Exercícios Obrigatórios
|
|
|
- Raíssa Santos Paixão
- 8 Há anos
- Visualizações:
Transcrição
1 Exercícios Obrigatórios 1) (Enem) As curvas de oferta e de demanda de um produto representam, respectivamente, as quantidades que vendedores e consumidores estão dispostos a comercializar em função do preço do produto. Em alguns casos, essas curvas podem ser representadas por retas. Suponha que as quantidades de oferta e de demanda de um produto sejam, respectivamente, representadas pelas equações: Q O = P Q D = 46 2P em que Q O é quantidade de oferta, Q D é a quantidade de demanda e P é o preço do produto. A partir dessas equações, de oferta e de demanda, os economistas encontram o preço de equilíbrio de mercado, ou seja, quando Q O e Q D se igualam. Para a situação descrita, qual o valor do preço de equilíbrio? (a) 5. (b) 11. (c) 13. (d) 23. (e) 33. 2) (Enem) Dentre outros objetos de pesquisa, a Alometria estuda a relação entre medidas de diferentes partes do corpo humano. Por exemplo, segundo a Alometria, a área A da superfície corporal de uma pessoa relaciona-se com a sua massa m pela 2 fórmula A k m 3, em que k e uma constante positiva. Se no período que vai da infância até a maioridade de um indivíduo sua massa é multiplicada por 8, por quanto será multiplicada a área da superfície corporal? (a) (b) 4. (c) 24. (d) 8. (e) 64. 3) (UFRGS/2014) O algarismo das unidades de 9 10 é (a) 0. (b) 1. (c) 3. (d) 6. (e) 9. 7
2 4) (UFRGS/2015) A expressão (0,125) 15 é equivalente a (a) (b) (c) (d) (e) (-2) 45. 5) (UFRGS/2015) O algarismo das unidades de é (a) 1. (b) 2. (c) 3. (d) 4. (e) 5. 6) (UFRGS-2016) Se x + y = 13 e x y = 1, então x 2 + y 2 é (a) 166. (b) 167. (c) 168. (d) 169. (e)
3 7) (ENEM) Embora o Índice de Massa Corporal (IMC) seja amplamente utilizado, existem ainda inúmeras restrições teóricas ao uso e às faixas de normalidade preconizadas. O Recíproco do Índice Ponderal (RIP), de acordo com o modelo alométrico, possui uma melhor fundamentação matemática, já que a massa é uma variável de dimensões cúbicas e a altura, uma variável de dimensões lineares. As fórmulas que determinam esses índices são: IMC = massa (kg) [altura(m)] 2 RIP = altura (cm) 3 massa(kg) ARAUJO, C. G. S.; RICARDO, D. R. Índice de Massa Corporal: Um Questionamento Científico Baseado em Evidências. Arq. Bras. Cardiologia, volume 79, nº 1, 2002 (adaptado). Se uma menina, com 64 kg de massa, apresenta IMC igual a 25 kg/m2, então ela possui RIP igual a (a) 0,4 cm/kg1/3. (b) 2,5 cm/kg1/3. (c) 8 cm/kg1/3. (d) 20 cm/kg1/3. (e) 40 cm/kg1/3. 8) (PUC-2016) Todo atleta tem como rotina o controle do seu Índice de Massa Corporal (IMC). Esse índice, que é apenas um indicador de massa ideal, será conhecido ao realizar-se a divisão da massa (em quilogramas) pelo quadrado da altura (em metros). Um atleta A possui IMC = 25, enquanto que um atleta B, de outra modalidade de esporte, apresenta um IMC = 36. Sabendo que ambos possuem a mesma massa, a razão entre as alturas de primeiro e do segundo é (a) 1/6. (b) 5/6. (c) 6/5. (d) 25/36. (e) 36/25. 9) (UFRGS/2015) Por qual potência de 10 deve ser multiplicado o número para que esse produto seja igual a 10? (a) (b) (c) (d) (e)
4 10) (UFRGS/2014) Considere a, b e c três números reais não nulos, sendo a < b < c, e as afirmações abaixo. (I) a+b < b+c. (II) a 2 < b 2. (III) b a > c b. Quais afirmações são verdadeiras? (a) Apenas I. (b) Apenas II. (c) Apenas III. (d) Apenas I e II. (e) Apenas II e III. 11) (UFRGS-2016) Considere as desigualdades definidas por x e y 4 1 representados no mesmo sistema de coordenadas cartesianas. Qual das regiões sombreadas dos gráficos abaixo melhor representa a região do plano cartesiano determinada pela interseção das desigualdades? 10
5 12) (UFRGS) Sendo a, b e c números reais, considere as seguintes afirmações. I - Se a 0, b 0 e a<b, então 1 a < 1 b. II - Se c 0, então a+b = a + b. c c c III - Se b 0 e c 0, então (a b) c = a (b c). Quais são as corretas? (a) Apenas I. (b) Apenas II. (c) Apenas I e II. (d) Apenas II e III. (e) I, II, III. 13) (UFRGS) Rasgou-se uma das fichas onde foram registrados o consume e a despesa correspondente de três mesas de uma lanchonete, como indicado abaixo. (a) R$ 5,50. (b) R$ 6,00. (c) R$ 6,40. (d) R$ 7,00. (e) R$ 7,20. Nessa lanchonete, os sucos têm um preço único, e os sanduíches também. O valor da despesa da mesa 3 é 14) (UFRGS) O conjunto solução da equação conjunto solução da equação (a) x 2 x 1 = 0. (b) x 2 + x 1 = 0. (c) -x 2 x + 1 = 0. (d) x 2 + x + 1 = 0. (e) -x 2 + x 1 = x = x, com x 0 e x -1, é igual ao 11
6 15) (UFRGS) Um adulto humano saudável abriga cerca de 100 bilhões de bactérias, somente em seu trato digestivo. Esse número de bactérias pode ser escrito como (a) (b) (c) (d) (e) ) (PUC-2016) Nas olimpíadas, serão disputadas 306 provas com medalhas, que serão distribuídas entre competidores de esportes masculinos, femininos e, ainda, de esportes mistos. Sabe-se que o total de competições femininas e mistas é 145. Sabe-se, também, que a diferença entre o número de provas disputadas somente por homens e mulheres é de 25. Então, o número de provas mistas é (a) 3. (b) 9. (c) 25. (d) 136. (e) ) (PUC) A expressão x a < 16 também pode ser representada por (a) x a < 16. (b) x + a > 16. (c) -a 16 < x < a (d) a < x < a (e) x 1 < -16 ou x a > 0. 18) (UFRGS) A distância que a luz percorre em um ano, chamada ano-luz, é de aproximadamente quilômetros. A notação científica desse número é (a) 9, (b) 0, (c) 9, (d) (e) 9,
7 19) (UFRGS) O algarismo das unidades da soma é (a) 0. (b) 1. (c) 2. (d) 3. (e) 4. 20) (UFRGS) O quadrado do número é (a) 4. (b) 5. (c) 6. (d) 7. (e) 8. 13
8 RESPOSTAS 1) B 2) B 3) B 4) D 5) C 6) B 7) E 8) C 9) E 10) A 11) E 12) B 13) A 14) A 15) C 16) B 17) D 18) C 19) B 20) C 14
3º Ano do Ensino Médio. Aula nº 03
Nome: Ano: 3º Ano do E.M. Escola: Data: / / 1. Introdução 3º Ano do Ensino Médio Aula nº 03 Assunto: Progressões Aritméticas e Geométricas Definição: Na Matemática, uma sequência numérica é uma composição
Mat.Semana 3. Alex Amaral (Allan Pinho)
Alex Amaral (Allan Pinho) Semana 3 Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA 09/02 Introdução
MATEMÁTICA RESOLUÇÃO DE EXERCÍCIOS POTENCIAÇÃO E RADICIAÇÃO (APOSTILA 1 PÁGINA 141)
MATEMÁTICA Prof. Rodrigo Pandolfi RESOLUÇÃO DE EXERCÍCIOS POTENCIAÇÃO E RADICIAÇÃO (APOSTILA 1 PÁGINA 141) PRATICANDO (PÁG. 145) 1. (Unisinos 2012) Em uma cultura de bactérias, a população dobra a cada
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira)
11 PC Sampaio Alex Amaral Rafael Jesus Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados.
Funções Variadas. Sendo a e b constantes reais, a função que pode representar esse potencial é a) q(t) at b. b) c) q(t) a b.
Funções Variadas 1. (Unicamp 014) O gráfico abaixo exibe a curva de potencial biótico q(t) para uma população de micro-organismos, ao longo do tempo t. Sendo a e b constantes reais, a função que pode representar
SE18 - Matemática. LMAT1B1 - Potenciação e radiciação. Questão 1. e) não sei. Questão 2
SE18 - Matemática LMAT1B1 - Potenciação e radiciação Questão 1 A expressão equivale a a) b) c) d). Questão 2 (Cesgranrio 1994) O número de algarismos do produto 5 17 4 9 é igual a: a) 17 b) 18 c) 26 d)
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um
Prova da UFRGS
Prova da UFRGS - 2013 01. Um adulto humano saudável abriga cerca de 100 bilhões de bactérias, somente em seu trato digestivo. Esse número de bactérias pode ser escrito como a) 10 9. b) 10 10. c) 10 11.
RESOLUÇÃO Se V, em reais, for o preço de venda, então: 0,6V = V 300 0,4V = 300 V = 750 Resposta: A RESOLUÇÃO. Resposta: E
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 016 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 As quatro faces de um dado são triângulos
Equipe de Matemática. Matemática
Aluno (a): Série: 3ª Turma: TUTORIAL 2R Ensino Médio Equipe de Matemática Data: Matemática Unidades de Medidas Medidas de Comprimento A unidade fundamental de comprimento é o metro. Designa-se abreviadamente
Prova da UFRGS
Prova da UFRGS - 2011 01. Uma torneira com vazamento pinga, de maneira constante, 25 gotas de água por minuto. Se cada gota contém 0,2 ml de água, então, em 24 horas o vazamento será de a) 0,072 L. b)
EQUAÇÕES DO 1º E 2º GRAU
EQUAÇÕES DO 1º E 2º GRAU EQUAÇÕES DO 1º E 2º GRAU (ENEM 2012) AS CURVAS DE OFERTA E DE DEMANDA DE UM PRODUTO REPRESENTAM, RESPECTIVAMENTE, AS QUANTIDADES QUE VENDEDORES E CONSUMIDORES ESTÃO DISPOSTOS A
TREINANDO A HABILIDADE 21 COMO CAI NO ENEM! 01) O Salto Triplo é uma modalidade do atletismo em que o atleta dá um salto em um só pé, uma passada e um salto, nessa ordem. Sendo que o salto com impulsão
Colégio Nossa Senhora de Lourdes. Matemática. Professor: Leonardo Maciel
Colégio Nossa Senhora de Lourdes Matemática Professor: Leonardo Maciel Apostila 4: Função do 1º grau 1. (Enem 2016) Um dos grandes desafios do Brasil é o gerenciamento dos seus recursos naturais, sobretudo
// QUESTÃO 01 PROENEM 27/02/2019. A quantidade de números inteiros positivos n, que satisfazem a desigualdade: 3 7 < n 14 < 2 3 é
MATEMÁTICA PROF. THIAGO LAINETTI // QUESTÃO 01 A quantidade de números inteiros positivos n, que satisfazem a desigualdade: 3 7 < n 14 < 2 3 é a) 2. b) 3. c) 4. d) 5. // QUESTÃO 02 Na bula de um analgésico,
Universidade Federal Rural do Semi-Árido UFERSA Cursinho Pré - Universitário
ENEM 2012 - Questão 171 Prova Amarela. Um laboratório realiza exames em que é possível observar a taxa de glicose de uma pessoa. Os resultados são analisados de acordo com o quadro a seguir. ENEM 2011
gráfico de y ax bx c, então, a + b + c vale a) 6 b) 6 c) 0 d) 5 e) 5 d) e) y ax bx c, os valores de a, b e c são
1) O gráfico da função f : FUNÇÕES DO O GRAU definida por f ( ) m intercepta o eio OX em um único ponto. O valor de m é a) 0 1 ) A figura mostra o gráfico da função f definida por f ( ) a b c. Então, podemos
Matemática. 9 o ano. Caderno 1
Matemática 9 o ano Caderno 1 Módulo 1 1 Leia o texto a seguir e responda ao que se pede. Em janeiro de 21, astrônomos internacionais anunciaram a descoberta da estrela mais antiga conhecida pela ciência,
Matemática 8º ano TPC
Matemática 8º ano TPC 1. Sabe-se que f é uma função afim cujo gráfico passa pelos pontos de coordenadas A 5,1 e B,7. 1.1. Determina a expressão analítica da função f. 1.. Determina as coordenadas dos pontos
Resumo de Matemática para o ENEM
Resumo de para o ENEM 1. (Enem 2014) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega outros dois filmes e assim sucessivamente. Ele soube que
ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO
Disciplina: Matemática Curso: Ensino Médio Professor: Aguinaldo Série: 2ªSérie Aluno (a): ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Número: 1 - Conteúdo: Progressão Aritmética Progressão Geométrica Estatística
AS MEDIÇÕES E AS PRINCIPAIS UNIDADES DE. Matemática 8ª série
AS MEDIÇÕES E AS PRINCIPAIS UNIDADES DE MEDIDAS Matemática 8ª série O que é medir? Olavo quer comprar uma escrivaninha para colocar em seu quarto. Sem ter nenhum instrumento de medida, em casa, ele improvisou
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 6 o ANO DO ENSINO FUNDAMENTAL DATA: 09/08/2013
QUESTÃO 0 (0, ) RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 6 o ANO DO ENSINO FUNDAMENTAL DATA: 09/0/ PROFESSORA: TINA O basquete é uma das modalidades de esporte coletivo mais popular do mundo. Baseado nas informações
Questão 2: Classifique como conjunto vazio ou conjunto unitário considerando o universo dos números naturais: a) b) c) d) e) f) g) }
TRABALHO º ANO REGULAR - MATEMATICA Conjuntos: Questão : Escreva o conjunto expresso pela propriedade: x é um número natural par; x é um número natural múltiplo de 5 e menor do que ; x é um quadrilátero
Prova da UFRGS
Prova da UFRGS - 01 01. O algarismo das unidades de 9 10 é a) 0. b) 1.. d). e) 9. 0. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a a) 1,9.10 9. b)
SE18 - Matemática. LMAT 5C2 - Circunferência. Questão 1
SE18 - Matemática LMAT 5C2 - Circunferência Questão 1 (ENEM 2015) A figura mostra uma criança brincando em um balanço no parque. A corda que prende o assento do balanço ao topo do suporte mede 2 metros.
3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3ª série do Ensino Médio Turma 1º Bimestre de 2017 Data / / Escola Aluno EM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Avaliação da Aprendizagem em Processo
PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes
MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5
LISTA RESOLUÇÃO- RESOLUÇÃO DE MATEMÁTICA E SUAS TECNOLOGIAS_SIMULADO ENEM UII_ 3EM_JULHO DE 2014
LISTA RESOLUÇÃO- RESOLUÇÃO DE MATEMÁTICA E SUAS TECNOLOGIAS_SIMULADO ENEM UII_ EM_JULHO DE 0 ORGANIZAÇÃO: PROF ADRIANO CARIBÉ E PROF WALTER PORTO RESOLUÇÃO: PROFA MARIA ANTÔNIA C GOUVEIA QUESTÃO Considerando
COLÉGIO PEDRO II MEC Exame de Seleção e Classificação ao 1º ano do Ensino Médio a Série do Ensino Médio Regular
COLÉGIO PEDRO II MEC Exame de Seleção e Classificação ao 1º ano do Ensino Médio - 2013 1ª QUESTÃO 1,0 0,5 1,5 Nos últimos anos, ocorreu uma mudança no cenário nacional dos fluxos migratórios: o estado
Lista 23 - GEOMETRIA ANALÍTICA - II
Lista - GEOMETRIA ANALÍTICA - II 1) (UFSM) Sejam o ponto A(, ) e a reta r, bissetriz do 1 o quadrante. A equação da reta que passa pelo ponto A, perpendicular à reta r, é (A) y = + - y = y = - + 8 y +
Exercícios: Funções - Introdução Prof. André Augusto
Exercícios: Funções - Introdução Prof. André Augusto 1. EXERCÍCIOS BÁSICOS DE FUNÇÕES Exercício 1. Nos itens a seguir, diga se as associações f : X Y a seguir são funções ou não: 1 X = 0, 1, 2,, 4, X =
Classificação: Professor: Enc. Educ.: Esta ficha é constituída por duas partes, a 1ª parte é de escolha múltipla e a 2ª parte é de desenvolvimento.
FICHA DE AV ALI AÇ ÃO DE M ATEM ÁTIC A 3º Ciclo 8º ano Março de 2011 Duração da prova: 90 minutos A Nome: Nº: Turma: Classificação: Professor: Enc. Educ.: Esta ficha é constituída por duas partes, a 1ª
Matemática A - 10 o Ano
Matemática A - 10 o Ano Resolução da Prova Modelo Teste 4 1 Nuno Miguel Guerreiro I Chave da Escolha Múltipla CCDBA 1. Tem-se quanto à proposição p: F A + AO + }{{ OB } 1 DC A + AB 1 AB 5 }{{}}{{ 5 } AB
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
Prezado( candidato(: Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA
Matemática Básica Função polinomial do primeiro grau
Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:
PROVA DE MATEMÁTICA QUESTÃO 31 QUESTÃO 32
PROVA DE MATEMÁTICA QUESTÃO 31 Dona Margarida comprou terra adubada para sua nova jardineira, que tem a forma de um paralelepípedo retângulo, cujas dimensões internas são: 1 m de comprimento, 25 cm de
3ª série EM - Lista de Questões para a EXAME FINAL - MATEMÁTICA
3ª série EM - Lista de Questões para a EXAME FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência
Questão 04. (G1 1996) Sabendo-se que (x + 3, y - 4) = (7x, 2y + 5), determine o valor de x e de y.
LISTA Relação binária e conceito de função PROFESSOR: Paulo Vinícius Questão 01. (Uepa 2014) As atividades de comunicação humana são plurais e estão intimamente ligadas às suas necessidades de sobrevivência.
Prova de UFRGS
Prova de UFRGS - 212 1 Considere que o corpo de uma determinada pessoa contém 5,5 litros de sangue e 5 milhões de glóbulos vermelhos por milímetro cúbico de sangue Com base nesses dados, é correto afirmar
AULA 5 Função Afim. Se a > 0 (ou seja, se o valor de a for um número positivo), a função y = ax + b é crescente. Ex1:
AULA 5 Função Afim Sejam a e b números reais e a 0. Dizemos que uma função f : R R é função do 1º grau ou função afim quando está definida pela lei (ou seja, quando tiver esse formato): em que : y f (
3º Ano do Ensino Médio. Aula nº4
Nome: Ano: 3º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº4 Assunto: Sistemas Lineares 1. Introdução 1.1. Equação Linear: Equação linear é uma equação composta por diversas incógnitas todas
Geometria Analítica - AFA
Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-
TURMAS:11.ºA/11.ºB. e é perpendicular à reta definida pela condição x 2 z 0.
FICHA DE TRABALHO N.º 3 (GEOMETRIA ANALÍTICA DO ESPAÇO) TURMAS:11.ºA/11.ºB 2017/2018 (JANEIRO DE 2018) No âmbito da Diferenciação Pedagógica (conjunto de exercícios com diferentes níveis de dificuldade:
As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante.
Módulo 4 FUNÇÕES QUADRÁTICAS 1. APRESENTAÇÃO As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante. - Modelagem de trajetórias na
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA
3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência
Capítulo 5 Derivadas Parciais e Direcionais
Capítulo 5 Derivadas Parciais e Direcionais 1. Conceitos Sabe-se que dois problemas estão relacionados com derivadas: Problema I: Taxas de variação da função. Problema II: Coeficiente angular de reta tangente.
Questão 1. De acordo com essas informações, qual foi o valor da cota calculada no acerto final para cada uma das 55 pessoas?
SE18 - Matemática LMAT1A2 - Equações e inequações do 1o grau Questão 1 Um grupo de 50 pessoas fez um orçamento inicial para organizar uma festa, que seria dividido entre elas em cotas iguais. Verificou-se
Proposta de teste de avaliação
Matemática A 0. AN DE ESCLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica
Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data /mar./2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno
QUESTÃO 18 QUESTÃO 19
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 016 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 A soma de três números naturais múltiplos
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM 05/junho/06 MATEMÁTICA APLICADA 0. Para a construção de uma janela na sala de um teatro, existe a dúvida se ela deve ter a forma de um retângulo, de um círculo
Lista de exercícios 3 do primeiro bimestre 5,23 10.
Disciplina: Matemática I Conteúdo: Potenciação e radiciação Professora: Juliana Schivani Aluno(: Data: Lista de exercícios do primeiro bimestre (Pucrj) Entre as alternativas abaixo, assinale a de menor
PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO Grupo I
Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-36 Lisboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 6 http://www.apm.pt email: [email protected] PROPOSTA DE RESOLUÇÃO
Caderno 2: 55 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 2: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
FUNÇÕES EXPONENCIAIS
FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.
1Q1. Considere o ponto A = (1, 2, 3), a reta r : x+1
Com exceção da Questão 15, em todas as questões da prova considera-se fixado um sistema de coordenadas Σ = (O, E), onde E é uma base ortonormal positiva. 1Q1. Considere o ponto A = (1, 2, 3), a reta r
LISTA DE EXERCÍCIOS. [01] Determine o domínio natural (efetivo) de cada uma das funções indicadas abaixo.
LISTA DE EXERCÍCIOS Pré-Cálculo Humberto José Bortolossi http://www.professores.uff.br/hjbortol/ 04 Transformações de gráficos de funções, função raiz quadrada, funções potência [01] Determine o domínio
MATEMÁTICA - QUESTÕES de 1 a 15
2 MATEMÁTICA - QUESTÕES de 1 a 15 Esta prova deverá ser respondida, EXCLUSIVAMENTE, pelos candidatos aos cursos de Administração, Agronomia, Arte-Educação, Ciência da Computação, Ciências Biológicas, Ciências
MATEMÁTICA 2ª QUESTÃO
MATEMÁTICA 1ª QUESTÃO Uma pessoa foi a uma lanchonete e pagou a conta no valor de R$ 4,80 somente com moedas de 5 e 25 centavos, num total de 44 moedas. A diferença entre as quantidades de moedas de 5
. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança
REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO
REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura
GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área A B C D. Matemática e suas tecnologias. 2ª ETAPA Data: 31/08/2015
Colégio Providência Avaliação por Área Matemática e suas tecnologias 2ª ETAPA Data: 31/08/2015 1ª SÉRIE ENSINO MÉDIO GABARITO PROVA A A B C D 1 XXXX xxxxx xxxxx xxxxx 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 LISTA DE MATEMÁTICA
LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Teste [maio - 018] Nome: Ano / Turma: N.º: Data: - - Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou
PROBLEMAS DE OTIMIZAÇÃO in ESCOLA VIRTUAL
PROBLEMAS DE OTIMIZAÇÃO in ESCOLA VIRTUAL 1. Classifica as seguintes afirmações em verdadeiras (V) ou falsas (F). Na figura estão representados, num referencial o.n. xoy a reta r de equação x = 4, e o
2 3 x. 5. Resolve a seguinte equação: 8º ANO TPC PÁSCOA. EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS Ano Letivo 2014/ 15
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS Ano Letivo 014/ 15 8º ANO TPC PÁSCOA 1. Tendo em atenção os seguintes polinómios: A= x 1 B= 3x C= x x 1 Calcula BC A. Resolve as seguintes equações: 3 x 3x.1.
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 98/99 1ª P A R T E - MATEMÁTICA
21 1ª P A R T E - MATEMÁTICA ITEM 01. O produto do MMC entre 30, 60 e 192 pelo MDC entre 144, 180 e 640 pode ser expresso por 2 a x 3 x 5. O valor do expoente a é a.( ) 1 b.( ) 2 c.( ) 4 d.( ) 6 e.( )
LISTA DE EXERCICIOS 1º TRIMESTRE 1º ANO PROF. JADIEL
LISTA DE EXERCICIOS 1º TRIMESTRE 1º ANO PROF. JADIEL 1) (G1 - ifsp 016- MODIFICADA) Um pesquisador tem à disposição quatro frascos com a mesma substância. No frasco I, há um quarto de litro dessa substância;
Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0
Circunferências 1. (Espcex (Aman) 014) Sejam dados a circunferência λ : x y 4x 10y 5 0 e o ponto P, que é simétrico de ( 1, 1) em relação ao eixo das abscissas. Determine a equação da circunferência concêntrica
(A) a 2 + b 2 c 2 = 0 (B) a 2 b 2 c 2 = 0 (C) a 2 + b 2 + c 2 = 0 (D) a 2 b 2 + c 2 = 0 (E) a 2 = b 2 = c 2 (A) 25. (B) 50. (C) 100. (D) 250. (E) 500.
(UFRGS/), semanas corresponde a (A) dias e ora dias, oras e 4 minutos (C) dias, oras e 4 minutos (D) dias e oras (E) dias MATEMÁTICA (A) a + b c = a b c = (C) a + b + c = (D) a b + c = (E) a = b = c 5
CDI I Lista 0. Data da lista: 11/04/2016 Preceptores: Camila Cursos atendidos: Eng. civil e C. Computação Coordenador: Claudete. (e) 3 (4.
CDI I Lista 0 Data da lista: 11/0/2016 Preceptores: Camila Cursos atendidos: Eng. civil e C. Computação Coordenador: Claudete 1. Calcule as expressões abaixo. a) 2 + 2 b) 5 2 + 1 2 e) 5 2 f) 5) ) c) 2
Teste de Avaliação. Nome N. o Turma Data /maio/2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data /maio/2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
1º S I M U L A D O - ITA IME - M A T E M Á T I C A
Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}
Questão 1. (Enem (Libras) 2017) Um reservatório de água com capacidade para
SE18 - Matemática LMAT2A2 - Funções: introdução e Função do 1o grau Questão 1 (Enem (Libras) 2017) Um reservatório de água com capacidade para mil litros de água num instante inicial mil litros encontra-se
Lista Dentre os conjuntos a seguir, distingua quais são intervalos, representando-os com as notações adotadas.
UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA - Números e Funções Reais - PROFMAT Prof. Zeca Eidam Lista Equações e inequações. Prove que: a) x 0 b) x = 0
01. (ENEM) 03. (ENEM) 02. (ENEM) Matemática e suas tecnologias RASCUNHOS. Caderno 1-3º ano
01. (ENEM) A sideru rgica Metal Nobre produz diversos objetos macic os utilizando o ferro. Um tipo especial de pec a feita nessa companhia tem o formato de um paralelepi pedo retangular, de acordo com
MATEMÁTICA. log 2 x : logaritmo de base 2 de x. 28. Sendo a, b e c números reais, considere as seguintes afirmações.
MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x log x : logaritmo de base de x 6 Considere que o corpo de uma determinada pessoa
PROCESSO SELETIVO/ O DIA GAB. 1 1 MATEMÁTICA QUESTÕES DE 01 A 15
PROCESSO SELETIVO/006 1 O DIA GAB. 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. Para arrecadar doações, uma Entidade Beneficente usou uma conta telefônica do tipo 0800. O número de pessoas que ligaram, por dia,
QUESTÃO ÚNICA MÚLTIPLA ESCOLHA. 10,00 (dez) pontos distribuídos em 20 itens
QUESTÃO ÚNICA MÚLTIPLA ESCOLHA 10,00 (dez) pontos distribuídos em 0 itens Marque no cartão de respostas, anexo, a única alternativa que responde de maneira correta ao pedido de cada item. 1. Em uma pesquisa
ADA 1º BIMESTRE CICLO I MATEMÁTICA 3ª SÉRIE DO ENSINO MÉDIO. (B)y = x + 3 (C)y = 2x + 3 (D)y = 3x - 3 (E)y = 5x + 5 Gabarito: D.
ADA 1º BIMESTRE CICLO I MATEMÁTICA ª SÉRIE DO ENSINO MÉDIO ITEM 1 DA ADA Observe as equações da reta a seguir: I) y = x 1 II) y 4x = III) y 4x + = 0 IV) y + 1 = x V) y + 1 = (x 1 ) Dessas equações, a que
MATEMÁTICA - 3 o ANO MÓDULO 48 ÁREA DO CÍRCULO E SEMELHANÇA COM ÁREAS
MATEMÁTICA - 3 o ANO MÓDULO 48 ÁREA DO CÍRCULO E SEMELHANÇA COM ÁREAS R p R R α R 10 cm 72º = - A segmento = A setor - A triângulo 60º 60º 12 12 60º a b a S S c e e d d b c 1 2 3 4 Lado = 1 área = 1 Lado
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva
TRABALHO DE RECUPERAÇÃO
COLÉGIO SHALOM 65 Ensino Fundamental II 9º ANO Profº: Sâmia M. Corrêa Disciplina: Geometria Aluno (a):. No. TRABALHO DE RECUPERAÇÃO TRABALHO DE RECUPERAÇÃO 1) Descreva: NÚMERO DE OURO OU RAZÃO ÁUREA RETÂNGULO
CENTRO UNIVERSITÁRIO DE VOLTA REDONDA CENTRO INTEGRADO DE TECNOLOGIA PROGRAMA DE APOIO À APRENDIZAGEM PARA OS CURSOS DE ENGENHARIA
LISTA DE EXERCÍCIOS Nº 06 Disciplina: MATEMÁTICA Data: 27/10/2012. 1ª Questão: Dada a função f(x)= 1-5x,calcule: a)f(0)= b)f(-1)= 2ªQuestão: O custo de um produto de uma indústria é dado por C(x)=250 +
Mat. Monitor: Roberta Teixeira
1 Professor: Alex Amaral Monitor: Roberta Teixeira 2 Geometria analítica plana: circunferência e elipse 26 out RESUMO 1) Circunferência 1.1) Definição: Circunferência é o nome dado ao conjunto de pontos
GEOMETRIA ANALÍTICA. λ x y 4x 0 e o ponto P 1, 3. Se a reta t é tangente a λ no ponto P, então a abscissa do ponto de
ENSINO MÉDIO - 2012 LISTA DE EXERCÍCIOS 3ª SÉRIE - 3º TRIM PROF. MARCELO DISCIPLINA : GEOMETRIA GEOMETRIA ANALÍTICA 1) Espcex (Aman) 2013) Considere a circunferência 2 2 λ x y 4x 0 e o ponto P 1, 3. Se
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016 FUNÇÃO QUADRÁTICA Definição: Chama-se função polinomial do 2 o grau ou função quadrática toda função f: do tipo 2 f ( x) ax bx c, com {a, b, c} e a
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - o ciclo 006-1 a Chamada Proposta de resolução 1. 1.1. Como a Marta pesa 45 kg, e para evitar lesões na coluna vertebral, o peso de uma mochila e o do material que se transporta
FACULDADE PITÁGORAS DE LINHARES Prof. Esp. Thiago Magalhães
VETORES NO PLANO E NO ESPAÇO INTRODUÇÃO Cumpre de início, distinguir grandezas escalares das grandezas vetoriais. Grandezas escalares são aquelas que para sua perfeita caracterização basta informarmos
QUESTÃO 01. representa o número 01) 1 02) 2 03) 3 04) 4 05) 5 RESOLUÇÃO: RESPOSTA: Alternativa 02 QUESTÃO 02. O índice de massa corporal (IMC) é I =
RESOLUÇÃO DA 1 a AVALIAÇÃO DE MATEMÁTICA _ U II _ANO 007 a SÉRIE DO E.M. _ COLÉGIO ANCHIETA BA ELABORAÇÃO: PROF. OCTAMAR MARQUES. PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 01. 6 15 + representa o número 01)
MATEMÁTICA UFRGS 2008
NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SíMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: log x : Ioga ritmo de x na base 10 Re(z) : eixo real do plano complexo Im(z) : eixo imaginário do plano complexo
3 pode ser associado a letra C.
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 8º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Na figura a seguir foram representados
