SOLUCÃO DAS ATIVIDADES COM MOSAICOS
|
|
|
- Jónatas Vilanova Ribas
- 9 Há anos
- Visualizações:
Transcrição
1 SOLUCÃO DAS ATIVIDADES COM MOSAICOS. Medidas dos ângulos internos dos polígonos regulares convexos, em graus. Lados Ângulo interno Lados Ângulo interno n (- 2 ) n 2. Cópias congruentes dos seguintes polígonos regulares convexos podem ser unidas por lados concorrentes em volta de um vértice de forma tal que eles rodeiam completamente o vértice sem deixar espaços abertos e sem superposições. Não é possível fazer mosaico regular com pentágono regular convexo Não é possível formar mosaico regular com heptágono regular convexo Para rodear um vértice são necessários pelo menos três polígonos iguais; se com três heptágonos existe superposição então isso acontece com qualquer polígono regular convexo com mais de sete lados, pois a medida dos ângulos internos aumenta com o número de lados do polígono.
2 . i. Polígonos regulares convexos tais que as medidas dos seus ângulos internos são divisores de º: triângulo equilátero, quadrado, hexágono regular convexo. ii. Seis triângulos equiláteros. Quatro quadrados. Três hexágonos regulares convexos 4. Exemplos de mosaicos regulares. 5. Para que um polígono regular convexo de n lados forme um mosaico é necessário que a medida do ângulo interno do polígono, ou seja, 80 ( - 2 ), seja um divisor de. Portanto existe um n número natural m tal que 80 ( - 2 ) = ; de onde =. n m m n Logo, (n 2) (m 2) = 4, onde m, n. Resultam os pares de soluções: {,6}, {4, 4} e {6, }, onde em cada par o primeiro número indica o número de lados do polígono e o segundo número indica o número de cópias desse polígono em torno de cada vértice da tesselação. Os únicos mosaicos regulares são os mosaicos achados na Atividade. 6. Seja m o número de polígonos regulares concorrendo em um vértice de um mosaico semirregular, logo, m = m + m m k, onde m i é o número de polígonos regulares com ângulo interno igual a θ i em cada vértice. De onde, = m θ + m 2 θ m k θ k m, porque os ângulos dos polígonos regulares convexos que concorrem em um vértice pelo menos medem º. Logo, obtemos m 6. Então, em cada tesselação semirregular existe um mínimo de três e um máximo de seis polígonos regulares concorrentes em cada vértice. 2
3 7. Se três polígonos regulares convexos concorrem em um vértice, sem espaços vazios e sem sobreposições, então a soma das medidas dos seus ângulos internos é igual a º; se esses polígonos têm m, n e p lados, temos que 80 ( - 2 ) + 80 ( - 2 ) + 80 ( - 2 ) = ; de m n p onde + + =. Todas as dez ternas de números soluções da equação anterior estão m n p 2 representadas na seguinte tabela. Mosaico Solução Número Ângulo interno Lados ( ) indica que essa configuração de polígonos forma uma tesselação do plano. A solução 0 corresponde a um dos mosaicos regulares. Os arranjos de polígonos restantes tem a característica que a soma de seus ângulos internos em volta de um vértice mede º, mas não é possível estender esse padrão a todo o plano. Os polígonos regulares convexos, em arranjo de três em cada vértice que formam uma tesselação semirregular do plano são:
4 8. Se quatro polígonos regulares convexos concorrem em um vértice então as somas das medidas dos seus ângulos internos é igual a º; se esses polígonos têm m, n, p e q lados, temos que 80 ( - 2 m ) + 80 ( - 2 n ) + 80 ( - 2 p ) + 80 ( - 2 q ) = ; de onde segue m + n + p + q = 2. Todos os sete conjuntos de números soluções da equação anterior estão representadas na seguinte tabela. Mosaico Solução Número Ângulo interno Lados ( ) indica que essa configuração de polígonos forma uma tesselação do plano. A solução 7 corresponde a um dos mosaicos regulares. Os arranjos de polígonos restantes tem a característica que a soma de seus ângulos internos em volta de um vértice mede º, mas não é possível estender esse padrão a todo o plano. Os polígonos regulares convexos, em arranjo de quatro em cada vértice que formam tesselação semirregular do plano são: 4
5 9. Se cinco polígonos regulares convexos concorrem em um vértice então as somas das medidas dos seus ângulos internos é igual a º; se esses polígonos têm m, n, p, q e r lados, temos que 80 ( - 2 ) + 80 ( - 2 ) + 80 ( - 2 ) + 80 ( - 2 ) + 80 ( - 2 ) = ; de onde segue m n p q r =. m n p q r 2 Todos os três conjuntos de números soluções da equação anterior estão representadas na seguinte tabela. Mosaico Solução Número Ângulo interno Lados ( ) indica que essa configuração de polígonos forma um tesselação do plano. Os polígonos regulares convexos, em arranjo de cinco em cada vértice que formam tesselação semirregular do plano são: Observação. Completa o quadro de soluções a número 2 que corresponde ao único arranjo possível de seis polígonos regulares convexos em torno de um vértice; sendo este o caso de seis triângulos equiláteros em volta de cada vértice, onde a soma dos seus ângulos concorrentes em cada vértice é igual a x 6 =. Este mosaico formado por triângulos equiláteros é um mosaico regular. 5
6 0. Representação dos mosaicos semirregulares no plano. 6
7 . Determinação de dois eixos de simetria nos mosaicos semirregulares. O mosaico semirregular formado por hexágonos regulares convexos e triângulos equiláteros é o único dos oito mosaicos semirregulares que não tem eixo de simetria. 7
8 2. Formação de mosaicos unicelulares lado a lado com triângulos.. Formação de mosaicos unicelulares lado a lado com retângulos e com paralelogramos. 8
9 4. Representação de pavimentações unicelulares lado a lado onde as peças são losangos ou rombos. 9
10 5. Formação de mosaicos unicelulares lado a lado com quadriláteros convexos que não são paralelogramos. 6. Formação de pavimentações do plano unicelulares lado a lado com os pentágonos irregulares convexos dados. 0
11 7. Construção de mosaicos unicelulares lado a lado com os polígonos irregulares não convexos dados.
12 8. Construção de exemplos de tesselações lado a lado com diferentes tipos de polígonos convexos. 9. Representação de mosaicos lado a lado formados por polígonos regulares convexos e por polígonos irregulares convexos. 2
13 20.i. Representação de mosaico unicelular não lado a lado formado por triângulos. ii. Representação de mosaico unicelular não lado a lado formado por quadrados. 2. Construção de mosaico não lado a lado formado com dois tipos de polígonos regulares.
14 22. Representação de mosaicos unicelulares não lado a lado formados com paralelogramos congruentes. 4
15 2. Construção dos polígonos dos centros em mosaicos das Atividades 4,, 20 e 22. 5
16 24. Construção e identificação da pavimentação dual de cada uma das pavimentações regulares. A pavimentação regular formada por triângulos equiláteros tem uma pavimentação dual formada por hexágonos regulares convexos. A pavimentação regular formada por quadrados tem uma pavimentação dual formada por quadrados. A pavimentação regular formada por hexágonos regulares convexos tem uma pavimentação dual formada por triângulos equiláteros. Conclusão. As pavimentações duais das pavimentações regulares também são todas elas pavimentações regulares. 6
17 25. Construção da pavimentação dual de cada uma das pavimentações semirregulares. 7
18 26. Representação de pavimentações do plano formadas com polígonos regulares do mesmo tipo e de dois ou mais tamanhos diferentes. Mosaico formado com triângulos equiláteros de três tamanhos. Mosaico formado com quadrados de quatro tamanhos. 8
19 27. Análise e classificação das peças ou polígonos que formam os mosaicos e classificação das tesselações do plano representadas nas seguintes gravuras. - Mosaico irregular formados por quadrados congruentes e por triângulos retângulos isóscele congruentes. - Mosaicos irregulares formados por quadrados de três tamanhos e por triângulos retângulos isósceles congruentes. - Mosaico regular formado por triângulos equiláteros. - Mosaicos irregulares não lado a lado, formados por quadrados de dois tamanhos, por triângulos retângulos isósceles de dois tamanhos e por retângulos congruentes. - Mosaicos irregulares não lado a lado, formados por quadrados de dois tamanhos e por triângulos retângulos isósceles de dois tamanhos. - Mosaico irregular não lado a lado, formado por quadrados de dois tamanhos e por triângulos retângulos isósceles congruentes. - Mosaico irregular não lado a lado, formado por quadrados de dois tamanhos, por triângulos retângulos isósceles congruentes e por retângulos congruentes. - Mosaico irregular não lado a lado, formado por triângulos retângulos isósceles de dois tamanhos, por retângulos congruentes e por losangos congruentes. 9
20 - Mosaico irregular não lado a lado, formado por triângulos equiláteros congruentes e por hexágonos regulares convexos congruentes. - Mosaico semirregular formado por quadrados congruentes e por octógonos regulares convexos congruentes. - Mosaico irregular lado a lado formado por triângulos equiláteros congruentes e por hexágonos regulares convexos congruentes. - Mosaico irregular não lado a lado, formado por triângulos equiláteros congruentes, triângulos retângulos isósceles congruentes, hexágonos regulares convexos congruentes e retângulos congruentes. - Mosaico irregular lado a lado formado por quadrados congruentes, por triângulos isósceles congruentes e por octógonos congruentes. - Mosaico irregular não lado a lado formado por triângulos retângulos isósceles congruentes, por retângulos congruentes, por losangos congruentes e por trapézios retângulos de dois tamanhos. - Mosaico irregular não lado a lado formado por triângulos equiláteros congruentes, losangos congruentes e hexágonos regulares convexos congruentes. - Mosaico irregular não lado a lado, formado por triângulos retângulos de dois tamanhos, por quadrados de dois tamanhos e por trapézios isósceles congruentes. 20
21 28. i. Representação dos sete arranjos possíveis dos polígonos dardo e pipa de Penrose em volta de um vértice. ii. Identificação dos sete arranjos das peças dardo e pipa de (i) no seguinte mosaico de Penrose, destacados em cor preta na ilustração. 2
22 29. Construção de exemplos de mosaicos não periódicos formados com cópias congruentes dos polígonos de Penrose dardo e pipa. 22
23 0. Determinação do polígono base para a construção das figuras que cobrem o plano nas seguintes obras de M. C. Escher e das simetrias desses mosaicos de M. C. Escher. Célula: polígono base é o triângulo equilátero Simetrias: - Translação. - Rotação de ordem seis com centro em A. Célula: polígono base é o triângulo equilátero Simetrias: - Translação. - Reflexão deslizante. Célula: polígono base é o quadrado Simetrias: - Translação. - Central com centro O ou rotacional de ordem dois. Célula: polígono base é o quadrado Simetrias: - Translação. - Rotacional de ordem quatro com centro O. Célula: polígono base é o hexágono regular convexo Simetrias: - Translação. - Rotacional de ordem três com centro A. 2
ATIVIDADES COM MOSAICOS
ATIVIDADES COM MOSAICOS Observação. Para o desenvolvimento das seguintes Atividades, serão utilizados conjuntos ou coleções de peças de Polígonos. Em cada Atividade especificamos quais são as figuras planas
ATIVIDADES COM POLÍGONOS
ATIVIDADES COM POLÍGONOS Observação. Para o desenvolvimento das seguintes Atividades, levando em conta que Polígonos é uma coleção de peças com um número elevado de elementos, utilizamos as subcoleções
SOLUCÃO DAS ATIVIDADES COM POLÍGONOS
SOLUCÃO DAS ATIVIDADES COM POLÍGONOS 1. Classificação das vinte figuras de Polígonos segundo o número dos seus lados. Representação em tabela. Número lados de Polígono Representação gráfica Três lados
SOLUÇÃO DAS ATIVIDADES COM CALEIDOSCÓPIOS DIÉDRICOS
SOLUÇÃO DAS ATIVIDADES COM CALEIDOSCÓPIOS DIÉDRICOS 1. Classificação dos polígonos regulares convexos pelo número de lados e medida em graus do ângulo central correspondente. Polígono regular Triângulo
MOSAICOS Descrição Mosaico tesselação recobrimento do plano
MOSAICOS Descrição Mosaico ou tesselação ou recobrimento do plano é um padrão de figuras planas que cobre inteiramente o plano sem superposições das figuras nem espaços vazios entre elas. Dizemos que as
SOLUCÃO DAS ATIVIDADES COM VARETAS
SOLUCÃO DAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas
SOLUCÃO DAS ATIVIDADES COM GEOTIRAS
SOLUCÃO DAS ATIVIDADES COM GEOTIRAS 1. Representação de retas nas seguintes posições: i. Retas paralelas ii. Retas concorrentes 2. Representação de poligonais: i. Aberta simples ii. Aberta não simples
SOLUÇÃO DAS ATIVIDADES COM POLIDELTAS
SOLUÇÃO DAS ATIVIDADES COM POLIDELTAS Observação. Adoptamos o comprimento dos lados dos triângulos equiláteros congruentes que formam os polideltas como sendo igual a uma unidade, 1u, de comprimento. Uma
ATIVIDADES COM GEOTIRAS
ATIVIDADES COM GEOTIRAS 1. Material: Geotiras i. Represente varias retas paralelas. ii. Represente duas retas concorrentes em um ponto. 2. Material: Geotiras Represente as seguintes poligonais: i. Poligonal
ATIVIDADES COM VARETAS
ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas do mesmo comprimento.
GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.
PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada
ATIVIDADES COM GEOPLANO QUADRANGULAR
ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida como a unidade
SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR
SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida
1) (SIMAVE). A logomarca de uma empresa é formada por um hexágono regular, um trapézio retângulo e um quadrado, como mostra a figura abaixo.
1) (SIMAVE). A logomarca de uma empresa é formada por um hexágono regular, um trapézio retângulo e um quadrado, como mostra a figura abaixo. Quanto mede o ângulo α, indicado nessa figura? (A) 30º (B) 45º
ATIVIDADES COM GEOPLANO ISOMÉTRICO
ATIVIDADES COM GEOPLANO ISOMÉTRICO Observações. Os pinos ou pregos do geoplano isométrico são chamados de pontos. A menor distância entre dois pontos consecutivos é estabelecida como a unidade de comprimento
A PAVIMENTAÇÃO DO PLANO
1 A PAVIMENTAÇÃO DO PLANO I) O modelo prático : Uma experiência prática muito conhecida por todos é a colocação de azulejos e ladrilhos nas paredes e pisos. É bastante intuitivo o senso comum a respeito
Aula 21 - Baiano GEOMETRIA PLANA
Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.
SOLUÇÃO DAS ATIVIDADES COM POLIHEXES
SOLUÇÃO DAS ATIVIDADES COM POLIHEXES 1. Representação de monohexe, bihexe e trihexes. Monohexe Bihexe Trihexes 2. Classificação dos trihexes, bihexe e monohexe pelo número de lados e pelo número de vértices.
SOLUCÃO DAS ATIVIDADES COM GEOPLANO ISOMÉTRICO
SOLUCÃO DAS ATIVIDADES COM GEOPLANO ISOMÉTRICO Observações. Os pinos ou pregos do geoplano isométrico são chamados de pontos. A menor distância entre dois pontos consecutivos é estabelecida como a unidade
Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações.
FIGURAS BIDIMENSIONAIS Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. O termo "polígono", por exemplo, aparece em alguns textos como uma figura plana
Prova - 26 de abril 2ª chamada 29 de abril
ª série - REVISÃO Prova - 6 de abril ª chamada 9 de abril Nome dos polígonos De acordo com o número de n lados, os polígonos recebem nomes especiais. Veja a seguir as correspondências: n = 3 triângulo
Ângulos, Triângulos e Quadriláteros. Prof Carlos
Ângulos, Triângulos e Quadriláteros. Prof Carlos RECORDANDO... Ângulos formados por duas retas paralelas cortadas por uma transversal 2 1 3 4 6 5 7 8 Correspondentes: 1 e 5, 2 e 6, 3 e 7, 4 e 8. Alternos
Exercícios sobre Estudo dos Polígonos
Exercícios sobre Estudo dos Polígonos Material de apoio do Extensivo 1. (Uerj) Ao observar, em seu computador, um desenho como o apresentado a seguir, um estudante pensou tratar-se de uma curva. Porém,
EMENTA ESCOLAR III Trimestre Ano 2014
EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro
MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS
MTEMÁTI - 1 o NO MÓULO 52 POLÍGONOS E QURILÁTEROS B b a c d B E B E B β X γ Y W α Z θ B B B B B B B B B M N B M N Fixação 1) Qual o polígono convexo que tem 90 diagonais? Fixação F 2) diferença entre
Exercícios Recuperação 2º semestre
ENSINO FUNDAMENTAL II Aluno: Ano: 6 Turno: Matutino Turma: Data: / / 2014 DG Professor (a):lucimar Exercícios Recuperação 2º semestre QUESTÃO 01 Polígono é uma figura geométrica cuja palavra é proveniente
SOLUÇÃO DAS ATIVIDADES COM POLITANS
SOLUÇÃO DAS ATIVIDADES COM POLITANS Observações. - Chamamos de a a cada um dos catetos e de b a hipotenusa dos triângulos retângulos congruentes que formam os politans. - Para medições posteriores, também
SOLUÇÃO DOS QUEBRA-CABEÇAS COM VARETAS
SOLUÇÃO DOS QUEBRA-CABEÇAS COM VARETAS Quebra-cabeça Varetas 1 Formação de todos os conjuntos possíveis de triângulos equiláteros com doze varetas. Com as doze peças são construídos sete conjuntos diferentes
POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS
7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Algumas propriedades dos quadriláteros Nuno Marreiros Antes de começar Não te esqueças que o retângulo, o losango e o quadrado são membros da família dos paralelogramos.
ATIVIDADES COM POLIHEXES
ATIVIDADES COM POLIHEXES Observação. Uma figura plana chamada figura nxm é um paralelogramo com lados adjacentes medindo m unidades, mu, e n unidades, nu, de comprimento, mu x nu, respectivamente. No caso
Aula 3 Polígonos Convexos
MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos
TRABALHO 2 o TRIMESTRE
TRABALHO 2 o TRIMESTRE Disciplina: Matemática 1 Série: 3 o Turma: Azul Data: 16.08.18 Professor: Sérgio Tambellini Ensino: Médio Trimestre: 2 o Valor: 1,5 pto. Nome: n o : Nome: n o : Nota: Nome: n o :
MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução
MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. omo a reflexão do ponto e eixo é o ponto a imagem do ponto pela translação associada ao
SOLUÇÃO DAS ATIVIDADES COM POLIMINÓS
SOLUÇÃO DAS ATIVIDADES COM POLIMINÓS 1. Construção de dominó e triminós. monominó dominó triminós 2. Recobrimento de um tabuleiro de xadrez com dominós. No tabuleiro de xadrez depois de retirar os dois
ATIVIDADES COM GEOPLANO CIRCULAR
ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 24 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados de 1 até 24
O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS
O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS POLÍGONOS: PROPRIEDADES E CLASSIFICAÇÃO se prolongarmos os lados de um polígono obtêm-se os ângulos externos; Num polígono: os ângulos
MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução
MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. Temos que: a reflexão do ponto relativamente ao eixo r é o ponto a translação do ponto
DESENHO TÉCNICO ( AULA 02)
DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta
Si, Se, Ai, Ae, diagonais
Obs.: As atividades desta bateria contemplam o conteúdo do trimestre. Si, Se, Ai, Ae, diagonais 1. Calcule a soma dos ângulos internos de um triângulo qualquer e de um retângulo qualquer. 2. Calcule o
GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus.
GEOMETRIA Ângulos É a abertura existente entre duas semi-retas que tem a mesma origem. Ângulo reto é formado por duas semi-retas perpendiculares, ou seja, uma horizontal e uma vertical sendo o ponto de
Mosaicos do Plano Mário Dalcin ( Montevidéu Uruguai) Sérgio Alves (IME USP)
Revista do Professor de Matemática, No. 40 Mosaicos do Plano Mário Dalcin ( Montevidéu Uruguai) Sérgio Alves (IME USP) A sogra de um professor de Matemática, cansada de sempre usar triângulos, quadrados
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de
1. (Uece) Se, em um polígono convexo, o número de lados n é um terço do número de diagonais, então o valor de n é a) 9. b) 11. c) 13. d) 15.
1. (Uece) Se, em um polígono convexo, o número de lados n é um terço do número de diagonais, então o valor de n é a) 9. b) 11. c) 13. d) 15. 2. (Espm) Na figura abaixo, ABCD é um quadrado, BDE é um triângulo
Prof. Jorge. Estudo de Polígonos
Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem
Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo
Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br
CAPÍTULO 5 POLÍGONOS. é denominada linha poligonal. A 3 D B A 2 A 4 A 5 A 1. A n-1. A n
PÍTULO 5 POLÍGONOS efinição 5.1: Sejam 1, 2,..., n n pontos coplanares dos quais três quaisquer deles não são colineares. união dos segmentos, 1 2 2 3, 3 4,..., n 1 n é denominada linha poligonal. 3 2
Escola Secundária de Lousada
Escola Secundária de Lousada Matemática do 8º ano FT nº8 Data: / 0 / 01 Assunto: Triângulos, quadriláteros e outros polígonos Lição nº _ e _ Um Quadrilátero é um polígono com quatro lados. Os quadriláteros
Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano
Geometria Figuras no plano Retas, semirretas e segmentos de reta Ângulos: amplitude e medição Polígonos: propriedades e classificação Círculo e circunferência: propriedades e construção Reflexão, rotação
FIGURAS GEOMÉTRICAS. MEDIDA
7º ANO FIGURAS GEOMÉTRICAS. MEDIDA Propriedades dos trapézios, paralelogramos e papagaios Nuno Marreiros Antes de começar Não te esqueças que o retângulo, o losango e o quadrado são membros da família
Polígonos PROFESSOR RANILDO LOPES 11.1
Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono
Definição de Polígono
Definição de Polígono Figura plana limitada por segmentos de recta, chamados lados dos polígonos onde cada segmento de recta, intersecta exactamente dois outros extremos; se os lados forem todos iguais
Professor Alexandre Assis. Lista de exercícios de Geometria
1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo
a < 0 / > 0 a < 0 / = 0 a < 0 / < 0
FUNÇÃO DO 2 GRAU (QUADRÁTICA) a < 0 / > 0 a) Definição Denomina-se função do 2 grau toda função f : IR IR definida por f(x) = ax 2 + bx + c, com a, b, c IR e a O. b) Raízes ou zeros As raízes da função
MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à 188
MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à 88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA
Revisional 3 Bim - MARCELO
6º Ano Revisional 3 Bim - MARCELO 1) Represente no papel quatro pontos distintos e, por eles, determine dois segmentos de reta distintos. 2) Observe os segmentos de reta na figura. Escreva quantos são
TRANSFORMAÇÕES GEOMÉTRICAS
TRANSFORMAÇÕES GEOMÉTRICAS É essencial retomar a intenção de dar às transformações geométricas o seu papel importante no ensino da geometria, num tratamento que tenha por ponto de partida e desenvolva
CURSO DE GEOMETRIA LISTA
GEOMETRI Ângulos Obs.: Dois ângulos são congruentes quando têm a mesma abertura. Exemplos: Ângulos complementares Soma (medida) 90º Ângulos suplementares Soma (medida) 180º issetriz bissetriz de um ângulo
Aula 6 Polígonos. Objetivos. Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos.
MÓULO 1 - UL 6 ula 6 Polígonos Objetivos Introduzir o conceito de polígono. Estabelecer alguns resultados sobre paralelogramos. Introdução efinição 14 hamamos de polígono uma figura plana formada por um
Jogo dos polígonos. Jogo dos polígonos. Página 1/13
Jogo dos polígonos Este jogo tem como objetivos principais desenvolver a compreensão da classificação de polígonos quanto ao número de lados e da classificação hierárquica de quadriláteros, assim como
Aula 1: Relembrando Polígonos
1 Aula 1: Relembrando Polígonos Definição (Lados): Cada um dos segmentos de reta que une vértices consecutivos. A palavra Polígono é oriunda do grego e significa: Poli (muitos) + gono (ângulos). Polígonos
8 EXTENSÕES DO TEOREMA DE MORLEY
8 EXTENSÕES DO TEOREMA DE MORLEY 8.1. Em paralelogramos Analogamente ao que acontece em triângulos, as trissetrizes adjacentes dos ângulos internos, podem formar, no interior de um paralelogramo, outro
JOGOS COM VARETAS. Em todos os jogos é utilizado o mesmo Material: Varetas do mesmo comprimento.
JOGOS COM VARETAS Em todos os jogos é utilizado o mesmo Material: Varetas do mesmo comprimento. Observação 1. Nos seguintes jogos as Varetas são dispostas tais que somente têm em comum as extremidades,
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
Andre - Dirmatica. Matemática Cursos Profissionais Módulo A1 - Geometria
Andre - Dirmatica Matemática Cursos Profissionais Módulo A1 - Geometria Áreas Em algumas situações problemáticas, surge a necessidade de quantificar a porção do plano que uma determinada forma ou figura
Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas
1. Observa as linhas seguintes. 1.1. Identifica: a) as linhas poligonais; b) as linhas poligonais simples; c) as linhas poligonais fechadas. 1.2. Das linhas poligonais, identifica as que definem: a) polígonos
>> REVISÕES GERAIS: Transformações rígidas do plano
GD AULA TEÓRICA 1 Apresentação do programa e objectivos da disciplina, bibliografia, critérios de avaliação e informações gerais. Revisões gerais sobre o tipo de projecções e sistemas de representação.
CATÁLOGOS DE ATIVIDADES DA TENDÊNCIA TIC S. Alesson e Júlio
CATÁLOGOS DE ATIVIDADES DA TENDÊNCIA TIC S Alesson e Júlio CABRI- GEOMETRY TÍTULO SÉRIE OBJETIVOS ASSUNTO Construção de um 6º ano Identificar as triângulo Equilátero características do Construção de um
Unidade 6 Geometria: quadriláteros
Sugestões de atividades Unidade 6 Geometria: quadriláteros 8 MTEMÁTI 1 Matemática 1. onsidere o retângulo representado a seguir. Indique o valor da medida do ângulo correspondente a α 1 β. 40 β 4. onsidere
SOLUÇÃO DOS JOGOS COM VARETAS
SOLUÇÃO DOS JOGOS COM VARETAS 1. Fuga de triângulos Construção de uma figura formada por cinco triângulos pela eliminação de quatro varetas na figura com nove triângulos de ordem um. 2. De seis para três
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,
BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE E TEÁTI O E QUESTÕES - GEOETRI - 8º O - ESIO FUETL ============================================================================ 01- Um polígono de 4 lados chama-se: () quadrado. () paralelogramo.
Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano)
Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano) Polígonos 1. Calcule o número de diagonais de um icoságono (20 lados). 2. Determine o polígono cujo número de diagonais é o triplo do número
APÊNDICE D SEQUÊNCIA DIDÁTICA
APÊNDICE D SEQUÊNCIA DIDÁTICA ENCONTRO 1 Atividades de familiarização do menu do GeoGebra Apresentação de um PowerPoint com as informações sobre o curso e um vídeo desenvolvido no GeoGebra para estabelecermos
Unidade 6 Geometria: polígonos e circunferências
Sugestões de atividades Unidade 6 Geometria: polígonos e circunferências 9 MATEMÁTICA Matemática. Considere um decágono regular dividido em 0 triângulos isósceles congruentes, conforme a figura a seguir..
Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções:
EXERCÍCIOS DE REVISÃO: Quadriláteros Aluno (a): LISTA 08 Nº: Ano: 8º Unidade Barra Leandro Figueira Freitas Instruções: VOCÊ PODERÁ FAZER ESTAS QUESTÕES DIRETAMENTE NO CADERNO, OU, IMPRIMIR ESTAS FOLHAS
Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo
Áreas parte 1 Rodrigo Lucio Silva Isabelle Araújo Introdução Desde os egípcios, que procuravam medir e demarcar suas terras, até hoje, quando topógrafos, engenheiros e arquitetos fazem seus mapeamentos
Geometria Plana: Polígonos regulares & Áreas de Figuras Planas.
Geometria Plana: Polígonos regulares & Áreas de Figuras Planas. Bruno Cervelin DME IFM Universidade Federal de Pelotas 27 de Junho de 2019 B Cervelin (UFPel) Polígonos 27 de Junho de 2019 1 / 17 Polígonos
Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D)
Treino Matemático ssunto: ircunferência e círculo. 6º ano Ficha de trabalho 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? () () () (). Na figura sabe-se a reta é tangente
Matemática. Questão 1. 7 o ano do Ensino Fundamental Turma. 2 o Bimestre de 2016 Data / / Escola Aluno RESOLUÇÃO:
EF AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 7 o ano do Ensino Fundamental Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 2 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Qual é
Prof. Danillo Alves REVISÃO. Operações com números decimais. Retas, triângulo e quadriláteros. números decimais
Prof. Danillo Alves REVISÃO Operações com números decimais Porcentagem Frações e Retas, triângulo e quadriláteros números decimais OPERAÇÕES COM NÚMEROS DECIMAIS Exemplos: Adicionando e Subtraindo números
QUEBRA-CABEÇAS COM VARETAS
QUEBRA-CABEÇAS COM VARETAS Em todos os quebra-cabeças é utilizado o mesmo Material: Varetas do mesmo comprimento. Observação 1. Nos seguintes quebra-cabeças as Varetas são dispostas tais que elas somente
Professores: Elson Rodrigues Marcelo Almeida Gabriel Carvalho Paulo Luiz Ramos
Definição; Número de diagonais de um polígono convexo; Soma das medidas dos ângulos internos e externos; Polígonos Regulares; Relações Métricas em um polígono regular; Professores: Elson Rodrigues Marcelo
O quadrado e outros quadriláteros
Acesse: http://fuvestibular.com.br/ A UUL AL A O quadrado e outros quadriláteros Para pensar No mosaico acima, podemos identificar duas figuras bastante conhecidas: o quadrado, de dois tamanhos diferentes,
Equilátero Isósceles Escaleno
TRIÂNGULOS Triângulo são polígonos formados por três lados. Os polígonos, por sua vez, são figuras geométricas formadas por segmentos de reta que, dois a dois, tocam-se em seus pontos extremos, mas que
A origem das fórmulas das áreas de Figuras Planas
A origem das fórmulas das áreas de Figuras Planas Dentro da geometria quando nos é requerido o cálculo que envolve a área de uma figura plana, primeiro é preciso reconhecer qual a figura estamos trabalhando
Com base no texto e assuntos ligados a ele, marque a alternativa correta nas questões 02 e 03.
1º BIM P2 HABILIDADES LISTA DE EXERCÍCIOS MATEMÁTICA 6º ANO Aluno (a): Professor: Turma: Turno:... Data: / /2014 Unidade: ( ) Asa Norte ( ) Águas Lindas ( )Ceilândia ( ) Gama ( )Guará ( ) Pistão Norte
MATEMÁTICA - 3 o ANO MÓDULO 39 POLÍGONOS
MATEMÁTICA - 3 o ANO MÓDULO 39 POLÍGONOS P O Ponto P A B A e B são distintos A B A e B são coincidentes r A reta r A t reta t = AB B P s r r s A B B α A B α C A B α C A O α B B A C D B A C D α α = β β
Tarefas de exames. Quadriláteros I. Definições e propriedades gerais. Classificações.
Tarefas de exames Quadriláteros I Definições e propriedades gerais. Classificações. Neste caderno de apoio, encontras alguns exemplos de tarefas de exames de países como Portugal, Austrália, Espanha, Inglaterra,
GEOMETRIA: POLÍGONOS
Atividade: Polígonos (ECA 05 Atividade para 13/04/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: POLÍGONOS ATENÇÃO: Estimados alunos, venho lembrar que somente
POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS
7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Polígonos Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o que parece é Segmento de reta
Alfredo Volpi. Volpi morreu em 1988, em São Paulo.
1 nasceu em Lucca, Itália, em 1896. Chegou ao Brasil com pouco mais de um ano, fixando-se em São Paulo. Aos 15 anos começou a trabalhar como pintor/decorador de paredes e aos 18 pintou seu primeiro quadro:
Isometrias ESCOLA SECUNDÁRIA ANSELMO DE ANDRADE
Isometrias Isometria: do grego ισο + μέτρο (ισο = iso = igual; μέτρο = metria = medida) Uma isometria é uma transformação geométrica que preserva as distâncias entre pontos e consequentemente as amplitudes
MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução
MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg
PAVIMENTAÇÕES. vértice do polígono que não é vértice da pavimentação
PAVIMENTAÇÕES Uma pavimentação no plano é a cobertura do plano de modo a que não haja sobreposições nem espaços vazios. Uma pavimentação diz-se monoédrica ou pura se for constituída pela repetição de um
Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada.
Matemática 2 01. Pedro tem 6 bolas de metal de mesmo peso p. Para calcular p, Pedro colocou 5 bolas em um dos pratos de uma balança e a que restou, juntamente com um cubo pesando 100g, no outro prato,
GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede
GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro
Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP
Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação
Matemática do 8º ano FT nº Data: / 01 / 2013 Assunto: Isometrias: resumo Lição nº e. 1, pela reflexão de eixo r ( F
Escola Secundária de Lousada Matemática do 8º ano FT nº Data: / 01 / 2013 Assunto: Isometrias: resumo Lição nº e REFLEXÃO A reflexão: é uma isometria negativa, já que altera a orientação dos ângulos. 1.
