ATIVIDADES COM VARETAS
|
|
|
- Jerónimo Braga Cordeiro
- 9 Há anos
- Visualizações:
Transcrição
1 ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas do mesmo comprimento. Neste caso, cada vareta representa um segmento de uma unidade de comprimento. Notação: uma unidade, 1u. Observação. Em casos onde é utilizado o Material: varetas do mesmo comprimento, chamamos, respectivamente, de triângulo equilátero de ordem n e quadrado de ordem n a esses polígonos se eles têm todos os lados formados por n varetas congruentes, isto é, se cada um dos lados desses polígonos mede n unidades, nu. 1. Material: Varetas. i. Represente varias retas paralelas. ii. Represente duas retas concorrentes em um ponto. 2. Material: Varetas. Ache o número de regiões no plano determinadas por cada um dos conjuntos formados por uma reta, duas retas, três retas, etc. Complete a seguinte tabela. Retas Regiões no plano Material: Varetas. Dados os seguintes conjuntos {} de retas no plano: {3 retas}, {4 retas} e {5 retas}. Determine todos os pontos de intersecção possíveis das retas de cada conjunto e destaque o maior número de pontos de intersecção que as retas do conjunto podem ter. 4. Material: Varetas. Encontre o número máximo de regiões poligonais justapostas no plano que são determinadas por quatro, cinco ou seis retas. Coloque os dados em uma tabela. 5. Material: Varetas. Represente as seguintes poligonais: i. Poligonal simples fechada. ii. Poligonal aberta não simples. iii. Poligonal fechada simples. iv. Poligonal fechada não simples. 1
2 6. Material: Varetas. Represente os seguintes ângulos no plano: i. Ângulo reto. ii. Ângulo agudo. iii. Ângulo obtuso. 7. Material: Varetas. Represente pares de retas perpendiculares entre si. 8. Material: Varetas. Determine o maior número de ângulos retos que formam 2, 3, 4, 5 ou 6 retas. Coloque os dado em uma tabela. 9. Material: Varetas. Represente os seguintes pares de ângulos: i. Ângulos opostos pelo vértice. ii. Ângulos complementares. iii. Ângulos suplementares. 10. Material: Varetas. Represente os seguintes polígonos: i. polígono convexo; ii. polígono não convexo. 11. Material: Varetas. Represente diferentes polígonos e os classifique pelo número de lados. 12. Material: Varetas. Represente todas as diagonais dos seguintes polígonos. 13. Material: Varetas. Determine o número de diagonais de um polígono com n lados. 14. Material: Varetas. Represente um polígono que é equiângulo e não é equilátero. 2
3 15. Material: Varetas do mesmo comprimento. Represente um polígono que é equilátero e não é equiângulo. 16. Material: Varetas. Ache a soma das medidas dos ângulos internos de polígonos convexos com quatro, com cinco ou com seis lados. 17. Material: Varetas. Ache a soma das medidas dos ângulos internos de um polígono convexo de n lados. 18. Material: Varetas. Determine a soma das medidas dos ângulos externos de um pentágono convexo. 19. Material: Varetas. Ache a soma das medidas dos ângulos externos de um polígono convexo de n lados. 20. Material: Varetas do mesmo comprimento. Represente e identifique polígonos regulares convexos, ordenados pelo número de lados. 21. Material: Varetas. Ache a medida de um ângulo interno de um polígono convexo regular de n lados. 22. Material: Varetas. Identifique um ângulo central de um hexágono regular e ache a medida desse ângulo. 23. Material: Varetas. Represente e identifique polígonos regulares não convexos. 24. Material: Varetas. Classifique os triângulos pelos lados e represente um exemplo de cada tipo de triângulo. 25. Material: Varetas. Classifique os triângulos pelos ângulos e represente um exemplo de cada tipo. 3
4 26. Material: Varetas. Encontre o número máximo de triângulos justapostos no plano que são determinados por três, por quatro, por cinco ou por seis retas. Coloque os dados em uma tabela. 27. Material: Varetas. Construa todos os tipos de triângulos possíveis e use essas representações para completar a seguinte tabela. triângulo acutângulo retângulo obtusângulo equilátero isósceles escaleno 28. Material: varetas do mesmo comprimento. Construa um triângulo com uma vareta em cada lado, chamamo-lo de triângulo de ordem um. Aumente uma vareta em cada do triângulo formando assim triângulos de ordem dois. Continue a construção aumentando uma vareta em cada lado do triângulo em cada nova etapa. i. Conte o número de varetas utilizadas na construção de cada triângulo equilátero. ii. Conte o número de triângulos equiláteros de ordem uns contidos em cada um dos triângulos equiláteros construídos em cada etapa. iii. Complete a seguinte tabela. Varetas em cada lado do triângulo Total de varetas no triângulo subdividido 3 Triângulos de ordem um 1 4
5 29. Material: varetas do mesmo comprimento. Classifique e indique a quantidade de cada um dos tipos de triângulos representados na seguinte figura. 30. Material: varetas do mesmo comprimento. Ache o menor número de varetas necessárias para construir 1, 2, 3, 4, 5,... triângulos equiláteros de ordem um justapostos em uma linha. Complete a seguinte tabela. Triângulos Varetas 31. Material: varetas do mesmo comprimento. Ache o menor número de varetas necessárias para construir 1,2, 3, 4, 5, 6,... rodas de nora justapostas em uma linha, formadas por seis triângulos equiláteros de lado 1u. Complete a seguinte tabela. Rodas de nora Varetas Material: varetas do mesmo comprimento. i. Utilize triângulos equiláteros para construir diversas figuras planas utilizando diferentes formulações: unindo somente os vértices, unindo lado com vértice, unindo lado com lado, etc. ii. Analise os elementos e as propriedades das figuras obtidas. Observação. As construções anteriores podem ser realizadas com cada um dos outros tipos de triângulos e também combinando peças pertencentes a dois ou mais tipos de triângulos. 5
6 33. Material: Varetas. Represente e identifique os distintos tipos de paralelogramos. 34. Material: Varetas. Classifique e represente exemplos dos diferentes tipos de trapézios. 35. Material: Varetas. Represente e identifique quadriláteros que não são paralelogramos ou trapézios. 36. Material: Varetas. Construa diferentes tipos de quadriláteros e use essas representações para completar a seguinte tabela. Quadrilátero Quatro ângulos iguais Ângulos dois a dois iguais Outros casos Quatro lados iguais Lados dois a dois iguais Outros casos 37. Material: varetas do mesmo comprimento. Classifique e indique a quantidade de cada um dos tipos de quadrados representados na seguinte figura formada por quarenta varetas. 6
7 38. Material: Varetas. Represente dois polígonos congruentes. 39. Material: varetas do mesmo comprimento. Com somente cinco varetas forme dois triângulos equiláteros congruentes. 40. Material: Varetas. Represente todas as retas de simetria do triângulo equilátero e do quadrado. 41. Material: Varetas. i. Represente polígonos semelhantes. ii. Represente polígonos semelhantes e não homotéticos. 42. Material: varetas do mesmo comprimento. Determine o perímetro das seguintes figuras planas. 43. Material: varetas do mesmo comprimento. O retângulo na figura é formado por dezesseis varetas, movimente essas varetas sem retirar nenhuma, para formar um novo quadrilátero convexo que tenha a mesma área que esse retângulo. 7
8 44. Material: varetas do mesmo comprimento. O triângulo retângulo formado com doze varetas tem área igual a seis unidades quadradas, A = 6u². Com doze varetas construa polígonos tais que tenham as seguintes áreas: A = 3u², A = 4u², A = 5u², A = 6u², A = 7u², A = 8u², A = 9u². 45. Material: varetas do mesmo comprimento. No interior do seguinte quadrado formado por dezesseis varetas, determine quatro superfícies com áreas iguais utilizando um número ímpar de varetas. 46. Material: varetas do mesmo comprimento. Determine o número de varetas que devem ser removidas de cada quadrado de ordem um, de cada quadrado de ordem dois e de cada quadrado de ordem três para que em c\d\ uma das figura restantes não exista nenhum quadrado. 8
9 47. Material: varetas do mesmo comprimento. Construa a curva floco de neve segundo a seguinte sequência: Construa um triângulo equilátero. Divida em três partes cada um dos lados do triângulo equilátero. Construa triângulos equiláteros menores sobre cada um dos terços centrais dos lados. Repita o procedimento sobre os novos triângulos equiláteros e sobre os terços restantes dos lados do triângulo original. Os novos elementos da sequência são obtidos construindo triângulos cada vez menores sobre cada tramo reto da ultima curva os terços centrais dos últimos triângulos equiláteros adicionados. 49. Material: varetas do mesmo comprimento. Construa a curva antifloco de neve seguindo a seguinte sequência: Construa um triângulo equilátero. Divida em três partes cada um dos lados do triângulo equilátero. Sobre cada um dos terços centrais dos lados construa triângulos equiláteros menores com o vértice no interior do triângulo original. Repita o procedimento sobre os novos triângulos equiláteros e sobre os terços restantes dos lados do triângulo original. Os novos elementos da sequência são obtidos formando triângulos cada vez menores, com vértice no interior do triângulo original, sobre cada tramo reto da ultima curva construída. 9
SOLUCÃO DAS ATIVIDADES COM VARETAS
SOLUCÃO DAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas
ATIVIDADES COM GEOTIRAS
ATIVIDADES COM GEOTIRAS 1. Material: Geotiras i. Represente varias retas paralelas. ii. Represente duas retas concorrentes em um ponto. 2. Material: Geotiras Represente as seguintes poligonais: i. Poligonal
ATIVIDADES COM POLÍGONOS
ATIVIDADES COM POLÍGONOS Observação. Para o desenvolvimento das seguintes Atividades, levando em conta que Polígonos é uma coleção de peças com um número elevado de elementos, utilizamos as subcoleções
SOLUCÃO DAS ATIVIDADES COM GEOTIRAS
SOLUCÃO DAS ATIVIDADES COM GEOTIRAS 1. Representação de retas nas seguintes posições: i. Retas paralelas ii. Retas concorrentes 2. Representação de poligonais: i. Aberta simples ii. Aberta não simples
ATIVIDADES COM GEOPLANO ISOMÉTRICO
ATIVIDADES COM GEOPLANO ISOMÉTRICO Observações. Os pinos ou pregos do geoplano isométrico são chamados de pontos. A menor distância entre dois pontos consecutivos é estabelecida como a unidade de comprimento
ATIVIDADES COM GEOPLANO QUADRANGULAR
ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida como a unidade
SOLUCÃO DAS ATIVIDADES COM POLÍGONOS
SOLUCÃO DAS ATIVIDADES COM POLÍGONOS 1. Classificação das vinte figuras de Polígonos segundo o número dos seus lados. Representação em tabela. Número lados de Polígono Representação gráfica Três lados
Revisional 3 Bim - MARCELO
6º Ano Revisional 3 Bim - MARCELO 1) Represente no papel quatro pontos distintos e, por eles, determine dois segmentos de reta distintos. 2) Observe os segmentos de reta na figura. Escreva quantos são
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.
ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:
GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.
PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
SOLUÇÃO DAS ATIVIDADES COM CALEIDOSCÓPIOS DIÉDRICOS
SOLUÇÃO DAS ATIVIDADES COM CALEIDOSCÓPIOS DIÉDRICOS 1. Classificação dos polígonos regulares convexos pelo número de lados e medida em graus do ângulo central correspondente. Polígono regular Triângulo
Triângulos classificação
Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
Aula 21 - Baiano GEOMETRIA PLANA
Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.
Aula 1: Relembrando Polígonos
1 Aula 1: Relembrando Polígonos Definição (Lados): Cada um dos segmentos de reta que une vértices consecutivos. A palavra Polígono é oriunda do grego e significa: Poli (muitos) + gono (ângulos). Polígonos
ATIVIDADES COM POLIHEXES
ATIVIDADES COM POLIHEXES Observação. Uma figura plana chamada figura nxm é um paralelogramo com lados adjacentes medindo m unidades, mu, e n unidades, nu, de comprimento, mu x nu, respectivamente. No caso
POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS
7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Algumas propriedades dos quadriláteros Nuno Marreiros Antes de começar Não te esqueças que o retângulo, o losango e o quadrado são membros da família dos paralelogramos.
SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR
SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida
ATIVIDADES COM GEOPLANO CIRCULAR
ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 24 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados de 1 até 24
DESENHO TÉCNICO ( AULA 02)
DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta
Triângulos DEFINIÇÃO ELEMENTOS
Triângulos DEFINIÇÃO Do latim - triangulu, é um polígono de três lados e três ângulos. Os três ângulos de um triângulo são designados por três letras maiúsculas, B e C e os lados opostos a eles, pelas
Geometria Plana. Exterior do ângulo Ô:
Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado
SOLUCÃO DAS ATIVIDADES COM GEOPLANO ISOMÉTRICO
SOLUCÃO DAS ATIVIDADES COM GEOPLANO ISOMÉTRICO Observações. Os pinos ou pregos do geoplano isométrico são chamados de pontos. A menor distância entre dois pontos consecutivos é estabelecida como a unidade
PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS
TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto
Equilátero Isósceles Escaleno
TRIÂNGULOS Triângulo são polígonos formados por três lados. Os polígonos, por sua vez, são figuras geométricas formadas por segmentos de reta que, dois a dois, tocam-se em seus pontos extremos, mas que
Ângulos, Triângulos e Quadriláteros. Prof Carlos
Ângulos, Triângulos e Quadriláteros. Prof Carlos RECORDANDO... Ângulos formados por duas retas paralelas cortadas por uma transversal 2 1 3 4 6 5 7 8 Correspondentes: 1 e 5, 2 e 6, 3 e 7, 4 e 8. Alternos
O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS
O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS POLÍGONOS: PROPRIEDADES E CLASSIFICAÇÃO se prolongarmos os lados de um polígono obtêm-se os ângulos externos; Num polígono: os ângulos
Exercícios sobre Estudo dos Polígonos
Exercícios sobre Estudo dos Polígonos Material de apoio do Extensivo 1. (Uerj) Ao observar, em seu computador, um desenho como o apresentado a seguir, um estudante pensou tratar-se de uma curva. Porém,
O que é triângulo (*)
Escola SESI Jundiaí Anápolis Disciplina: Matemática Turma: 1º Ano Professor (a) : César Lopes de Assis O que é triângulo (*) Considere três pontos A, B e C não colineares. Chama-se triângulo à figura geométrica
Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações.
FIGURAS BIDIMENSIONAIS Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. O termo "polígono", por exemplo, aparece em alguns textos como uma figura plana
Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:
GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre
O que é triângulo (*) (*) Extraído do livro: Vencendo com a matemática; Miguel Asis Name, Editora Brasil
Escola SESI Jundiaí Anápolis Disciplina: Matemática Turma: Geometria 1º Ano Professor (a) : César Lopes de Assis O que é triângulo (*) (*) Extraído do livro: Vencendo com a matemática; Miguel Asis Name,
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de
ATIVIDADES COM MOSAICOS
ATIVIDADES COM MOSAICOS Observação. Para o desenvolvimento das seguintes Atividades, serão utilizados conjuntos ou coleções de peças de Polígonos. Em cada Atividade especificamos quais são as figuras planas
SOLUCÃO DAS ATIVIDADES COM MOSAICOS
SOLUCÃO DAS ATIVIDADES COM MOSAICOS. Medidas dos ângulos internos dos polígonos regulares convexos, em graus. Lados Ângulo interno Lados Ângulo interno 2 50 4 90 5 56 5 08 8 6 20 20 62 7 28 4 24 65 7 8
FIGURAS GEOMÉTRICAS. MEDIDA
7º ANO FIGURAS GEOMÉTRICAS. MEDIDA Propriedades dos trapézios, paralelogramos e papagaios Nuno Marreiros Antes de começar Não te esqueças que o retângulo, o losango e o quadrado são membros da família
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;
ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.
ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do
Prof. Danillo Alves REVISÃO. Operações com números decimais. Retas, triângulo e quadriláteros. números decimais
Prof. Danillo Alves REVISÃO Operações com números decimais Porcentagem Frações e Retas, triângulo e quadriláteros números decimais OPERAÇÕES COM NÚMEROS DECIMAIS Exemplos: Adicionando e Subtraindo números
SOLUÇÃO DAS ATIVIDADES COM POLIHEXES
SOLUÇÃO DAS ATIVIDADES COM POLIHEXES 1. Representação de monohexe, bihexe e trihexes. Monohexe Bihexe Trihexes 2. Classificação dos trihexes, bihexe e monohexe pelo número de lados e pelo número de vértices.
EMENTA ESCOLAR III Trimestre Ano 2014
EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro
NOME: ANO: 3º Nº: PROFESSOR(A):
NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
Aulas de Geometria Figuras Geométricas
Aulas de Geometria Figuras Geométricas No plano, triângulo (também aceito como trilátero) é a figura geométrica que ocupa o espaço interno limitado por três linhas retas que concorrem, duas a duas, em
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Figuras no plano Retas, semirretas e segmentos de reta Ângulos: amplitude e medição Polígonos: propriedades e classificação Círculo e circunferência: propriedades e construção Reflexão, rotação
Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas
Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana
Definição de Polígono
Definição de Polígono Figura plana limitada por segmentos de recta, chamados lados dos polígonos onde cada segmento de recta, intersecta exactamente dois outros extremos; se os lados forem todos iguais
Conceitos básicos de Geometria:
Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente
GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus.
GEOMETRIA Ângulos É a abertura existente entre duas semi-retas que tem a mesma origem. Ângulo reto é formado por duas semi-retas perpendiculares, ou seja, uma horizontal e uma vertical sendo o ponto de
TRABALHO SOBRE ÂNGULOS E POLÍGONOS - 8º ANO- ENSINO FUNDAMENTAL VALOR: 4,0 PONTOS INSTRUÇÕES - LEIA COM MUITA ATENÇÃO
TRABALHO SOBRE ÂNGULOS E POLÍGONOS - 8º ANO- ENSINO FUNDAMENTAL - 2014 - VALOR: 4,0 PONTOS INSTRUÇÕES - LEIA COM MUITA ATENÇÃO - O envio das respostas será aceito até: 16/04/2014, às 23h59min. Faça seu
Polígonos. Disciplina: Matemática Aplicada Prof. Filipe Arantes Fernandes
Polígonos Disciplina: Matemática Aplicada Prof. Filipe Arantes Fernandes [email protected] Polígonos Polígonos é uma linha fechada formada apenas por segmentos de reta que não se cruzam
RETAS E CIRCUNFERÊNCIAS
RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos
1. (Uece) Se, em um polígono convexo, o número de lados n é um terço do número de diagonais, então o valor de n é a) 9. b) 11. c) 13. d) 15.
1. (Uece) Se, em um polígono convexo, o número de lados n é um terço do número de diagonais, então o valor de n é a) 9. b) 11. c) 13. d) 15. 2. (Espm) Na figura abaixo, ABCD é um quadrado, BDE é um triângulo
MATEMÁTICA 2 Ângulos PROFESSOR: TÚLIO 1. b) 52º10 25 d) 127º12 15
Ângulos 01 O ângulo de 2º 8 25 equivale a: a) 9180 b) 2825 c) 625 d) 7705 02 25347 corresponde a: a) 8º 9 54 b) 9º 25 42 c) 2º 53 47 d) 5º 12 35 e) 7º 2 27 03 (ESA/2000) A transformação de 9º em segundos
Matemática GEOMETRIA PLANA. Professor Dudan
Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A
Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D)
Treino Matemático ssunto: ircunferência e círculo. 6º ano Ficha de trabalho 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? () () () (). Na figura sabe-se a reta é tangente
Aula 3 Polígonos Convexos
MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos
O quadrado e outros quadriláteros
Acesse: http://fuvestibular.com.br/ A UUL AL A O quadrado e outros quadriláteros Para pensar No mosaico acima, podemos identificar duas figuras bastante conhecidas: o quadrado, de dois tamanhos diferentes,
Receita para ter sucesso em Matemática
Receita para ter sucesso em Matemática Muita atenção nas aulas + Estudo q. b. + Interesse + Organização + Salpicar com muita brincadeira nos tempos livres + Misturar com a disponibilidade, a exigência
SOLUÇÃO DAS ATIVIDADES COM POLITANS
SOLUÇÃO DAS ATIVIDADES COM POLITANS Observações. - Chamamos de a a cada um dos catetos e de b a hipotenusa dos triângulos retângulos congruentes que formam os politans. - Para medições posteriores, também
POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS
7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Ângulos e triângulos Nuno Marreiros Antes de começar O Alfabeto Grego O alfabeto utilizado para escrever a Língua grega teve o seu desenvolvimento por volta
Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I
6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 5 Quadriláteros Os dois dias mais importantes da sua vida são o dia em que você nasceu e o dia em que você descobre o porquê. (Mark Twain) SUMÁRIO
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
Professores: Elson Rodrigues Marcelo Almeida Gabriel Carvalho Paulo Luiz Ramos
Definição; Número de diagonais de um polígono convexo; Soma das medidas dos ângulos internos e externos; Polígonos Regulares; Relações Métricas em um polígono regular; Professores: Elson Rodrigues Marcelo
SOLUÇÃO DAS ATIVIDADES COM POLIDELTAS
SOLUÇÃO DAS ATIVIDADES COM POLIDELTAS Observação. Adoptamos o comprimento dos lados dos triângulos equiláteros congruentes que formam os polideltas como sendo igual a uma unidade, 1u, de comprimento. Uma
Geometria Espacial Profº Driko
Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos
GEOMETRIA MÉTRICA ESPACIAL
GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'
Prova - 26 de abril 2ª chamada 29 de abril
ª série - REVISÃO Prova - 6 de abril ª chamada 9 de abril Nome dos polígonos De acordo com o número de n lados, os polígonos recebem nomes especiais. Veja a seguir as correspondências: n = 3 triângulo
RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL
GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma
Tarefas de exames. Quadriláteros I. Definições e propriedades gerais. Classificações.
Tarefas de exames Quadriláteros I Definições e propriedades gerais. Classificações. Neste caderno de apoio, encontras alguns exemplos de tarefas de exames de países como Portugal, Austrália, Espanha, Inglaterra,
GEOMETRIA: POLÍGONOS
Atividade: Polígonos (ECA 05 Atividade para 13/04/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: POLÍGONOS ATENÇÃO: Estimados alunos, venho lembrar que somente
CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.
CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo
Geometria 8 Ano A/B/C/D Prof. Israel Lopes
Geometria 8 Ano A/B/C/D Prof. Israel Lopes QUADRILÁTEROS (Cap. 18) A presença da forma dos quadriláteros é muito frequente em situações do dia a dia, como em caixas, malas, casas, edifícios etc. Vejamos!
Desenho Mecânico. Prof. Carlos Eduardo Turino
Desenho Mecânico Prof. Carlos Eduardo Turino [email protected] Objetivo da Aula Aplicar a construção de desenhos geométricos utilizando régua e compasso Conceitos Básicos Retas paralelas
BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE E TEÁTI O E QUESTÕES - GEOETRI - 8º O - ESIO FUETL ============================================================================ 01- Um polígono de 4 lados chama-se: () quadrado. () paralelogramo.
Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas
1. Observa as linhas seguintes. 1.1. Identifica: a) as linhas poligonais; b) as linhas poligonais simples; c) as linhas poligonais fechadas. 1.2. Das linhas poligonais, identifica as que definem: a) polígonos
DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)
DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
MINISTÉRIO DA EDUCAÇÃO
PROPOSTA DIDÁTICA 1 Dados de Identificação 1.1 Nome do bolsista: Gabriel Prates Brener 1.2 Público alvo: 6º ao 9º ano do Ensino Fundamental e Magistério 1.3 Duração: 5 horas 1.4 Conteúdo desenvolvido:
MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução
MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. Temos que: a reflexão do ponto relativamente ao eixo r é o ponto a translação do ponto
Com base no texto e assuntos ligados a ele, marque a alternativa correta nas questões 02 e 03.
1º BIM P2 HABILIDADES LISTA DE EXERCÍCIOS MATEMÁTICA 6º ANO Aluno (a): Professor: Turma: Turno:... Data: / /2014 Unidade: ( ) Asa Norte ( ) Águas Lindas ( )Ceilândia ( ) Gama ( )Guará ( ) Pistão Norte
Exercícios Recuperação 2º semestre
ENSINO FUNDAMENTAL II Aluno: Ano: 6 Turno: Matutino Turma: Data: / / 2014 DG Professor (a):lucimar Exercícios Recuperação 2º semestre QUESTÃO 01 Polígono é uma figura geométrica cuja palavra é proveniente
GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede
GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro
Polígonos Regulares. 1. (G1 - cftrj 2014) Na figura abaixo, ABCE é um retângulo e CDE é um triângulo equilátero.
Polígonos Regulares 1. (G1 - cftrj 2014) Na figura abaixo, ABCE é um retângulo e CDE é um triângulo equilátero. Sabendo que o perímetro do polígono ABCDE é 456 cm e CD mede 68 cm, qual é a medida do lado
COLÉGIO MARQUES RODRIGUES - SIMULADO
COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P5 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 801 Questão 1 Qual dos
A1R. Matemática - Linhas e ângulos. Matemática - Linhas e ângulos. 1. Define os conceitos de: Reta. Semirreta. Segmento de reta.
A1 Define os conceitos de: Reta Semirreta Segmento de reta A1R Reta É uma linha que não tem princípio nem fim. Semirreta É uma linha que tem princípio e não tem fim. Segmento de reta É uma linha que tem
Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções:
EXERCÍCIOS DE REVISÃO: Quadriláteros Aluno (a): LISTA 08 Nº: Ano: 8º Unidade Barra Leandro Figueira Freitas Instruções: VOCÊ PODERÁ FAZER ESTAS QUESTÕES DIRETAMENTE NO CADERNO, OU, IMPRIMIR ESTAS FOLHAS
Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP
Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação
SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR
SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 4 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução
MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. omo a reflexão do ponto e eixo é o ponto a imagem do ponto pela translação associada ao
OS PRISMAS. 1) Conceito :
1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :
CAPÍTULO 5 POLÍGONOS. é denominada linha poligonal. A 3 D B A 2 A 4 A 5 A 1. A n-1. A n
PÍTULO 5 POLÍGONOS efinição 5.1: Sejam 1, 2,..., n n pontos coplanares dos quais três quaisquer deles não são colineares. união dos segmentos, 1 2 2 3, 3 4,..., n 1 n é denominada linha poligonal. 3 2
Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo x indicado.
Faculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Pós-Laboral 1 0 Teste de Fundamentos de Geometria. Variante Duração: 90 minutos 18.03.2013 1. (3 valores) Sabe-se
