ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO
|
|
|
- Glória da Conceição de Sá
- 8 Há anos
- Visualizações:
Transcrição
1 Disciplina: Matemática Curso: Ensino Médio Professor: Aguinaldo Série: 2ªSérie Aluno (a): ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Número: 1 - Conteúdo: Progressão Aritmética Progressão Geométrica Estatística Esfera Binômio de Newton Probabilidade 2 - Data de entrega: Na primeira aula da recuperação 3 - Material para consulta: Livro didático: Tudo é Matemática - Dante, Luiz Roberto Caderno de estudos 4 - Trabalho a ser desenvolvido: Anexo
2 Trabalho de Recuperação 1) ) (Fuvest) Ao escalar uma trilha de montanha, um alpinista percorre 256 m na primeira hora, 128 m na segunda hora, 64 na terceira hora e assim sucessivamente. Determine o tempo (em horas) necessário para completar um percurso de 480m. 2) Resolva a equação sabendo que o primeiro termo representa a soma de termos de uma PG 3) (ENEM-2004) Uma pesquisa sobre orçamento familiares, realizada recentemente pelo IBGE, mostra alguns itens de despesa na distribuição de gastos de dois grupos de famílias com rendas mensais bem diferentes. Considere duas famílias com rendas de R$ 400,00 e R$ 6 000,00, respectivamente, cujas despesas variam de acordo com os valores das faixas apresentadas. Nesse caso, os valores, em R$, gastos com alimentação pela família de maior renda, em relação aos da família de menor renda, são aproximadamente, a) Dez vezes maiores. b) Quatro vezes maiores. c) Equivalentes. d) Três vezes menores. e) Nove vezes menores.
3 4) A empresa que fornece eletricidade para a cidade Mar de Dezembro colocou um gráfico nas contas de luz no mês de janeiro, para explicar os gastos e receitas da empresa. O gráfico usado é semelhante ao que temos a seguir: a) Complete os quadrados da legenda com as letras usadas no gráfico. b) Qual o percentual relativo ao Ganho da Empresa? c) Quanto, em reais, será pago a titulo de Tributos, em uma conta no valor de R$ 400,00? 5) 6)
4 7) ( ENEM-2012) O globo da morte é uma atração usada em circos. Ele consiste em uma espécie de jaula em forma de uma superfície esférica feita de aço, onde motoqueiros andam com suas motos por dentro. A seguir, tem-se, figura 1, uma foto de um globo da morte e, na figura 2, uma esfera que ilustra um globo da morte. A figura 2, o ponto A está no plano do chão onde está colocada o globo da morte e o segmento AB passa pelo centro da esfera e é perpendicular ao plano do chão. Suponha que há um foco de luz direcionado para ochão colocado no ponto B e que um motoqueiro faça um trajeto dentro da esfera, percorrendo uma circunferência que passa pelos pontos A e B. A imagem do trajeto feito pelo motoqueiro no plano do chão é melhor representada por: 8) (UFU-2007) Sabendo-se que a intersecção entre um plano e uma esfera de raio 10 cm é uma circunferência de raio 6 cm, então a distância do centro da esfera até o plano é igual a: a) 4 cm b) 5 cm c) 7 cm d) 8 cm 9) (AMAM-2014) Considere que uma laranja tem a forma de uma esfera de raio 4 cm, composta de 12 gomos exatamente iguais. A superfície total de cada gomo mede: a) b) c) d) e)
5 10) Determine a área do fuso e o volume da cunha cujo o ângulo é respectivos a esfera cujo raio é 2 cm. 11) (FGV-2013) Desenvolvendo-se o binômio, podemos dizer que a soma de seus coeficientes é: a) 16 b) 24 c) 32 d) 40 e) 48 12) (FGV-2012) O termo independente de x no desenvolvimento de é: a) 26 b) 169 c) 220 d) 280 e) ) (PUC-RJ-2000)) O coeficiente de no binômio é: a) 105 b) 210 c) 360 d) 420 e) ) (CEFET-CE) A probabilidade de um casal ter quatro filhos, todos do sexo masculino é: a) ½ b) ¼ c) 1/8 d) 1/16 e) 1/32
6 15) (FGV) Em um grupo de 300 pessoas sabe-se que: 50% aplicam dinheiro em caderneta de poupança 30% aplicam dinheiro em fundos de investimentos 15% aplicam dinheiro em caderneta de poupança e fundos de investimentos simultaneamente. Sorteando uma pessoa desse grupo, a probabilidade de que ela não aplique em caderneta de poupança nem em fundos de investimentos é: a) 0,05 b) 0,20 c) 0,35 d) 0,50 e) 0,65 16) (AFA-2012) Suponha que a distribuição das idades dos cadetes do 1 ano da Academia da Força Aérea no ano de 2011 esteja representada pelo gráfico seguinte. Com base nos dados registrados nesse gráfico, é correto afirmar que, escolhido um aluno ao acaso, a probabilidade ter 20 anos ou 21 anos é igual a: a) 20% b) 25% c) 30% d) 35% 17) (VUNESP) Numa comunidade formada de 1000 pessoas foi feito um teste para detectar a presença de uma doença. Como o teste não é totalmente eficaz existem pessoas doentes cujo resultado do teste foi negativo e existem pessoas saudáveis com resultado do teste positivo. Sabe-se que 200 pessoas da comunidade são portadoras dessa doença. Esta informação e alguns dos dados obtidos com o teste foram colocados na tabela a seguir: Resultado dos exames Positivo Negativo Total Saudável Doente Total a) Complete a tabela b) Uma pessoa da comunidade é escolhida ao acaso e verifica-se que o resultado é positivo. Determine a probabilidade de essa pessoa ser saudável.
7 18) (IFSP-2013) Uma academia de ginastica realizou uma pesquisa sobre índice de massa corporal (IMC) de seus alunos, obtendo-se o seguinte resultado: Escolhendo-se um aluno, ao acaso, a probabilidade de que este esteja com peso ideal é: a) 42% b) 44% c) 46% d) 48% e) 50% 19) (Valor:1,0) (UFF-2010) Povos diferentes com escrita e símbolos diferentes podem descobrir um mesmo resultado matemático. Por exemplo, a figura a seguir ilustra o Triângulo de Yang Yui, publicado na China em 1303, que é equivalente ao Triângulo de Pascal, proposto por Blaise Pascal 352 anos depois. Na expressão algébrica: O coeficiente é igual a: a) 2 b) 100 c) 4950 d) 9900 e) 20) (Valor:1,0) (PUC-RJ-2000) A soma alternada de coeficientes binomiais vale: a) b) 20 c) 10 d) 10! e) 0
Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Série:2ª Data: / / LISTA DE MATEMÁTICA I
Unidade Senador Canedo Professor (: Charlles Maciel Aluno (: Série:2ª Data: / / 2017. LISTA DE MATEMÁTICA I Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha de papel almaço.
Questão 1. (Enem 2ª aplicação 2016) Uma indústria de perfumes embala seus produtos, atualmente, em frascos
18REV - Revisão LMAT 4B-3 - Geometria Espacial (Esfera) Questão 1 (Enem 2ª aplicação 2016) Uma indústria de perfumes embala seus produtos, atualmente, em frascos esféricos de raio R com volume dado por
Aula ao vivo de Matemática (12/6/2013) Fundamentos de Geometria
1. (Enem 2012) O globo da morte é uma atração muito usada em circos. Ele consiste em uma espécie de jaula em forma de uma superfície esférica feita de aço, onde motoqueiros andam com suas motos por dentro.
Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (1Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto)
Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (1Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) 1-)(PUC RJ) A soma 1,3333... + 0,1666666... é igual a: a) 1 / 2
Professor Diego. A imagem do trajeto feito pelo motoqueiro no plano do chão é melhor representada por
Professor Diego 01. (ENEM/2012) O globo da morte é uma atração muito usada em circos. Ele consiste em uma espécie de jaula em forma de uma superfície esférica feita de aço, onde motoqueiros andam com suas
CPV O cursinho que mais aprova na GV
O cursinho que mais aprova na GV FGV ADM Objetiva Turma A 24/outubro/2010 matemática 01. O gráfico de uma função polinomial do primeiro grau passa pelos pontos de coordenadas (x; y) dados abaixo. Podemos
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 2 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Sami e Thiago Nota: (Valor 2,0) 2º Semestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98.
AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98. ÍNDICE: Estatística e conteúdos abordados na prova de 2018 1... 5 Prova
SE18 - Matemática. LMAT6C3 - Esfera. Questão 1
SE18 - Matemática LMAT6C3 - Esfera Questão 1 (Enem 2010) Em um casamento, os donos da festa serviam champanhe aos seus convidados em taças com formato de um hemisfério (Figura 1), porém um acidente na
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 3º bimestre 3º BIMESTRE 1. Apresentação: Prezado aluno, A estrutura da recuperação
QUESTÃO 18 QUESTÃO 19
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 016 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 A soma de três números naturais múltiplos
Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 Duas esferas de raios distintos se interceptam formando um conjunto com mais de um ponto na interseção. Qual a figura geométrica formada por esse conjunto de pontos? (a) Esfera
MATEMÁTICA - 2 o ANO MÓDULO 15 PROGRESSÃO GEOMÉTRICA
MATEMÁTICA - 2 o ANO MÓDULO 15 PROGRESSÃO GEOMÉTRICA Como pode cair no enem (UFMG) A população de uma colônia da bactéria E. coli dobra a cada 20 minutos. Em um experimento, colocou-se, inicialmente, em
LMAT 6A4 - Probabilidade da união e da intersecção e distribuição binomial. Questão 1
SE18 - Matemática LMAT 6A4 - Probabilidade da união e da intersecção e distribuição binomial Questão 1 (Enem 2016) Um adolescente vai a um parque de diversões tendo, prioritariamente, o desejo de ir a
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2
VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2
Questão 7 FGV O número de anagramas da palavra ECONOMIA que não começam nem terminam com a letra O é:
COLÉGIO SHALOM Ensino Fundamental 2 Ano Prof.º: kaká Disciplina Matemática Aluno (a):. No. Trabalho de Recuperação Entrega Na data da prova Nota: Orientações: - Responder manuscrito; - Cópias de colegas,
Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0
Circunferências 1. (Espcex (Aman) 014) Sejam dados a circunferência λ : x y 4x 10y 5 0 e o ponto P, que é simétrico de ( 1, 1) em relação ao eixo das abscissas. Determine a equação da circunferência concêntrica
MATEMÁTICA - 3 o ANO MÓDULO 55 ESFERA
MATEMÁTICA - 3 o ANO MÓDULO 55 ESFERA R r d R d r R esfera melancia cunha esférica fatia de melancia fuso esférico casca de melancia r d R d a a R a 2R Como pode cair no enem (ENEM) O globo da morte é
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
ITA18 - Revisão. LMAT10A-1 - ITA 2017 (objetivas) Questão 1
ITA18 - Revisão LMAT10A-1 - ITA 2017 (objetivas) Questão 1 Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: 1. Existe uma bijeção f : X Y. 2. Existe uma função injetora
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 206 Exame de Matemática Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
Lista de exercícios 01. Aluno (a): Turma: 3ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática
Lista de exercícios 01 Aluno (a): Turma: 3ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes
Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV.
NOTAÇÕES C : conjunto dos números complexos. [a, b] = {x R ; a x b}. Q : conjunto dos números racionais. ]a, b[= {x R ; a < x < b}. R : conjunto dos números reais. i : unidade imaginária ; i = 1. Z : conjunto
EMENTA ESCOLAR III Trimestre Ano 2016
EMENTA ESCOLAR III Trimestre Ano 2016 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 3 a série do Ensino Médio Data 29/agosto 31/agosto 05/setembro Conteúdo PROGRESSÃO ARITMÉTICA Sequencias
( ) ( ) RASCUNHO. 1 do total previsto, os. Após terem percorrido, cada um, 5
EA CFOAV/CFOINT/CFOINF 0 PROVA DE MATEMÁTICA LÍNGUA INGLESA FÍSICA LÍNGUA PORTUGUESA VERSÃO A 0 - Três carros, a, b e c, com diferentes taxas de consumo de combustível, percorrerão, cada um, 600 km por
PROVA DE MATEMÁTICA II
PROVA DE MATEMÁTCA 0. Em uma determinada prova, um professor observou que 0% dos seus alunos obtiveram nota exatamente igual a, % obtiveram média 6,, e a média m do restante dos alunos foi suficiente,
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com
Exemplo 2: Considere um dado viciado em que as probabilidades P({1}) = P({3}) = P({5}) = k e P({2}) = P({4}) = P({6}) = 2k.
Probabilidades Aulas 53 e 5 prof. Aguiar - 03 Aula 53 Probabilidades Exemplo : Considere um dado honesto: Os eventos elementares são {}, {}, {3}, {}, {5} e {6} A probabilidade de sair qualquer evento elementar
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D
TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada
MATEMÁTICA E SUAS TECNOLOGIAS
MATEMÁTICA E SUAS TECNOLOGIAS Lista de Exercícios de Matemática / º ano Professor(: Leonardo Data: / JANEIRO / 06. De sonhos e Aluno(: Questão 0) Um casal tem três filhos cujas idades estão em progressão
CPV O Cursinho que Mais Aprova na GV
CPV O Cursino que Mais Aprova na GV FGV ADM Objetiva Prova A 09/dez/0 MATEMÁTICA 0. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de abitantes. Se, em um determinado
Roteiro de Recuperação de MATEMÁTICA
Roteiro de Recuperação de MATEMÁTICA Professores da Disciplina: JOSÉ PAULO / CARLOS / VAGNER MAIO/2016 1º 1º ANO Ensino Médio Período: Matutino TRIMESTRE O estudo da matemática começa na sala de aula,
Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5
Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro
Projeto de Recuperação Final - 1ª Série (EM)
Projeto de Recuperação Final - 1ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de aula Ex da tarefa Funções Inequação do 1º grau, pág 59 2 4,5,6 Funções Inequação do 1º grau,
PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes
MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5
EMENTA ESCOLAR III Trimestre Ano 2014
EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 3 ano do Ensino Médio Data 15/setembro 17/setembro 18/setembro 22/setembro Conteúdo NÚMEROS COMPLEXOS
Prova Escrita de Matemática. 3.º Ciclo do Ensino Básico. Prova 23/2.ª Chamada. Duração da Prova: 90 minutos. Tolerância: 30 minutos
EXAME NACIONAL DO ENSINO BÁSICO Prova 23/ 2.ª Chamada/ 2008 Decreto-Lei n.º 6/2001, de 18 de Janeiro A PREENCHER PELO ESTUDANTE Nome Completo Bilhete de Identidade n.º Emitido em (Localidade) Assinatura
Caderno 2: 55 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 2: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
Aulas particulares. 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é:
1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é: a) 1135 m 3 b) 1800 m 3 c) 2187 m 3 d) 2742 m 3 e) 3768 m 3 2) (Vunesp) Considere uma lata cilíndrica
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (Enem) As curvas de oferta e de demanda de um produto representam, respectivamente, as quantidades que vendedores e consumidores estão dispostos a comercializar em função do
Colégio Planeta. a ij. Profs.: Pedro e Guilherme. Lista de Matemática Data: 29 / 06 / b ij 2. A e B, determine X tal.
Profs: Pedro e Guilherme Colégio Planeta Lista de Matemática Data: 9 / 06 / 018 Nota: Valor: Aluno(a): ª Série Turma: Lista de Recuperação Questão 01) Determine as matrizes quadradas ( x ) cujos elementos
4 FUSO ESFÉRICO 1 ELEMENTOS DA ESFERA A TERRA COMO UMA ESFERA 5 CUNHA ESFÉRICA 3 ÁREAS E VOLUME DA ESFERA. 3.1 Área da superfície esférica. 3.
Matemática Pedro Paulo GEOMETRIA ESPACIAL X 1 ELEMENTOS DA ESFERA Seja um ponto e um segmento de medida. A esfera é o conjunto dos pontos do espaço cujas distâncias ao ponto são menores ou iguais a. Dizemos
PLANTÕES DE JULHO MATEMÁTICA
Página 1 Matemática 1 Funções do 1º e 2º grau PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 1º ANO Turma: Profª CAROL MARTINS Data: JULHO 2016 1) (UFPE) No gráfico a seguir, temos o nível da água armazenada
Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão
Provas de Acesso ao Ensino Superior Para Maiores de 23 anos PROVA MODELO DE MATEMÁTICA
Provas de Acesso ao Ensino Superior Para Maiores de anos PROVA MODELO DE MATEMÁTICA Duração: horas + 0 minutos Material necessário: Material de escrita Máquina de calcular científica (não gráfica) A prova
#Desafios SPM. #Probabilidades e Combinatória. Exercício 1. Exercício 2
#Desafios SPM Os #Desafios SPM destinam-se a alunos do 12.º ano que frequentam a disciplina de Matemática A. Pretendem mobilizar, em situações diversificadas, os conhecimentos e as capacidades que adquiriram
ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998
PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log
MATEMÁTICA - 3 o ANO MÓDULO 48 ÁREA DO CÍRCULO E SEMELHANÇA COM ÁREAS
MATEMÁTICA - 3 o ANO MÓDULO 48 ÁREA DO CÍRCULO E SEMELHANÇA COM ÁREAS R p R R α R 10 cm 72º = - A segmento = A setor - A triângulo 60º 60º 12 12 60º a b a S S c e e d d b c 1 2 3 4 Lado = 1 área = 1 Lado
MATEMÁTICA. Questões de 01 a 04
GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,
MATEMÁTICA. Professor Leonardo Nascimento. Resolução de prova ESPCEX
MATEMÁTICA Professor Leonardo Nascimento Resolução de prova ESPCEX QUESTÃO 01 ESPCEX Na figura abaixo está representado o gráfico da função polinomial f, definida no intervalo real [a,b]. Com base nas
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Matemática Prof. Leandro Conteúdo: Função Quadrática: Função e gráfico. Valor máximo e mínimo. Noções de probabilidade: Principio multiplicativo.
P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.
NOTAÇÕES N = f; ; 3; : : :g i : unidade imaginária: i = R : conjunto dos números reais jzj : módulo do número z C C : conjunto dos números complexos Re z : parte real do número z C [a; b] = fx R; a x bg
ATIVIDADE VALORIZADA DE MATEMÁTICA 3 a SÉRIE E. MEDIO CONTEÚDO DE REVISÃO : ÀLGEBRA E GEOMETRIA NOME:...
ATIVIDADE VALORIZADA DE MATEMÁTICA 3 a SÉRIE E. MEDIO CONTEÚDO DE REVISÃO : ÀLGEBRA E GEOMETRIA NOME:... ============================================================================================= 1.
1º ano. Capítulo 2 - Itens: todos (2º ano) Modelos matemáticos relacionados com a função logarítmica
1º ano Conjuntos Símbolos lógicos Operações com conjuntos Conjuntos numéricos Os Números Naturais Propriedades dos racionais Operações com naturais Os números Inteiros Propriedades dos inteiros Operações
2 LISTA DE MATEMÁTICA
LISTA DE MATEMÁTICA SÉRIE: º ANO TURMA: º BIMESTRE DATA: / / 011 PROFESSOR: ALUNO(A): Nº: NOTA: POLINÔMIOS I 01. (ITA-1995) A divisão de um polinômio P() por - resulta no quociente 6 + 5 + 3 e resto -7.
NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B
NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento
4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas.
LISTAS DE ATIVIDADE A SER REALIZADA ANO 018 LISTA UM 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen 65º = 0,91; cos 65º = 0,4 e tg 65º =,14) 4. Considerando o triângulo retângulo
RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m
ª QUESTÃO Numa figura, desenhada em escala, cada 0, cm equivale a m. A altura real de uma montanha que nesse desenho mede mm, é igual a: a) 0 m d) 00 m b) 0 m e) 70 m c) 00 m ª QUESTÃO Suponha que os ângulos
ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE DE MATEMÁTICA SEGUNDA SÉRIE. Nome: Nº: 2ª Série
ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE DE MATEMÁTICA SEGUNDA SÉRIE Nome: Nº: 2ª Série Data: / /2018 Professor: Nota: Valor: 2,00 pontos 1. Apresentação Prezado aluno, A estrutura da recuperação bimestral
Lista 23 - GEOMETRIA ANALÍTICA - II
Lista - GEOMETRIA ANALÍTICA - II 1) (UFSM) Sejam o ponto A(, ) e a reta r, bissetriz do 1 o quadrante. A equação da reta que passa pelo ponto A, perpendicular à reta r, é (A) y = + - y = y = - + 8 y +
Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1.
Simulado AFA 1. Uma amostra de estrangeiros, em que 18% são proficientes em inglês, realizou um exame para classificar a sua proficiência nesta língua. Dos estrangeiros que são proficientes em inglês,
Lista de Exercícios de estatística
Lista de Exercícios de estatística 1 - As notas de um candidato em suas provas de um concurso foram: 8,4; 9,1; 7,2; 6,8; 8,7 e 7,2. A nota média, a nota mediana e a nota modal desse aluno, são respectivamente:
Ano: 8º Turma: 801/802/803
COLÉGIO IMACULADO CORAÇÃO DE MARIA Programa de Recuperação Paralela 3ª Etapa 2010 Disciplina: Matemática Educador : Paulo Roberto Ano: 8º Turma: 801/802/803 Caro educando, você está recebendo o conteúdo
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
TRABALHO DE RECUPERAÇÃO
COLÉGIO SHALOM 65 Ensino Fundamental II 9º ANO Profº: Sâmia M. Corrêa Disciplina: Geometria Aluno (a):. No. TRABALHO DE RECUPERAÇÃO TRABALHO DE RECUPERAÇÃO 1) Descreva: NÚMERO DE OURO OU RAZÃO ÁUREA RETÂNGULO
a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3
Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados
b Considerando os valores log 2 = 0,30 e log 3 = 0,48, o valor de x que satisfaz a equação 36 x = 24, é: 49
MATEMÁTICA 1 e O Sr. Paiva é proprietário de duas papelarias, A e B. Em 2002 o faturamento da unidade A foi 50% superior ao da unidade B. Em 2003, o faturamento de A aumentou 20% em relação ao seu faturamento
Exercícios Propostos
Cursinho: Universidade para Todos Professor: Cirlei Xavier Lista: 5 a Lista de Matemática Aluno (a): Disciplina: Matemática Conteúdo: Equações e Funções Turma: A e B Data: Setembro de 016 01. Resolva 11
FGV ADM 04/junho/2017
FGV ADM 04/junho/07 MATEMÁTICA APLICADA 0. a) A Demonstre que, se escolhermos três números inteiros positivos quaisquer, sempre existirão dois deles cuja diferença é um número múltiplo de. b) Considere
{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2
NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,
Atividade extra UNIDADE PIRA MIDES E CONES. Fascículo 8 Matemática Unidade 24 Pirâmides e Cones
UNIDADE 24 PIRA MIDES E CONES Atividade extra Fascículo 8 Matemática Unidade 24 Pirâmides e Cones Exercı cio 24.1 Uma pira mide quadrangular regular tem 4 m de altura e a aresta da base mede 6m. Qual o
GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área A B C D. Matemática e suas tecnologias. 2ª ETAPA Data: 31/08/2015
Colégio Providência Avaliação por Área Matemática e suas tecnologias 2ª ETAPA Data: 31/08/2015 1ª SÉRIE ENSINO MÉDIO GABARITO PROVA A A B C D 1 XXXX xxxxx xxxxx xxxxx 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1. (Fgv) Calcule as seguintes somas
1. (Fgv) Calcule as seguintes somas Nas 20 primeiras vezes, ela perdeu. Na 21 vez, ela ganhou. Comparando-se a quantia total T por ela desembolsada e a quantia Q recebida na 21 jogada, tem-se que Q é igual
MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Lugares geométricos (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como a superfície esférica tem centro no ponto V e contém o ponto A, então
MATEMÁTICA. Questões de 05 a 08. desses números pela função f ( x) = 3x. sejam, nessa ordem, três termos consecutivos de uma progressão geométrica.
MAT 6 GRUPO 1 TIPO A MATEMÁTICA Questões de 05 a 08 05 Suponha que os números reais 1 r, 1 e 1+ r sejam, nessa ordem, três termos consecutivos de uma progressão aritmética de razão r 0 Determine r de modo
ESTATÍSTICA. 1) A distribuição das idades dos alunos de uma classe é dada pelo seguinte gráfico:
Lista 1 Revisão da 3ª etapa Conteúdos: Estatística Números Complexos Razões Trigonométricas da adição e da subtração de arcos ESTATÍSTICA 1) A distribuição das idades dos alunos de uma classe é dada pelo
13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:
1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Conteúdo: Recuperação do 4 Bimestre Matemática Prof. Leandro Capítulo 12: Função Logarítmica: Escala Richter, definição de logaritmo, propriedades operatórias dos
MATEMÁTICA III Prof. Emerson Dutra 1 semestre de 2018 DCC05A, EDIF05A e LOG05A
MATEMÁTICA III Prof. Emerson Dutra [email protected] www.profedutra.webnode.com 1 semestre de 2018 DCC05A, EDIF05A e LOG05A Nome: RA: Lista 17 - Geometria Espacial 01/06/2018 Obs.: É importante
Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001
Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e
Matemática E Intensivo V. 1
GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +
Estudante: Circunferência: Equação reduzida da circunferência: Circunferência: Consideremos uma circunferência de centro C (a, b) e raio r.
Gênesis Soares Jaboatão, de de 014. Estudante: Circunferência: Circunferência: A circunferência é o conjunto de todos os pontos de plano equidistantes de outro ponto C do mesmo plano chamado centro da
MATEMÁTICA PROGRESSÕES ARITMÉTICAS (P.A.) PROFº. ADRIANO PAULO. 02. Calcule o 17º termo da P.A. cujo primeiro termo é 3 e cuja razão é 5.
MATEMÁTICA PROGRESSÕES ARITMÉTICAS (P.A.) PROFº. ADRIANO PAULO Determine x de modo que (x, 2x + 1, 5x + 7) seja uma P.A. 01. Determine a de modo que (a 2, (a + 1) 2, (a + 5) 2 ) seja uma P.A. 02. Calcule
O valor de K para que o número 2 seja raiz da equação polinomial 3x 3 + Kx 2 2x + 14 = 0
COLÉGIO SHALOM Ensino Fundamental 3 Ano Prof.º: kaká Disciplina Matemática Aluno (a):. No. Trabalho de Recuperação Entrega: Na data da prova Orientações: - Responder manuscrito; - Cópias de colegas, entrega
PROVA 3 conhecimentos específicos
PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA
ROTEIRO DE RECUPERAÇÃO 3 - MATEMÁTICA Nome: Nº 1ª Série Data: / / Professores: Diego, Luciano e Sami Nota: (Valor 1,0) 3º Bimestre 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela
SE18 - Matemática. LMAT 5C2 - Circunferência. Questão 1
SE18 - Matemática LMAT 5C2 - Circunferência Questão 1 (ENEM 2015) A figura mostra uma criança brincando em um balanço no parque. A corda que prende o assento do balanço ao topo do suporte mede 2 metros.
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Matemática Prof. Leandro Conteúdo: Cilindro. Pirâmide e Cone. Esfera. Posições relativas entre retas. Equação geral da circunferênc Distância
PROCESSO SELETIVO/ O DIA GAB. 1 1 MATEMÁTICA QUESTÕES DE 01 A 15
PROCESSO SELETIVO/006 1 O DIA GAB. 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. Para arrecadar doações, uma Entidade Beneficente usou uma conta telefônica do tipo 0800. O número de pessoas que ligaram, por dia,
Matemática FUVEST. Matemática 001/001 FUVEST 2008 FUVEST 2008 Q.01. Leia atentamente as instruções abaixo Q.02
/ FUVEST 8 ª Fase Matemática (//8) Matemática LOTE SEQ. BOX / Matemática FUVEST FUNDAÇÃO UNIVERSITÁRIA PARA O VESTIBULAR Leia atentamente as instruções abaixo. Aguarde a autorização do fiscal para abrir
