Funções Racionais, Exponenciais e Logarítmicas
|
|
|
- Sandra Cruz de Almeida
- 7 Há anos
- Visualizações:
Transcrição
1 Funções Racionais, Exponenciais e Logarítmicas Aula
2 Plano da Aula Definição de Função Racional Função Exponencial e Logarítmica Função Inversa Exercícios Referências James Stewart Cálculo Volume I (Cengage Learning)
3 Função Racional I Uma função racional é a razão de dois polinômios: f (x) = P(x) Q(x) onde P e Q são polinômios. Exemplo simples f = (1/x). Nesse exemplo P(x) = 1 e Q(x) = x. x = 0 não faz parte de domínio de f. Demais valores de x, sim. Valores de x tais que Q(x) = 0 são excluídos do domínio de f.
4 Função Racional II Próximo Exemplo: Q(x) =? Domínio de f =? f (x) = 2 x 4 x x 2 4
5 Função Racional III f (x) = 2 x 4 x x 2 4
6 Função Racional IV x 1,99 1,999 1,9999 2,01 2,001 2,0001 f (x) Comportamento não suave perto do x = 2 Perto do x = 2 é semelhante
7 Funções Algébricas I Uma função f é chamada uma função algébrica se ser puder construída por meio de operações algébricas como adição, subtração, multiplicação, divisão e extração de raízes a partir de polinômios. Comece com vários polinômios e implemente as operações acima.
8 Funções Algébricas II Por exemplo a função f (x) = x é uma função algébrica. x é um polinômio e f (x) é obtido pelo uso se raíz quadrado. Outro exemplo g(x) = x 4 16x 2 x + x + (x 2) 3 x + 1
9 Função Exponencial I A função da forma f (x) = b x onde b é uma constante positiva. x é o variável x é o exponente, diferente do que x b Fácil definir caso x inteiro negativo ou inteiro positivo. Se x for um número racional x = p/q, e p, q inteiros b x = b p/q = q b p = ( q b) p Para valores de x como 2 não existe inteiros p e q tais que 2 = (p/q). ( 2 é um valor irracional) Ou seja b 2 não pode ser escrito como b p/q. Ainda da para definir b x para tais valores
10 Função Exponencial II Para qualquer valor do x e b > 1 f (x) = b x > 0. Caso b > 1, b x cresce quando x cresce. Ou seja para qualquer x e b > 1 b x 1 > b x 2 se x 1 > x 2 e b x 1 < b x 2 se x 1 < x 2 Para b > 1 maior valor de b significa b cresce mais rápido. Para x > 0 e b > 1 f (x) = b x > 1 Para x < 0 and b > 1 f (x) = b x < 1 Caso x = 0 f (x) =?
11 Função Exponencial III y = f (x) = 2 x y = f (x) = ( ) 1 x 2
12 Função Exponencial IV f (x) = 2 x ; f (x) = 3 x ; f (x) = 4 x ; f (x) = ( 1 f (x) = ( 1 3) x ; f (x) = ( 1 4 ) x 2 ) x
13 Função Exponencial V f (x) = 4 x ; f (x) = ( ) 1 x 4 ; f (x) = 3 x ; f (x) = ( 1 x 3) ; f (x) = 2 x ; f (x) = ( ) 1 x 2
14 Função Exponencial VI Funções exponenciais surgem na descrição do crescimento populacional, decaimento radioativo, entre outros. Exemplo de crescimento: suponhamos que o número de bácterias em uma dada amostra dobra a cada hora. O número no início é igual Denotamos o tempo no início como t = 0 e o tempo t horas como t. p(t) é igual a população após t horas. p(0) =? e p(1) =?
15 Função Exponencial VII t p(t) (1000) = (2 1000) = ( ) = ( ) = Em geral p(t) = t. Os valores na coluna 3 crescem porque b(= 2) > 1. Exemplo de uma função crescente.
16 Função Exponencial VIIII Os valores para uma função linear t p(t) t Qual modelo do crescimento é mais rápido?
17 Função Exponencial VIII t p(t) Diferença (1000) = (2 1000) = ( ) = ( ) = Os valores na coluna 3 crescem porque b > 1..
18 Função Exponencial IX t ( t) Diferença Os valores na coluna 3 são constantes. Diferente do caso de função exponencial. Uma distinção importante entre crescimento exponencial e crescimento linear..
19 Função Exponencial X y Crescimento Linear e Exponencial t
20 Função Exponencial XI Propriedades dos Exponentes b x+y = b x b y b x y = bx b y (b x ) y = b xy (ab) x = a x b x
21 Função Logarítmica I Dado que p(t) = t da para obter o valor de p(t) para qualquer valor do t. O domínio é (, ). Dado um valor p(t) = como obter o valor tais que p(t) = ? Em geral para f (x) = b x existe uma função inversa chamada função logarítmica com base b denotada log b.
22 Função Logarítmica II Se y = b x = log b y = x y > 0 sempre. Então log b tem domínio (0, ) Para qualquer valor log b (b x ) = x e b log b x = x A função Logarítmica é um exemplo de uma função inversa Para qualquer base b, log b 1 = 0. Por que? Qual é o valor de logaritmo de 100 na base 10? Esse valor é maior do que logaritmo de 100 na base 2?
23 Função Logarítmica III y? x > Funções Logarítmicas com base 2, 5 e 10. x(?) =?
24 Função Logarítmica IV Propriedades do Logaritmos log b (xy) = log b x + log b y ( ) log x b y = log b x log b y Para quaisquer números positivos x e y log b (x r ) = r log b x onde r é um número real
25 Exercícios I Encontre os valores de log log log log 8 2 1/3 log log 10 2, 5 2 log 8 60 log 8 3 log 8 5 2/3
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Funções e Modelos. Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Funções e Modelos Danielly Guabiraba- Engenharia Civil Vitor Bruno- Engenharia Civil Quatro maneiras de representar uma função Verbalmente (Descrevendo-a
MÉTODOS MATEMÁTICOS. Claudia Mazza Dias Sandra Mara C. Malta
MÉTODOS MATEMÁTICOS Claudia Mazza Dias Sandra Mara C. Malta 1 Métodos Matemáticos Aulas: De 03/11 a 08/11-8:30 as 11:00h Ementa: 1. Funções 2. Eq. Diferenciais Ordinárias de 1 a ordem 3. Sistemas de Equações
Propriedades das Funções Contínuas e Limites Laterais Aula 12
Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -
Modelos Matemáticos: Uma Lista de Funções Essenciais
Modelos Matemáticos: Uma Lista de Funções Essenciais Campus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Um modelo matemático é a descrição matemática de um fenômeno do mundo real, como
CÁLCULO I. Reconhecer, através do gráco, a função que ele representa; (f + g)(x) = f(x) + g(x). (fg)(x) = f(x) g(x). f g
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 03: Operações com funções. Funções Polinominais, Racionais e Trigonométricas Objetivos da Aula Denir operações com funções; Apresentar algumas
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:
Capítulo 1. Funções e grácos
Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa
Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis.
Aula 03: Potenciação, Radiciação, Expressões Algébricas, Fatoração e Produtos Notáveis. GST1073 Fundamentos de Matemática Fundamentos de Matemática Aula 3 - Potenciação, Radiciação, Expressões Algébricas,
CONJUNTO DOS NÚMEROS REAIS. Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos
CONJUNTO DOS NÚMEROS REAIS NÚMEROS RACIONAIS Apostila do 8º ano Números Reais Apostila I Bimestre 8º anos Numero racional é todo o numero que pode ser escrito na forma a/b (com b diferente de zero) : a)
Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2
Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções
EQUAÇÕES POLINOMIAIS
EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as
MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA
Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Mostre que MÓDULO 7 Radiciações e Equações 3 + 8 5 + 3 8 5 é múltiplo de 4. 2. a) Escreva A + B como uma soma de radicais simples. b) Escreva
Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos
Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)
CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as
FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA
FUNÇÃO MODULAR, FUNÇÃO EXPONENCIAL E FUNÇÃO LOGARÍTMICA Função Modular Função é uma lei ou regra que associa cada elemento de um conjunto A a um único elemento de um conjunto B. O conjunto A é chamado
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES
REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, [email protected], http:// www.estruturas.ufpr.br 1 REVISÃO
Capítulo 1: Fração e Potenciação
1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.
Prof. Doherty Andrade. 25 de outubro de 2005
Funções Hiperbólicas - Resumo Prof. Doherty Andrade 5 de outubro de 005 Sumário Funções Transcendentes. Função Logaritmo Natural............................ Funções Trigonométricas Hiperbólicas.....................
Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =
Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de
Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente
Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação
dia 10/08/2010
Número complexo Origem: Wikipédia, a enciclopédia livre. http://pt.wikipedia.org/wiki/n%c3%bamero_complexo dia 10/08/2010 Em matemática, os números complexos são os elementos do conjunto, uma extensão
Podemos verificar as duas condições [1) e 2)] na figura abaixo.
ROTEIRO: 1. Função exponencial 2. Logaritmo e propriedades 3. db, dbm. Função Exponencial: Na função exponencial, a variável x encontra-se no expoente, por exemplo, y=2 x, y=3 x+ 4, ou y=0,5 x. Podemos
CAPÍTULO 1 Operações Fundamentais com Números 1. CAPÍTULO 2 Operações Fundamentais com Expressões Algébricas 12
Sumário CAPÍTULO 1 Operações Fundamentais com Números 1 1.1 Quatro operações 1 1.2 O sistema dos números reais 1 1.3 Representação gráfica de números reais 2 1.4 Propriedades da adição e multiplicação
Programa Anual MATEMÁTICA EXTENSIVO
Programa Anual MATEMÁTICA EXTENSIVO Os conteúdos conceituais de Matemática estão distribuídos em 5 frentes. A) Equações do 1º e 2º graus; Estudo das funções; Polinômios; Números complexos; Equações algébricas.
MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES
MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção
Aula de Polinómios. Faculdade de Ciências e Tecnologias da Universidade de Coimbra. Departamento de Matemática. Ensino da Matemática I
Faculdade de Ciências e Tecnologias da Universidade de Coimbra Departamento de Matemática Aula de Polinómios Ensino da Matemática I Professora: Helena Albuquerque ([email protected]) Autor: Tânia Isabel Duarte
Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.
Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade
Revisão para a Bimestral 8º ano
Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)
Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande
Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática
Um polinômio com coeficientes racionais é uma escrita formal
Polinômios. Um polinômio com coeficientes racionais é uma escrita formal P (X) = a i X i = a 0 + a 1 X + a 2 X 2 +... + a n X n onde a i Q para todo i {0, 1,..., n}. Isso nos dá uma função f : N Q definida
Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n
POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:
AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.
AULA 01 Observe cada um dos polinômios a seguir: x p( x) x 9x 4x x x 7 3 (I) 7 6 5 3 x 3x (II) mx ( ) 5 4 3 (III) n( x) 8x 3x 10x 3 6 Se organizarmos estes polinômios em ordem crescente de grau teremos
CÁLCULO I. 1 Número Reais. Objetivos da Aula
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral
1. Polinómios e funções racionais
Um catálogo de funções. Polinómios e funções racionais Polinómios e funções racionais são funções que se podem construir usando apenas as operações algébricas elementares. Recordemos a definição: Definição
Raízes quadrada e cúbica de um polinômio
Raízes quadrada e cúbica de um polinômio Lenimar Nunes de Andrade UFPB - João Pessoa, PB 1 de abril de 2011 1 Raiz quadrada de um polinômio Consideremos p(x) e r(x) polinômios tais que (r(x)) 2 = p(x).
Índice. Equações algébricas. Números racionais. Figuras geométricas. Semelhança. Generalidades sobre funções. Funções, sequências e sucessões
Índice Números racionais. Números inteiros. Adição de números inteiros 8. Subtração de números inteiros 0. Números racionais 5. Adição algébrica de números racionais 6. Multiplicação de números racionais
TEMA I: Interagindo com os números e funções
31 TEMA I: Interagindo com os números e funções D1 Reconhecer e utilizar característictas do sistema de numeração decimal. D2 Utilizar procedimentos de cálculo para obtenção de resultados na resolução
FICHA DE TRABALHO N.º 2 MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES
FICHA DE TRABALHO N.º MATEMÁTICA A - 10.º ANO CONJUNTOS E CONDIÇÕES Conhece a Matemática e dominarás o Mundo. Galileu Galilei GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Considere a condição px : x é um número
12 Qua 16 mar Coordenadas retangulares, representação Funções vetoriais paramétrica
Aula Data Aula Detalhes 1 Qua 3 fev Introdução Apresentação e avisos 2 Sex 5 fev Revisão Resumo dos pré-requisitos Qua 10 fev Feriado Carnaval 3 Sex 12 fev Soma de Riemann Área, soma superior e inferior
Pre-calculo 2013/2014
. Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo
Slides de apoio: Fundamentos
Pré-Cálculo ECT2101 Slides de apoio: Fundamentos Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2017 Conjuntos Um conjunto é coleção de objetos, chamados de elememtos do conjunto. Nomeraremos conjuntos
Métodos Matemáticos para Engenharia de Informação
Métodos Matemáticos para Engenharia de Informação Gustavo Sousa Pavani Universidade Federal do ABC (UFABC) 3º Trimestre - 2009 Aulas 1 e 2 Sobre o curso Bibliografia: James Stewart, Cálculo, volume I,
PLANIFICAÇÃO ANUAL MATEMÁTICA 7.ºANO
Escola Básica do 2.º e 3.º Ciclos Infante D. Pedro 1.º Período Apresentação. Avaliação Diagnóstica Atividades de recuperação e avaliação 54 aulas 40 aulas 9 aulas 2.º Período 4s 3s 8 aulas 3.º Período
ÁLGEBRA LINEAR AULA 4
ÁLGEBRA LINEAR AULA 4 Luís Felipe Kiesow de Macedo Universidade Federal de Pelotas - UFPel 1 / 14 1 Introdução 2 Desenvolvimento de Laplace 3 Matriz Adjunta 4 Matriz Inversa 5 Regra de Cramer 6 Posto da
1 Teoria dos Conjuntos O conceito de conjunto Conjunto e estrutura elemento, subconjunto operações...
Sumário Introdução.......................... 6 1 Teoria dos Conjuntos. 7 1.1 O conceito de conjunto........................... 7 1.2 Conjunto e estrutura............................ 11 1.3 elemento, subconjunto...........................
MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática
MATRIZ DE REFERÊNCIA-Ensino Médio Componente Curricular: Matemática Conteúdos I - Conjuntos:. Representação e relação de pertinência;. Tipos de conjuntos;. Subconjuntos;. Inclusão;. Operações com conjuntos;.
Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
Números - Aula 03 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 28 de Fevereiro de 2014 Primeiro Semestre de 2014 Turma 2013106 - Engenharia Mecânica Corpos Vimos que o
MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00
MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde
CCI-22 LISTA DE EXERCÍCIOS
CCI-22 LISTA DE EXERCÍCIOS Capítulos 1 e 2: 1) Considere floats com 4 dígitos decimais de mantissa e expoentes inteiros entre -5 e 5. Sejam X =,7237.1 4, Y =,2145.1-3, Z =,2585.1 1. Utilizando um acumulador
Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores.
COLÉGIO SETE DE SETEMBRO Rua Ver. José Moreira, 80 Fone 301-301 Paulo Afonso BA Aluno Ano 8º Turma Curso Ensino Fundamental II Nº de Questões Tipo de Prova Bimestre Data Nota 09 --- I 01/09/01 Disciplina
MATEMÁTICA I. Ana Paula Figueiredo
I Ana Paula Figueiredo Números Reais IR O conjunto dos números Irracionais reunido com o conjunto dos números Racionais (Q), formam o conjunto dos números Reais (IR ). Assim, os principais conjuntos numéricos
Anéis quocientes k[x]/i
META: Determinar as possíveis estruturas definidas sobre o conjunto das classes residuais do quociente entre o anel de polinômios e seus ideais. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de:
PLANIFICAÇÃO ANUAL DE MATEMÁTICA - 7º ANO
PLANIFICAÇÃO ANUAL DE MATEMÁTICA - 7º ANO 1º Período... 53 Ano Lectivo 17/ 18 PROGRESSÃO 2º Período... 40 Turma: A e C 7º Ano 3º Período... 30 Professor: João Constantino N.º aulas Proposta de Testes 1º
CÁLCULO I. 1 Funções Exponenciais e Logarítmicas
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula Denir as funções logarítmica, exponencial e hiperbólicas;
MAT 1351 : Cálculo para Funções de Uma Variável Real I. Sylvain Bonnot (IME-USP)
MAT 1351 : Cálculo para Funções de Uma Variável Real I Sylvain Bonnot (IME-USP) 2016 1 Informações gerais Prof.: Sylvain Bonnot Email: [email protected] Minha sala: IME-USP, 151-A (Bloco A) Site: ver
complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem
Relações de Equivalência e de Ordem complemento para a disciplina de Matemática Discreta versão 1 Jerônimo C. Pellegrini 5 de agosto de 2013 ii Sumário Sumário Nomenclatura 1 Conjuntos e Relações 1 1.1
Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 26 de junho de 2013 (a confirmar).
Divisibilidade - Regras de divisibilidade por 2, 3, 4, 5, 6, 8, 9 e 10. - Divisores de um número natural. - Múltiplos de um número natural. - Números primos. - Reconhecimento de um número primo. - Decomposição
OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA
Professora: Elisandra Figueiredo OPERAÇÕES - LEIS DE COMPOSIÇÃO INTERNA DEFINIÇÃO 1 Sendo E um conjunto não vazio, toda aplicação f : E E E recebe o nome de operação sobre E (ou em E) ou lei de composição
Exercícios de programação
Exercícios de programação Estes exercícios serão propostos durante as aulas sobre o Mathematica. Caso você use outra linguagem para os exercícios e problemas do curso de estatística, resolva estes problemas,
UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Terceira Etapa do Processo Seletivo Estendido 2011 PLANO DE ENSINO
UNIVERSIDADE FEDERAL DE GOIÁS INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Terceira Etapa do Processo Seletivo Estendido 2011 PLANO DE ENSINO Disciplina: Introdução ao Cálculo Ementa Conjuntos numéricos: números
Sumário. 1 CAPÍTULO 1 Revisão de álgebra
Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção
APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria
APOSTILA DE MATEMÁTICA BÁSICA Potenciação Radiciação Fatoração Logaritmos Equações Polinômios Trigonometria O que é preciso saber (passo a passo) Seja: Potenciação O expoente nos diz quantas vezes à base
Matriz de referência de MATEMÁTICA - SAERJINHO 5 ANO ENSINO FUNDAMENTAL
17 5 ANO ENSINO FUNDAMENTAL Tópico Habilidade B1 B2 B3 ESPAÇO E FORMA GRANDEZAS E MEDIDAS TRATAMENTO DA INFORMAÇÃO H01 H03 H04 H06 Identificar a localização/movimentação de objeto em mapas, croquis e outras
Números Complexos - Forma Algébrica
Matemática - 3ª série Roteiro 07 Caderno do Aluno Números Complexos - Forma Algébrica I - Introdução ao Estudo dos Números Complexos Desafio: 1) Um cubo tem volume equivalente à soma dos volumes de dois
Derivadas. Derivadas. ( e )
Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar
SUMÁRIO. Unidade 1 Matemática Básica
SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...
Conjuntos Numéricos Conjunto dos números naturais
Conjuntos Numéricos Conjunto dos números naturais É indicado por Subconjuntos de : N N e representado desta forma: N N 0,1,2,3,4,5,6,... - conjunto dos números naturais não nulos. P 0,2,4,6,8,... - conjunto
Aula 1. e o conjunto dos inteiros é :
Aula 1 1. Números reais O conjunto dos números reais, R, pode ser visto como o conjunto dos pontos da linha real, que serão em geral denotados por letras minúsculas: x, y, s, t, u, etc. R é munido de quatro
O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.
Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são
1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo).
1 a Lista de Exercícios de Álgebra II - MAT 231 1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 2. Seja A um anel associativo. Dado a A, como você definiria a m, m IN?
FATORAÇÃO. Os métodos de fatoração de expressões algébricas são:
FATORAÇÃO Fatorar consiste em representar determinado número de outra maneira, utilizando a multiplicação. A fatoração ajuda a escrever um número ou uma expressão algébrica como produto de outras expressões.
Mat.Semana 8. Alex Amaral (Rodrigo Molinari)
Alex Amaral (Rodrigo Molinari) Semana 8 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 06/04
(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:
APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado
1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13
Sumário CAPÍTULO 1 Construindo retas e ângulos 1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 2. Partes da reta 14 Construindo segmentos congruentes com régua e compasso 15
Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :
Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence
Funções UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE MATEMÁTICA Funções UTILIZAR COMO UMA DIRETRIZ OS CAPÍTULOS DE 0 A 3 DO LIVRO CÁLCULO DIFERENCIAL E INTEGRAL DE ROBERTO ROMANO. ENTRETANTO, ESSE LIVRO PECA
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório
E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009
Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de abscissa igual a B é igual a:
Observe o gráfico da função f(x) = Bx+2. O valor da ordenada do ponto de A abscissa igual a B é igual a: 2A (a) 2 (b) (c) 2 (d) 4 Pelo gráfico, temos 2 pontos conhecidos da função f. Esses pontos são (-4,32)
TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas.
TÓPICOS DE MATEMÁTICA II Roosevelt Imperiano da Silva Palavras iniciais Caros alunos, vamos iniciar o curso da disciplina Tópicos de Matemática II. Neste curso estudaremos os conjuntos numéricos e suas
Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que:
Material by: Caio Guimarães Polinômios A seguir, apresento uma lista de vários exercícios propostos (com gabarito) sobre polinômios. Os exercícios são para complementar a vídeo-aula a respeito de polinômios
Desenho e Projeto de Tubulação Industrial Nível II
1 Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 03 Página 1 2 ÁLGEBRA - é o ramo que estuda as generalizações dos conceitos e operações aritméticas. Hoje em dia o termo Álgebra é bastante
1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios
Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a
Calendarização da Componente Letiva Ano Letivo 2016/2017
AGRUPAMENTO DE ESCOLAS ANDRÉ SOARES (150952) Calendarização da Componente Letiva Ano Letivo 2016/2017 8º Ano Matemática Períodos 1º Período 2º Período 3º Período Número de aulas previstas (45 minutos)
Projecto Delfos: Escola de Matemática Para Jovens 1 FICHA DE TRABALHO
Projecto Delfos: Escola de Matemática Para Jovens 1 Uma função, f, é uma aplicação de um conjunto, D, que designamos por domínio, para um conjunto, C, designado por contra-domínio, segundo uma lei, f(x),
CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas
94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)
Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)
DISCIPLINA DE MATEMÁTICA OBJETIVOS: 1ª Série
DISCIPLINA DE MATEMÁTICA OBJETIVOS: 1ª Série Compreender os conceitos, procedimentos e estratégias matemáticas que permitam a ele desenvolver estudos posteriores e adquirir uma formação científica geral.
CURSO DE CIÊNCIAS CONTÁBEIS Autorizado pela Portaria no de 04/07/01 DOU de 09/07/01 Componente Curricular: MATEMÁTICA PLANO DE CURSO
CURSO DE CIÊNCIAS CONTÁBEIS Autorizado pela Portaria no 1.393 de 04/07/01 DOU de 09/07/01 Componente Curricular: MATEMÁTICA Código: CTB - 120 Pré-requisito: ---------- Período Letivo: 2016.1 Professor:
7. Subtração de números inteiros Adição algébrica de números inteiros 31 Expressões numéricas com adição algébrica 33
Sumário CAPÍTULO 1 Os números inteiros 1. A necessidade de outros números 11 2. Representação dos números inteiros na reta numérica 14 3. Valor absoluto ou módulo de um número inteiro 15 4. Números inteiros
Matriz de Referência de Matemática* SAEPI Temas e seus Descritores 5º ano do Ensino Fundamental
MATEMÁTICA - 5º EF Matriz de Referência de Matemática* SAEPI Temas e seus Descritores 5º ano do Ensino Fundamental Identificar a localização/movimentação de objeto em mapas, croquis e outras representações
