MATEMÁTICA E SUAS TECNOLOGIAS

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA E SUAS TECNOLOGIAS"

Transcrição

1 MATEMÁTICA E SUAS TECNOLOGIAS Lista de Exercícios de Matemática / º ano Professor(: Leonardo Data: / JANEIRO / 06. De sonhos e Aluno(: Questão 0) Um casal tem três filhos cujas idades estão em progressão aritmética. Se a soma dessas idades é 36 anos e o filho mais velho tem 6 anos, quantos anos tem o filho mais novo? 6 b) 0 e) 4 Questão 0) A seqüência de números reais, com termos, (9, a, b, c,..., p, 45) é uma progressão aritmérica cujo oitavo termo vale: 57 b) e) 65 Questão 03) A soma de três números naturais em progressão aritmética é trinta; a diferença entre o maior e o menor destes números é doze. O menor termo dessa progressão é igual a: b) e) 6 Questão 04) Seja f uma função real de variável real tal que f(x + y) = f(x) + f(y) para todos x e y reais. Se a, b, c, d, e formam, nessa ordem, uma PA de razão r, então f(, f(b), f(, f(, f(e) formam, nessa ordem, uma PG de razão f(r). b) uma PG de razão r. uma PA de razão f(. uma PG de razão f(. e) uma PA de razão f(r). Questão 05) Sejam x, y e z números reais positivos. Se os números log 0 x, log 0 y e log 0 z formam, nessa ordem, uma progressão aritmética, então y = xy b) y = x + z y = x + z y = xz Questão 06) Se os lados de um triângulo retângulo estão em progressão aritmética de razão 4, então o cosseno do maior ângulo agudo desse triângulo é: 0,6 b) 3 0, Questão 07) Rua Benjamin Constant nº.7 Campinas Goiânia-GO. FONE (6) FAX (6) 30 03

2 Considere o seguinte problema: As medidas, em centímetros, dos lados de um triângulo retângulo são numericamente iguais aos termos de uma progressão aritmética de razão. Determinar essas medidas. É verdade que esse problema não tem solução b) admite infinitas soluções admite duas soluções sendo que em uma delas o menor cateto mede 5 cm. admite uma única solução, em que o maior cateto mede 6 cm. e) admite uma única solução, em que a hipotenusa mede 0 cm. Questão 0) Em um triângulo, as medidas dos ângulos internos estão em progressão aritmética. Se a menor dessas medidas é 0 o, a maior delas é 90º b) 00º 0º 0º e) 30º Questão 09) Em uma progressão aritmética em que a 3 e a 3, é verdade que a 5 b) a 0 6 a 5 5 a e) a Questão 0) Hoje, as idades de três irmãos, em anos, são numericamente iguais aos termos de uma progressão aritmética de razão 3. Se daqui a 5 anos, a soma de sua idades for igual a 57 anos, atualmente, a idade do mais velho é anos b) jovem é 3 anos velho é 6 anos jovem é anos e) velho é 4 anos Questão ) Os números,, 3, 4,..., 9 foram distribuídos, sem repeti-los, nos quadrados da figura. Se, em cada linha, a soma é sempre S, o valor de S é: 6 b) e) Questão ) Uma fita foi enrolada sobre si mesma, num total de 7 voltas, e formou um desenho parecido com a figura. Rua Benjamin Constant nº.7 Campinas Goiânia-GO. FONE (6) FAX (6) 30 03

3 Sabendo que a espessura da fita mede mm e a primeira circunferência formada tem raio 0 mm, o comprimento da fita quando esticada, vale em mm, aproximadamente: dado = b) e) 0. Questão 3) Um tipógrafo está efetuando a montagem de um pequeno dicionário regional e, em seu primeiro dia de trabalho, fez a montagem de 35 linhas. Por questões contratuais, o dicionário deverá possuir 7 páginas e cada página terá linhas. Sabe-se que esse tipógrafo, em cada dia de trabalho, produz o mesmo número de linhas do dia anterior mais 7 linhas. Dessa forma, o tipógrafo terminará a montagem do dicionário em 9 dias b) dias 0 dias dias Questão 4) Numa urna há.600 bolinhas. Retirando, sem reposição, 3 bolinhas na primeira vez, 6 bolinhas na segunda, 9 na terceira, e assim sucessivamente, o número de bolinhas que restarão, após a 3.ª retirada é: 6 b) Questão 5) Sendo g: R R, definido por g(x) = x + 3, então g() + g() g(30) é igual a 65 b) e) 040 Questão 6) Se numa progressão geométrica de termos positivos o terceiro termo é igual à metade da razão, o produto dos três primeiros termos é igual a: 4 b) 4 e) 6 Questão 7) Rua Benjamin Constant nº.7 Campinas Goiânia-GO. FONE (6) FAX (6) 30 03

4 3 3 Dada a progressão geométrica...,,,,... 3 b) e) 3 o termo que precede é: Questão ) A seqüência 4, x,, x é uma progressão geométrica. O quinto termo dessa progressão é b) 4 e) Questão 9) A seqüência an é uma P.A. estritamente crescente, de termos positivos. Então, a seqüência P.G. crescente b) P.A. crescente P.G. decrescente P.A. decrescente e) seqüência que não é um P.A. e não é uma P.G. a b 3 n, n, é uma Questão 0) x x Na figura, são representados os gráficos das funções f (x) ( / 3) e g(x) (/ ) e os primeiros segmentos verticais com extremos nos pontos (n, f(n)) e (n, g(n)), onde n,, 3... O limite da soma dos comprimentos de todos os segmentos assim definidos é: /4. b) /3. /. /3. e). Questão ) S é a soma dos infinitos termos de uma progressão geométrica. O valor de 3 S é: b) 4 6 Questão ) Rua Benjamin Constant nº.7 Campinas Goiânia-GO. FONE (6) FAX (6) 30 03

5 Na equação... o º membro é a soma dos termos de uma progressão geométrica infinita. A soma das x² ( x²)² raízes da equação é: 0 b) 3 e) 4 Questão 3) Seja f a função de em dada por f ( x ) 5 x se x é impar 0 se x é par é igual a 64 b) e) 3. Nessas condições, a soma f(0) + f() + f() + f(3) +... Questão 4) Considerando uma PG infinita: + /5 + / Podemos afirmar que a sua soma será igual a: b) 5/4 6/5 e) 7/4 Questão 5) A soma + + ² + ³ é igual a: 00 ; b) 00 ; ; e) 00 + ; Rua Benjamin Constant nº.7 Campinas Goiânia-GO. FONE (6) FAX (6) 30 03

PROF. LUIZ CARLOS MOREIRA SANTOS PROGRESSÃO ARITMÉTICA P.A.

PROF. LUIZ CARLOS MOREIRA SANTOS PROGRESSÃO ARITMÉTICA P.A. TEXTO: 1 Tales, um aluno do Curso de Matemática, depois de terminar o semestre com êxito, resolveu viajar para a Europa. Questão 01) O Portão de Brandemburgo, em Berlim, possui cinco entradas, cada uma

Leia mais

Álgebra. Progressão geométrica (P.G.)

Álgebra. Progressão geométrica (P.G.) Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica

Leia mais

Progressão aritmética e progressão geométrica

Progressão aritmética e progressão geométrica Progressão aritmética e progressão geométrica Qualquer conjunto cujos elementos obedecem a uma ordem é uma sequência. No cotidiano, encontramos várias sequências: a lista de chamada de uma turma, as palavras

Leia mais

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então

Leia mais

Matemática E Intensivo V. 1

Matemática E Intensivo V. 1 GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS/2015) Para fazer a aposta mínima na mega sena uma pessoa deve escolher 6 números diferentes em um cartão de apostas que contém os números de 1 a 60. Uma pessoa escolheu

Leia mais

Exercícios de Revisão Aulas 16 a 19

Exercícios de Revisão Aulas 16 a 19 Exercícios de Revisão Aulas 1 a 19 1. Uma professora realizou uma atividade com seus alunos utilizando canudos de refrigerante para montar figuras, onde cada lado foi representado por um canudo. A quantidade

Leia mais

Seqüências Numéricas

Seqüências Numéricas Seqüências Numéricas É uma seqüência composta por números que estão dispostos em uma determinada ordem pré-estabelecida. Alguns exemplos de seqüências numéricas: (,, 6, 8, 0,,... ) (0,,, 3,, 5,...) (,,

Leia mais

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel

Colégio Nossa Senhora de Lourdes. Matemática - Professor: Leonardo Maciel Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel 1. (Pucrj 015) Uma pesquisa realizada com 45 atletas, sobre as atividades praticadas nos seus treinamentos, constatou que 15 desses

Leia mais

LISTA DE EXERCÍCIOS 2º ANO GABARITO

LISTA DE EXERCÍCIOS 2º ANO GABARITO º ANO GABARITO Questão Matemática I 8 9 7 a9 = = 7 9 6 a8 = = 6 9 55 a7 = = Portanto, a média aritmética dos últimos termos será dada por: 8 7 6 55 + + + 7 7 M = = = 6 Questão O número de vigas em cada

Leia mais

1ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

1ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 1ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Calcule m e n na figura abaixo. 0. Na figura abaixo, as retas r e s são paralelas, determine o valor de x. 03. Determine x nas

Leia mais

ITA18 - Revisão. LMAT9A - ITA 2016 (objetivas) Questão 1. Considere as seguintes armações:

ITA18 - Revisão. LMAT9A - ITA 2016 (objetivas) Questão 1. Considere as seguintes armações: ITA18 - Revisão LMAT9A - ITA 2016 (objetivas) Questão 1 Considere as seguintes armações: I. A função f(x) = log 10 é estritamente crescente no intervalo ]1, + [. II. A equação 2 x+2 = 3 x 1 possui uma

Leia mais

Universidade Federal dos Vales do Jequitinhonha e Mucuri.

Universidade Federal dos Vales do Jequitinhonha e Mucuri. INSTRUÇÕES Ministério da Educação Universidade Federal dos Vales do Jequitinhonha e Mucuri Pró-Reitoria de Pesquisa e Pós-Graduação Diretoria de Educação Aberta e a Distância Especialização em Matemática

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 7ª Série / 8º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática. 7ª Série / 8º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 7ª Série / 8º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 Observe as sequências de figuras: Continuando esta sequência,

Leia mais

MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES

MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES Nesta prova serão utilizados os seguintes símbolos e conceitos com os respectivos significados: l x l : módulo no número x i : unidade imaginária

Leia mais

ww.vestibularsc.com.br

ww.vestibularsc.com.br 1) Encontre os cinco primeiros termoss da seqüência definida por an = n² n + 2n, n e N*. 2) Seja a sequência definida por a n = ( 1) n. n 2, n N *, determine o valor de a 4 a 2 3) Dada a sequência por

Leia mais

Progressão Aritmética

Progressão Aritmética CEFET - Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Definição Uma (P.A.) é uma sequência de números (a 1, a 2,..., a n,...) (n N) na qual a diferença entre cada termo a n+1 e o seu antecessor

Leia mais

2ª Série 2016 MATEMÁTICA E SUAS TECNOLOGIAS

2ª Série 2016 MATEMÁTICA E SUAS TECNOLOGIAS ª Série 6 MATEMÁTICA E SUAS TECNOLOGIAS ) A sequência (, 4, 8, 6,...) é uma: a) Função constante b) Progressão aritmética c) Progressão geométrica d) Função exponencial e) Funcão implícita ) O valor de

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019

RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 26. Resposta (D) I. Falsa II. Correta O número 2 é o único primo par. Se a é um número múltiplo de 3, e 2a sendo um número par, logo múltiplo de 2. Então 2a

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS PROGRESSÕES

MATEMÁTICA E SUAS TECNOLOGIAS PROGRESSÕES PROGRESSÕES A cada 76 anos o cometa Halley pode ser visto da Terra. Ele passou por aqui, pela última vez em 986 e deverá reaparecer no ano de 06. Depois em 38,, 90... e assim sucessivamente. Os números

Leia mais

PROGRESSÕES. 2) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados.

PROGRESSÕES. 2) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados. PROGRESSÕES 1) (UFPI) Numa PA, a 5 = 10 e a 15 = 40; então a é igual a (a) 3 (b) (c) 1 (d) 0 (e) -1 ) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados. - triângulo

Leia mais

Questão 03 Sejam os conjuntos: A) No conjunto A B C, existem 5 elementos que são números inteiros.

Questão 03 Sejam os conjuntos: A) No conjunto A B C, existem 5 elementos que são números inteiros. Questão 0 Dada a proposição: Se um quadrilátero é um retângulo então suas diagonais cortam-se ao meio, podemos afirmar que: A) Se um quadrilátero tem as diagonais cortando-se ao meio então ele é um retângulo.

Leia mais

Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais. n(a B) = 23, n(b A) = 12, n(c A) = 10, n(b C) = 6 e n(a B C) = 4,

Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais. n(a B) = 23, n(b A) = 12, n(c A) = 10, n(b C) = 6 e n(a B C) = 4, NOTAÇÕES N = {0, 1, 2, 3,...} i: unidadeimaginária;i 2 = 1 Z: conjuntodosnúmerosinteiros z : módulodonúmeroz C Q: conjuntodosnúmerosracionais z: conjugadodonúmeroz C R: conjuntodosnúmerosreais Re z: parterealdez

Leia mais

Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2

Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2 MATEMÁTICA 20 Um objeto parte do ponto A, no instante t = 0, em direção ao ponto B, percorrendo, a cada minuto, a metade da distância que o separa do ponto B, conforme figura. Considere como sendo de 800

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

7 1 3 e) 1,3. 4) O termo geral de uma progressão aritmética é dado por a 2n 1. A razão dessa PA é PROGRESSÕES ARITMÉTICAS

7 1 3 e) 1,3. 4) O termo geral de uma progressão aritmética é dado por a 2n 1. A razão dessa PA é PROGRESSÕES ARITMÉTICAS PROGRESSÕES ARITMÉTICAS 1) Considere um polígono convexo de nove lados, em que as medidas de seus ângulos internos constituem uma progressão aritmética de razão igual a 5 o. então, seu maior ângulo mede,

Leia mais

UNIVERSIDADE ESTADUAL DA PARAÍBA

UNIVERSIDADE ESTADUAL DA PARAÍBA UNIVERSIDADE ESTADUAL DA PARAÍBA Comissão Permanente do Vestibular Comvest Rua Baraúnas, 5 Bairro Universitário Campina Grande/PB CEP: 5849-500 Central Administrativa º Andar Fone: (8) 5-68 / E-mail: [email protected]

Leia mais

TD GERAL DE MATEMÁTICA 2ª FASE UECE

TD GERAL DE MATEMÁTICA 2ª FASE UECE Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: [email protected] Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:

Leia mais

2. O valor do décimo termo é

2. O valor do décimo termo é PROGRESSÕES GEOMÉTRICAS ) Em uma PG, o primeiro termo é e o terceiro, a) b) 4 c) d) 6 e). O valor do décimo termo é ) O número de termos de uma PG é ímpar e seu termo médio é 9. Pode-se afirmar que o produto

Leia mais

x 1. Em cada uma das figuras, eles são apenas os primeiros elementos dos

x 1. Em cada uma das figuras, eles são apenas os primeiros elementos dos 0) Nas figuras a seguir, a curva é o gráfico da função x retângulos hachurados para infinitos que possuem as mesmas características. f x. Observe atentamente o que ocorre com os x. Em cada uma das figuras,

Leia mais

Nome: 2 sen (2x) < cos x < 3. Calcular sen 105 Calcular cos 105 Calcular tg 105 (PUC) Se tg (x + y) = 33 e tg x = 3, então tg y é igual a:

Nome: 2 sen (2x) < cos x < 3. Calcular sen 105 Calcular cos 105 Calcular tg 105 (PUC) Se tg (x + y) = 33 e tg x = 3, então tg y é igual a: MATEMÁTICA Série: F Módulos,, 5, 6, 7 e 8 Nome: Resolver as inequações de a supondo 0 x π. sen x Para que valores de x, 0 x π, temos sen x e cos x? tg x cos x Resolver, em, as inequações de a. cos x 0

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas.

4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas. LISTAS DE ATIVIDADE A SER REALIZADA ANO 018 LISTA UM 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen 65º = 0,91; cos 65º = 0,4 e tg 65º =,14) 4. Considerando o triângulo retângulo

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B. Questão TIPO DE PROVA: A Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância

Leia mais

30 s. Matemática Volume Questão O valor de 2, é: a) 1,2 b) 1, c) 1,5 d) Um número entre 0,5 e 1

30 s. Matemática Volume Questão O valor de 2, é: a) 1,2 b) 1, c) 1,5 d) Um número entre 0,5 e 1 30 s Matemática Volume 5 1. Questão Determine a soma e o produto das raízes 7x + x + 5 = 0.. Questão O valor de,777... é: a) 1, b) 1,666... c) 1,5 d) Um número entre 0,5 e 1 3. Questão Para que a média

Leia mais

Veja exemplos de sequências finitas e infinitas: Sequência finita: (5, 7, 9, 11, 13, 15, 17, 19) Sequência infinita (3, 5, 7, 11, 13, 17,...

Veja exemplos de sequências finitas e infinitas: Sequência finita: (5, 7, 9, 11, 13, 15, 17, 19) Sequência infinita (3, 5, 7, 11, 13, 17,... SEQUÊNCIAS NUMÉRICAS Sequência numérica é uma sequência ou sucessão que tem como contradomínio (conjunto de chegada) o conjunto dos números reais. As sequências numéricas podem ser finitas, quando é possível

Leia mais

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas.

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas. PROVA DE MATEMÁTICA a AVALIAÇÃO UNIDADE 8 a SÉRIE E M _ COLÉGIO ANCHIETA-A ELAORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES DE A 8 Assinale as proposições verdadeiras

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a 13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a

Leia mais

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m ª QUESTÃO Numa figura, desenhada em escala, cada 0, cm equivale a m. A altura real de uma montanha que nesse desenho mede mm, é igual a: a) 0 m d) 00 m b) 0 m e) 70 m c) 00 m ª QUESTÃO Suponha que os ângulos

Leia mais

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a 01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância

Leia mais

as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2

as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2 MATEMÁTICA 19 c Sejam as funções f e g, de em, definidas, respectivamente, por f(x) = x e g(x) = x 1. Com relação à função gof, definida por (gof) (x) = g(f(x)), é verdade que a) a soma dos quadrados de

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes

PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5

Leia mais

(~ + 1) { ~ + 1) { : + 1)-... {I O~O + 1) é MATEMÁTICA. 2a é múltiplo de 6. CA) -6. cc) O. 28. O valor numérico da expressão CC) 500.

(~ + 1) { ~ + 1) { : + 1)-... {I O~O + 1) é MATEMÁTICA. 2a é múltiplo de 6. CA) -6. cc) O. 28. O valor numérico da expressão CC) 500. MATEMÁTICA NESTA PROVA" SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: N: Conjunto dos números naturais. R: Conjunto dos números reais. 6. Considere as afirmações sobre

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 15 PROGRESSÃO GEOMÉTRICA

MATEMÁTICA - 2 o ANO MÓDULO 15 PROGRESSÃO GEOMÉTRICA MATEMÁTICA - 2 o ANO MÓDULO 15 PROGRESSÃO GEOMÉTRICA Como pode cair no enem (UFMG) A população de uma colônia da bactéria E. coli dobra a cada 20 minutos. Em um experimento, colocou-se, inicialmente, em

Leia mais

MATEMÁTICA CADERNO 2 CURSO D. FRENTE 1 ÁLGEBRA n Módulo 7 Sistema de Inequações. n Módulo 8 Inequações Produto e Quociente

MATEMÁTICA CADERNO 2 CURSO D. FRENTE 1 ÁLGEBRA n Módulo 7 Sistema de Inequações. n Módulo 8 Inequações Produto e Quociente MATEMÁTICA CADERNO CURSO D ) I) x 0 As raízes são e e o gráfico é do tipo FRENTE ÁLGEBRA n Módulo 7 Sistema de Inequações ) I) x x 0 As raízes são e e o gráfico é do tipo Logo, x ou x. II) x x 0 As raízes

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

NOME: TURMA: 11HA Nº PROFESSOR(A): Gerson Delcolle

NOME: TURMA: 11HA Nº PROFESSOR(A): Gerson Delcolle NOME: TURMA: 11HA Nº PROFESSOR(A): Gerson Delcolle ATIVIDADE DE: Matemática AVALIAÇÃO: ( x ) A ( ) B A1 A2 ( )A3 NOTA: Data: /12/2018 Recuperação Semestral ( x ) Recuperação Final Substitutiva CONTEÚDO

Leia mais

30's Volume 15 Matemática

30's Volume 15 Matemática 30's Volume 1 Matemática www.cursomentor.com 9 de junho de 014 Q1. Considere os segmentos AB = x, BC =, CD = x + 1 e DE = x 18 e que AB = CD. Encontre x. BC DE Q. Em um triângulo ABC, AM é bissetriz interna

Leia mais

Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV.

Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV. NOTAÇÕES C : conjunto dos números complexos. [a, b] = {x R ; a x b}. Q : conjunto dos números racionais. ]a, b[= {x R ; a < x < b}. R : conjunto dos números reais. i : unidade imaginária ; i = 1. Z : conjunto

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada

Leia mais

(A) 1. (B) 2. (C) 3. (D) 6. (E) 7. Pode-se afirma que

(A) 1. (B) 2. (C) 3. (D) 6. (E) 7. Pode-se afirma que 01. (UFRGS/1999) O algarismo das unidades de (6 10 + 1) é (A) 1. (B). (C) 3. (D) 6. (E) 7. 0. (UFRGS/1999) Considere as densidades abaixo. I. 4 4 < 8 8 II. 0,5 < 0, 5 III. -3 < 3 - Pode-se afirma que (A)

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE REINGRESSO E MUDANÇA DE CURSO 016 MATEMÁTICA CADERNO DE QUESTÕES INSTRUÇÕES AO CANDIDATO Você deverá ter recebido o Caderno com a Proposta de Redação, a Folha de Redação,

Leia mais

Plano de Aulas. Matemática. Módulo 10 Ciclo trigonométrico (1 volta)

Plano de Aulas. Matemática. Módulo 10 Ciclo trigonométrico (1 volta) Plano de Aulas Matemática Módulo 0 Ciclo trigonométrico ( volta) Resolução dos exercícios propostos Retomada dos conceitos CAPÍTULO 0,07 rad _ 80 rad x? x. 0, 07 rad _ x rad 80 a), rad C x C x C 0 x C

Leia mais

Numa PA, qualquer termo, a partir do segundo, é a média aritmética do seu antecessor e do seu sucessor.

Numa PA, qualquer termo, a partir do segundo, é a média aritmética do seu antecessor e do seu sucessor. EEAR/AFA/EFOMM 0-0-015 FELIPE MATEMÁTICA Progressão aritmética ( PA ) Definição Consideremos a seqüência (, 4, 6, 8, 10, 1, 14, 16). Observamos que, a partir do segundo termo, a diferença entre qualquer

Leia mais

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...

MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Colégio RESOLUÇÃO. Dessa maneira, a média geométrica entre, 8 e 9 é: Portanto, a média geométrica entre, 8, é um número maior que zero e menor que 1.

Colégio RESOLUÇÃO. Dessa maneira, a média geométrica entre, 8 e 9 é: Portanto, a média geométrica entre, 8, é um número maior que zero e menor que 1. Colégio Nome: N.º: Endereço: Data: Telefone: E-mail: Disciplina: MATEMÁTICA Prova: DESAFIO PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2019 QUESTÃO 16 1 1 1 1. Determinando a média geométrica entre

Leia mais

Com essas informações, determine os valores de x, y e z sugeridos pelo consultor. Análise Quantitativa e Lógica Discursiva - Prova A

Com essas informações, determine os valores de x, y e z sugeridos pelo consultor. Análise Quantitativa e Lógica Discursiva - Prova A 1. Renato decidiu aplicar R$ 100.000,00 em um fundo de previdência privada. O consultor da empresa responsável pela administração do fundo sugeriu que essa quantia fosse dividida em três partes x, y e

Leia mais

VESTIBULAR DA UFBA- FASE 2/ PROVA DE MATEMÁTICA. Resolução e comentários pela professora Maria Antônia C. Gouveia. QUESTÕES DE 01 A 06.

VESTIBULAR DA UFBA- FASE 2/ PROVA DE MATEMÁTICA. Resolução e comentários pela professora Maria Antônia C. Gouveia. QUESTÕES DE 01 A 06. VESTIBULAR DA UFBA- FASE / 00-0- PROVA DE MATEMÁTICA Resolução e comentários pela professora Maria Antônia C. Gouveia. UESTÕES DE 0 A 06. LEIA CUIDADOSAMENTE O ENUNCIADO DE CADA UESTÃO, FORMULE SUAS RESPOSTAS

Leia mais

EFOMM , sabendo-se que I 1 corresponde ao ruído sonoro de 8 decibéis de uma aproximação de dois. metro quadrado.

EFOMM , sabendo-se que I 1 corresponde ao ruído sonoro de 8 decibéis de uma aproximação de dois. metro quadrado. EFOMM 009 (0) Qual é o número inteiro cujo produto por 9 é um número natural composto apenas pelo algarismo? (A) 459 (B) 4569 (C) 45679 (D) 45789 (E) 456789. (0) O logotipo de uma certa Organização Militar

Leia mais

QUESTÕES OBJETIVAS. 1. Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196:

QUESTÕES OBJETIVAS. 1. Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: QUESTÕES OBJETIVAS 1. Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60. Um grupo de 6 pessoas é formado por André, Bento,

Leia mais

1. Resolva as equações que se seguem. (a) (x 2 18x + 32)(x 2 8x + 15)(x 2 8x + 12) = 0. (b) 4 t2 8t t2 8t = 0

1. Resolva as equações que se seguem. (a) (x 2 18x + 32)(x 2 8x + 15)(x 2 8x + 12) = 0. (b) 4 t2 8t t2 8t = 0 1. Resolva as equações que se seguem. (a) (x 2 18x + 32)(x 2 8x + 15)(x 2 8x + 12) = 0 (b) 4 t2 8t+16 9 2 t2 8t+17 + 32 = 0 4 2. A embalagem mostrada na figura contém iogurte na parte de baixo e cereais

Leia mais

Resolução prova de matemática UDESC

Resolução prova de matemática UDESC Resolução prova de matemática UDESC 009. Prof. Guilherme Sada Ramos Guiba 1. O enunciado da questão omite a palavra, mas quer dizer que 0% dos aprovados passaram somente na disciplina A, 50% passaram somente

Leia mais

TD GERAL DE MATEMÁTICA 2ª FASE UECE

TD GERAL DE MATEMÁTICA 2ª FASE UECE Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 101.968 / E-mail: [email protected] Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-90 Fone: 101-968/Site:

Leia mais

CANDIDATO: DATA: 20 / 01 / 2010

CANDIDATO: DATA: 20 / 01 / 2010 UNIVERSIDADE ESTADUAL DO CEARÁ - UECE SECRETARIA DE EDUCAÇÃO A DISTÂNCIA - SEaD Universidade Aberta do Brasil UAB LICENCIATURA PLENA EM MATEMÁTICA SELEÇÃO DE TUTORES PRESENCIAIS CANDIDATO: DATA: 0 / 0

Leia mais

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 UFBA / UFRB 008 1a Fase Matemática Professora Maria Antônia Gouveia QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de

Leia mais

Ao final de 10 anos, o número de exames por imagem aumentou de 40 milhões por ano para 94 milhões por ano. Isso

Ao final de 10 anos, o número de exames por imagem aumentou de 40 milhões por ano para 94 milhões por ano. Isso Resposta da questão 1: [C] a1 = 6 an = 4 n = número de dias r = 4 = 6 + (n 1) 18 = n 1 n = 19 (6 + 4) 19 48 19 S = = S = 456km Resposta da questão : [C] Tem-se que os elementos de uma mesma coluna estão

Leia mais

b Considerando os valores log 2 = 0,30 e log 3 = 0,48, o valor de x que satisfaz a equação 36 x = 24, é: 49

b Considerando os valores log 2 = 0,30 e log 3 = 0,48, o valor de x que satisfaz a equação 36 x = 24, é: 49 MATEMÁTICA 1 e O Sr. Paiva é proprietário de duas papelarias, A e B. Em 2002 o faturamento da unidade A foi 50% superior ao da unidade B. Em 2003, o faturamento de A aumentou 20% em relação ao seu faturamento

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 12 EXERCÍCIOS 1) Um táxi começa uma corrida com o taxímetro marcando R$ 4,00. Cada quilômetro rodado custa

Leia mais

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00 MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde

Leia mais

UNIVERSIDADE ESTADUAL DA PARAÍBA

UNIVERSIDADE ESTADUAL DA PARAÍBA UNIVERSIDADE ESTADUAL DA PARAÍBA Comissão Permanente do Vestibular Comvest Av. das Baraúnas, 5 Campus Universitário Central Administrativa - Campina Grande/PB CEP: 5809-5 º Andar - Fone: (8) 5-68 / E-mail:

Leia mais

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5 Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então

Leia mais

Como a PA é decrescente, a razão é negativa. Então a PA é dada por

Como a PA é decrescente, a razão é negativa. Então a PA é dada por Detalhamento das Soluções dos Exercícios de Revisão do mestre 1) A PA será dada por Temos Então a PA será dada por:, e como o produto é 440: Como a PA é decrescente, a razão é negativa. Então a PA é dada

Leia mais

Associação Catarinense das Fundações Educacionais ACAFE

Associação Catarinense das Fundações Educacionais ACAFE Associação Catarinense das Fundações Educacionais ACAFE PROCESSO SELETIVO PARA ADMISSÂO DE PROFESSORES EM CARÁTER TEMPORÁRIO 2017 PARECER RECURSOS PROVA 2 MATEMÁTICA MATEMÁTICA - PENOA 11) Numa escola,

Leia mais

Revisão de Matemática

Revisão de Matemática UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)

Leia mais

SIMULADO. conhecimento específico. CONHECIMENTO ESPECÍFICo - MATEMÁTICA

SIMULADO. conhecimento específico. CONHECIMENTO ESPECÍFICo - MATEMÁTICA MATEMÁTICA conhecimento específico 1 01. CONJUNTOS Interessado em lançar os modelos A, B e C de sandálias, em uma determinada região do estado, foi realizada uma pesquisa sobre a preferência de compra

Leia mais

30's Volume 9 Matemática

30's Volume 9 Matemática 30's Volume 9 Matemática www.cursomentor.com 20 de janeiro de 201 Q1. Uma pessoa adulta possui aproximadamente litros de sangue. Em uma pessoa saudável, 1 mm 3 de sangue possui, aproximadamente: milhões

Leia mais

Projeto de Recuperação Final - 1ª Série (EM)

Projeto de Recuperação Final - 1ª Série (EM) Projeto de Recuperação Final - 1ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de aula Ex da tarefa Funções Inequação do 1º grau, pág 59 2 4,5,6 Funções Inequação do 1º grau,

Leia mais

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF

ATIVIDADE DE MATEMÁTICA REVISÃO. Prof. Me. Luis Cesar Friolani Data: / / Nota: Aluno (a): Nº: 9 Ano/EF Prof. Me. Luis esar Friolani Data: / / Nota: Disciplina: Matemática luno (a): Nº: 9 no/ef Objetivo: Desenvolver os conceitos sobre razões trigonométricas no triângulo retângulo valiar se o aluno é capaz

Leia mais

INSTITUTO GEREMARIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II

INSTITUTO GEREMARIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II INSTITUTO GEREMARIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Marcos Vinício Data: / /2016 COMPONENTE CURRICULAR:

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

Plano de Recuperação Semestral 1º Semestre 2016

Plano de Recuperação Semestral 1º Semestre 2016 Disciplina: MATEMÁTICA Série/Ano: 9º ANO Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos

Leia mais

madematica.blogspot.com Página 1 de 35

madematica.blogspot.com Página 1 de 35 PROVA DE MATEMÁTICA EsPCEx 011/01 MODELO A (ENUNCIADOS) 1) Considere as funções reais f x x, de domínio f x máximo e mínimo que o quociente g y a) e 1 b) 1 e 1 4,8 e g y pode assumir são, respectivamente

Leia mais

MATEMÁTICA SEGUNDO ANO

MATEMÁTICA SEGUNDO ANO O único lugar onde o sucesso vem antes do trabalho é no dicionário Albert Einstein MATEMÁTICA SEGUNDO ANO NOME COMPLETO: TURMA: TURNO: ANO: PROFESSORA: Progressão Aritmética Conceito; Termo Geral; Soma

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 23/04/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 23/04/12 PROFESSOR: MALTEZ RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: /0/1 PROSSOR: MLTZ Um terreno será vendido através de um plano de pagamentos mensais em que o primeiro pagamento de R$ 500,00 será feito 1 mês após a compra,

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa D. alternativa B. alternativa E Questão TIPO DE PROVA: A Os números compreendidos entre 400 e 500, divisíveis ao mesmo tempo por 8 e 75, têm soma: a) 600 d) 700 b) 50 e) 800 c) 50 Questão Na figura, temos os esboços dos gráficos de f

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Inequações Modulares 1.- Resolver em IR a) x 1 < 2 b) 1-2x > 3 c) x 2 4x < 0 Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...)

Leia mais

MATEMÁTICA. A é a matriz inversa de A.

MATEMÁTICA. A é a matriz inversa de A. MATEMÁTICA 41 - O estado do Paraná tem uma área de aproximadamente 200.000 km 2. Atualmente, em quatro milhões de hectares do estado se planta soja, sendo que um grão de soja ocupa um volume de 1 cm 3.

Leia mais

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!. 0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO)

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO) MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLA DE SARGENTOS DAS ARMAS (ESCOLA SARGENTO MAX WOLF FILHO) EXAME INTELECTUAL AOS CURSOS DE FORMAÇÃO E GRADUAÇÃO DE SARGENTOS 2020-21 SOLUÇÃO DAS QUESTÕES DE

Leia mais

PROGRESSÕES - INTENSIVO

PROGRESSÕES - INTENSIVO PROGRESSÕES - INTENSIVO Progressão Aritmética Definição Sequência numérica em que cada termo, a partir do segundo, é igual ao anterior somado com uma constante chamada razão da progressão aritmética. Exemplo

Leia mais

Solução do Simulado PROFMAT/UESC 2012

Solução do Simulado PROFMAT/UESC 2012 Solução do Simulado PROFMAT/UESC 01 (1) Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60 9 5 = 9 5 14 14 = 16 70 () Um grupo

Leia mais

30 s Volume 16 Matemática

30 s Volume 16 Matemática 0 s Volume 16 Matemática www.cursomentor.com 2 de dezembro de 2014 Q1. Um triângulo ABC é retângulo em A e possui a altura AH relativa a hipotenusa valendo 2, 4. Se BH vale 1, 8, calcule AC. Q2. Dois triângulos

Leia mais

UPE/VESTIBULAR/2002 MATEMÁTICA

UPE/VESTIBULAR/2002 MATEMÁTICA UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento

Leia mais

2) Aplicando as relações métricas nos triângulos retângulos abaixo, determine o valor da incógnita: a) b)

2) Aplicando as relações métricas nos triângulos retângulos abaixo, determine o valor da incógnita: a) b) Roteiro de Estudo: Matemática 9º ANO 3ºTRIMESTRE ( prova mensal)- prof. Lilian RELEMBRANDO... 1) O valor de x no triângulo retângulo abaixo é: a) 10. b) 12. c) 15. x A d) 18. 9 B 25 C 2) Aplicando as relações

Leia mais

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir. MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um

Leia mais