
Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f.
Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medida de Área e Exercícios. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 1 Exercícios
MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar
MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então
F129 LINEARIZAÇÃO DE GRÁFICOS LEI DE POTÊNCIA. Prof. Jonhson Ordoñez VERSÃO 14
LINEARIZAÇÃO DE GRÁFICOS LEI DE POTÊNCIA Processos de Linearização de Gráficos O que é linearização? É o procedimento para tornar uma curva em uma reta cuja equação é y = ax +b. É encontrar uma relação
Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F.
Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Lei dos Cossenos e Lei dos Senos. 9 o ano E.F. Triângulo Retângulo, Lei dos Senos e Cossenos, Polígonos Regulares. Leis dos
AFA Sabe-se que o isótopo do carbono, C 14, tem uma meia vida de 5760 anos, isto é, o número N de átomos de C 14 na substância é
AFA 7. Uma pessoa caminha, ininterruptamente, a partir de um marco inicial, com velocidade constante, em uma pista circular. Ela chega à marca dos 5 m quando são exatamente 5 horas. Se às 5 horas e 5 minutos
OFICINA DE MATEMÁTICA BÁSICA - MÓDULO II Lista 4
OFICINA DE MATEMÁTICA BÁSICA - MÓDULO II Lista 4 Data da lista: 03/12/2016 Preceptora: Natália Cursos atendidos: Todos Coordenador: Francisco 1. Dados os polinômios f(x) = 5x 4 + 3x 2 2x 1 e g(x) = 2x
Módulo: aritmética dos restos. Divisibilidade e Resto. Tópicos Adicionais
Módulo: aritmética dos restos Divisibilidade e Resto Tópicos Adicionais Módulo: aritmética dos restos Divisibilidade e resto 1 Exercícios Introdutórios Exercício 1. Encontre os inteiros que, na divisão
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1
UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ PROVA DE CÁLCULO 1 PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR - 16/10/2016 CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: 1.
MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações
Prova Escrita de MATEMÁTICA A - 12o Ano Época especial
Prova Escrita de MATEMÁTICA A - 1o Ano 01 - Época especial Proposta de resolução GRUPO I 1. Como o primeiro e último algarismo são iguais, o segundo e o penúltimo também, o mesmo acontecendo com o terceiro
Propriedades de Proporções. 7 ano E.F. Professores Tiago Miranda e Cleber Assis
Módulo de Razões e Proporções Propriedades de Proporções 7 ano E.F. Professores Tiago Miranda e Cleber Assis Razões e Proporções Propriedades de Proporções 1 Eercícios Introdutórios Eercício 1. A primeira
Módulo de Progressões Geométricas. 1 a série E.M. Professores Tiago Miranda e Cleber Assis
Módulo de Progressões Geométricas Definição e Lei de Formação 1 a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Geométrica Definição e Lei de Formação 1 Exercícios Introdutórios Exercício
4(u v) 5. u(u 1) v e) u + v. (10000) é igual a. ax b LISTA EXATAMENTE LOGARÍTMOS
LISTA EXATAMENTE LOGARÍTMOS 1. (Cesgranrio) O valor de log x (x x ) é: a) 3 4. b) 4 3. c) 3. d) 3. e) 4.. (Cesgranrio) Se log 10 (x - ) = 0, então x vale: a). b) 4. c) 3. d) 7/3. e) /. 3. (Fei) Se log
