Cone Nível Fácil
|
|
|
- Cláudia Molinari de Barros
- 9 Há anos
- Visualizações:
Transcrição
1 Cone 016 Nível Fácil 1. (Ufjf-pism 016) São dados dois cones equiláteros C 1 e C tais que a área total de C é o dobro da área total de C 1 e que o raio da base de C 1 é cm. Sabendo que em um cone equilátero, a geratriz é o dobro do raio da base, o volume do cone C, em centímetros cúbicos, é a) 9 π b) 9 10π c) 18 π d) 18 6π e) 54 6π. (Ucs 016) Uma ampulheta tem a forma de dois cones circulares retos idênticos (mesmo raio e mesma altura) no interior de um cilindro circular reto, conforme mostra a figura. O volume da parte do cilindro sem os dois cones é igual soma dos volumes desses cones. Assinale a alternativa que preenche corretamente a lacuna acima. a) à b) ao dobro da c) à metade da d) a um terço da e) a dois terços da Página 1 de 8
2 . (Pucrs 015) Uma casquinha de sorvete na forma de cone foi colocada em um suporte com formato de um cilindro, cujo raio da base e a altura medem a cm, conforme a figura. O volume da parte da casquinha que está no interior do cilindro, em a) b) c) d) e) cm, é 4. (Enem 014) Um sinalizador de trânsito tem o formato de um cone circular reto. O sinalizador precisa ser revestido externamente com adesivo fluorescente, desde sua base (base do cone) até a metade de sua altura, para sinalização noturna. O responsável pela colocação do adesivo precisa fazer o corte do material de maneira que a forma do adesivo corresponda exatamente à parte da superfície lateral a ser revestida. Qual deverá ser a forma do adesivo? 6 a) b) c) d) e) Página de 8
3 Nível Médio 5. (Ufrgs 016) Em uma caixa, há sólidos geométricos, todos de mesma altura: cubos, cilindros, pirâmides quadrangulares regulares e cones. Sabe-se que as arestas da base dos cubos e das pirâmides têm a mesma medida; que o raio da base dos cones e dos cilindros tem a mesma medida. Somando o volume de cubos e de cilindros, obtêm-se 180 cm. A soma dos volumes de cubos e 1 cone resulta em cilindros e pirâmides resulta em O valor da soma dos volumes, em é a) 150. b) 160. c) 190. d) 10. e) cm. 110 cm, e a soma dos volumes de cm, de um cubo, um cilindro, dois cones e duas pirâmides 6. (Ita 015) Uma taça em forma de cone circular reto contém um certo volume de um líquido cuja superfície dista h do vértice do cone. Adicionando-se um volume idêntico de líquido na taça, a superfície do líquido, em relação à original, subirá de a) h. b) 1. c) ( 1)h. d) h. e) h. 7. (Ifsc 015) A respeito de um cone com geratriz de 1,5m e raio da base de 0,9m, um aluno fez as seguintes afirmações: I. É um sólido de revolução proveniente de um triângulo retângulo cujo eixo de revolução é um cateto de 0,9m. II. O cone em questão pode ser inscrito num cilindro de raio da base com 0,9m e seção meridiana com 1,08m. III. O volume do cone é 0,4 π m. Assim, dentre as alternativas abaixo, assinale a soma da(s) afirmações CORRETA(S). 01) A afirmação III é verdadeira. 0) A afirmação II é verdadeira. 04) Todas afirmações são verdadeiras. 08) Somente as afirmações I e II são verdadeiras. 16) Somente as afirmações II e III são verdadeiras. ) Somente as afirmações I e III são verdadeiras. Página de 8
4 8. (Pucpr 015) Determine o raio da base do cone maior, formada pela seção transversal de um cone menor reto, com raio da base medindo 6 cm e altura 8 cm, sabendo que o seu volume é a metade do cone menor. a) 108 cm. b) 6 cm. c) 1 cm. d) 51 cm. e) 8 6 cm. 9. (Uemg 014) Uma empresa deseja fabricar uma peça maciça cujo formato é um sólido de revolução obtido pela rotação de um trapézio isósceles em torno da base menor, como mostra a figura a seguir. As dimensões do trapézio são: base maior igual a 15 cm, base menor igual a 7 cm e altura do trapézio igual a cm. Considerando-se, π o volume, em litros, da peça fabricada corresponde a a) 0,1. b) 0,. c) 0,478. d) 0,56. Página 4 de 8
5 10. (Unesp 014) Prato da culinária japonesa, o temaki é um tipo de sushi na forma de cone, enrolado externamente com nori, uma espécie de folha feita a partir de algas marinhas, e recheado com arroz, peixe cru, ovas de peixe, vegetais e uma pasta de maionese e cebolinha. Um temaki típico pode ser representado matematicamente por um cone circular reto em que o diâmetro da base mede 8 cm e a altura 10 cm. Sabendo-se que, em um temaki típico de salmão, o peixe corresponde a 90% da massa do seu recheio, que a densidade do salmão é de 0,5 g/cm, e tomando π, a quantidade aproximada de salmão, em gramas, nesse temaki, é de a) 46. b) 58. c) 54. d) 50. e) (Ufrgs 014) Um cone reto com raio da base medindo 10 cm e altura de 1 cm será seccionado por um plano paralelo à base, de forma que os sólidos resultantes da secção tenham o mesmo volume. A altura do cone resultante da secção deve, em cm, ser a) 6. b) 8. c) 6. d) e) Página 5 de 8
6 Gabarito: Resposta da questão 1: [D] Sejam r 1 e r os raios das bases dos cones. Tem-se que π r π r cm. Portanto, a resposta é ( ) 18 6 cm. π π Resposta da questão : [B] O volume externo aos cones e interno ao cilindro é dado por 1 h π R h π R π R h, ou seja, é igual ao dobro da soma dos volumes dos cones. Resposta da questão : [D] O volume pedido corresponde ao volume de um cone cujo raio da base mede acm e cuja altura é acm. Portanto, o resultado é 1 π a a cm. Resposta da questão 4: [E] Lembrando que a superfície lateral de um cone é obtida a partir de um setor circular, segue-se que o objetivo do responsável pelo adesivo será alcançado se ele fizer o corte indicado na figura abaixo. Página 6 de 8
7 Resposta da questão 5: [A] Sabemos que todos os sólidos possuem a mesma altura. Portanto, podemos concluir que: Volume do cubo x Volume da pirâmide x (um terço do volume do cubo) Volume do cilindro y Volume do cone y (um terço do volume do cilindro) Somando o volume de cubos e de cilindros, obtêm-se x y 180 x y cm. Portanto, a soma dos volumes, em cm, de um cubo, um cilindro, dois cones e duas pirâmides é dada por: x y x y 5 (x y) Resposta da questão 6: [C] Admitindo que x seja a altura pedida, v o volume do líquido de altura h e utilizando a razão entre os volumes de cones semelhantes, temos: x h v x h x h ( 1). h v h Resposta da questão 7: 01. [I] Falsa, pois o cone é obtido pela rotação de um triângulo retângulo em torno do cateto de 1,m. [II] Falsa. A área da secção meridiana do cilindro é dada por 1, 1,8,16. [III] Verdadeira. 1 V.(0,9) 1, 0,4. π π Portanto, apenas a afirmação [01] está correta. Página 7 de 8
8 Resposta da questão 8: [B] Sabemos que a razão entre os volumes é o cubo da razão de semelhança, portanto: R 6 cm. R R Resposta da questão 9: [B] Volume da embalagem em cm : V Vcilindro Vcone 1 V π 15 π 4 15π 4π 111π cm 0,L Resposta da questão 10: [D] O volume do cone (recheio) será dado por: Tomando π, o volume do cone será dado por: 1 v cm π Considerando que o peixe representa 90% do volume do recheio, temos: 0, cm (volume do salmão). Portanto, a massa do salmão será dada por 0, ,4g. Logo, a alternativa correta é a [D]. Resposta da questão 11: [E] V(maior) x V(menor) 1 1 x 1 1 x 1 x x Página 8 de 8
REVISÃO UNESP Ensino Médio Geometria Prof. Sérgio Tambellini
REVISÃO UNESP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA ESPACIAL Uma chapa retangular de alumínio, de espessura desprezível, possui 12 metros de largura e comprimento desconhecido
TRABALHO 3 o TRIMESTRE
TRABALHO o TRIMESTRE Disciplina: Matemática 1 Série: o Turma: ( ) Am / ( ) Az Data: 251115 Professor: Sérgio Tambellini Ensino: Médio Trimestre: o Valor: 1,5 pto Nome: n o : Nome: n o : Nota: Nome: n o
2. (Uerj) Um quadrado ABCD de centro O está situado sobre um plano.ב Esse plano contém o segmento OV, perpendicular a BC, conforme ilustra a imagem:
1. (Insper) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais do porta-joias são quadrados
3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA
3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados
INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016
INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:
2º BIMESTRE ª SÉRIE GEOMETRIA MÉTRICA ( SÓLIDOS )
º BIMESTRE 018 ª SÉRIE GEOMETRIA MÉTRICA ( SÓLIDOS ) 1. (Enem 011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. Esta figura é uma representação de uma superfície de
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
Sólidos de Revolução
Sólidos de Revolução 1. (Cefet MG 015) Na figura a seguir, ABCD é um retângulo inscrito em um setor circular de raio R com AB R. O volume do sólido de revolução gerado pela rotação desse retângulo em torno
1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume
Matemática Pedro Paulo GEOMETRIA ESPACIAL VII 1 ELEMENTOS DO CONE Cone é um sólido formado por um círculo que é a base e um ponto fora do plano da base que é o vértice, que é ligado a todos os pontos do
3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.
Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer
LISTA DE EXERCÍCIOS MATEMÁTICA 3ª SÉRIE PROF. HÉLDER / HELDINHO. 1m, corresponde a 1 litro de água.
LISTA DE EXERCÍCIOS MATEMÁTICA ª SÉRIE PROF. HÉLDER / HELDINHO 1 (Unesp) Quando os meteorologistas dizem que a precipitação da chuva foi de 1mm, significa que houve uma precipitação suficiente para que
a) 1m. b) 0,5 m. c) 0,6 m. d) 0,314 m. e) 0,628 m. que S pertence à reta determinada por A e E e que AE 2cm, AD 4cm e AB 5cm. sólido seja igual a 4 3
Lista 06 Matemática Geometria Espacial 1. (Fuvest 015) A grafite de um lápis tem quinze centímetros de comprimento e dois milímetros de espessura. Dentre os valores abaixo, o que mais se aproxima do número
Geometria Espacial - AFA
Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual
Lista 19 - GEOMETRIA ESPACIAL (Cilindros e Cones)
Lista 19 - GEOMETRIA ESPACIAL (Cilindros e Cones) 1) Um tipo de descarga de água para vaso sanitário é formado por um cilindro com altura de m e diâmetro interno de 8 cm. Então, dos valores abaixo, o mais
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera Cone. ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera. Cone. 1 Exercícios
singular Exercícios-Paralelepípedo
singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma
CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.
CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma
LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER
ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.
Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa
1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste
Matemática GEOMETRIA ESPACIAL. Professor Dudan
Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica
DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO
DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...
V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral
UL 7 - GEOMETRI ESPCIL Área Lateral CONE DE REVOLUÇÃO É um sólido gerado pela rotação completa de um triângulo retângulo em torno de um de seus catetos. Elementos: R é o raio da base g é a geratriz h é
REGULARES POLIEDROS IRREGULARES
GEOMETRIA ESPACIAL ESFERA OBLÍQUO RETO CILINDRO OBLÍQUO RETO CONE SÓLIDOS DE REVOLUÇÃO REGULAR OBLÍQUA RETA PIRÂMIDE REGULAR OBLÍQUO RETO PRISMA IRREGULARES ICOSAEDRO DODECAEDRO OCTAEDRO HEXAEDRO TETRAEDRO
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
6. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk shake com as dimensões mostradas no desenho.
1. (Unesp 2004) Um recipiente, na forma de um cilindro circular reto de raio R e altura 32 cm, está até à metade com água (figura 1). Outro recipiente, na forma de um cone circular reto, contém uma substância
MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS
MATEMÁTICA - 2 o ANO MÓDULO 08 SÓLIDOS SEMELHANTES E TRONCOS l Como pode cair no enem (UNIFICADO) Uma ampulheta é formada por dois cones de revolução iguais, com eixos verticais e justapostos pelo
OS PRISMAS. 1) Definição e Elementos :
1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco
Elementos do cone Em um cone, podem ser identificados vários elementos:
Cones O conceito de cone Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos
Geometria Espacial - Prismas
Geometria Espacial - Prismas ) As três dimensões de um paralelepípedo reto retângulo de volume 05 m, são proporcionais a, e 5. A soma do comprimento de todas as arestas é: a) 08m b) 6m c) 80m d) m 7m )
Responder todas as questões em folha A4. Entregar na data da realização da prova.
INSTRUÇÕES: Responder todas as questões em folha A4. Resolver à lápis todas as questões. Entregar na data da realização da prova. Poliedros e Prismas 1) Determine o número de vértices de um poliedro convexo
3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo
3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que
2. (Puc-rio 99) Ache o volume do sólido de revolução obtido rodando um triângulo retângulo de lados 1,1 e Ë2cm em torno da hipotenusa.
1. (Fuvest 2000) Um setor circular, com ângulo central š (0
2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P.
1. (Ita 2002) Seja S a área total da superfície de um cone circular reto de altura h, e seja m a razão entre as áreas lateral e da base desse cone. Obtenha uma expressão que forneça h em função apenas
1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0).
Nome: nº Professor(a): Série: 2º EM. Turma: Data: / /2013 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 3º Trimestre 1º Trimestre 1. (Ufrgs 2011) No hexágono regular representado na
c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.
Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência
Aulas particulares. 1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é:
1) (UEL) A capacidade aproximada de um aterro sanitário com a forma apresentada na figura a seguir é: a) 1135 m 3 b) 1800 m 3 c) 2187 m 3 d) 2742 m 3 e) 3768 m 3 2) (Vunesp) Considere uma lata cilíndrica
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito
Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura
Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.
Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas
Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto
Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos
Recursos para Estudo / Atividades
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2014 Disciplina: Matemática Série: 2ª Professor (a): Ana Cristina Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.
Por Pitágoras: # Fuso Esférico: Intersecção da # Cunha Esférica: Intersecção de uma
# Esfera / Elementos # Secção: Círculo de raio r Polo Eixo Meridianos O Raio Equador Paralelo d r R Polo Por Pitágoras: R r d # Fuso Esférico: Intersecção da # Cunha Esférica: Intersecção de uma superfície
Resposta: A Matemática B 2ª série 1º trimestre Prismas Tarefa 10
2011 - Matemática B 2ª série 1º trimestre Prismas Tarefa 9 1) As dimensões de um paralelepípedo retângulo são 12 cm, 15 cm e 16 cm. A área total(em cm²) e a medida da diagonal (em cm) são iguais, respectivamente
Rua 13 de junho,
NOME: QUESTÕES 1. Um recipiente em forma de cone circular reto, com raio da base R e altura h, está completamente cheio com água e óleo. Sabe-se que a superfície de contato entre os líquidos está inicialmente
Lista de Recuperação Bimestral de Matemática 2
Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série
Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro
GEOMETRIA ESPACIAL
GEOMETRIA ESPACIAL - 016 1. (Unicamp 016) Considere os três sólidos exibidos na figura abaixo, um cubo e dois paralelepípedos retângulos, em que os comprimentos das arestas, a e b, são tais que a b 0.
Exercícios de Revisão
Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será
3 ÁREAS E VOLUME DO TRONCO DE CONE 1 TRONCO DE CONE 2 SEMELHANÇA ENTRE OS CONES. 3.1 Área lateral. 3.2 Área das bases. 3.3 Área total. 3.
Matemática Pedro Paulo GEOMETRIA ESPACIAL IX 1 TRONCO DE CONE Chamaremos de tronco de cone de bases paralelas a porção do cone limitada por sua base e por uma secção transversal qualquer deste cone. A
Mat. Alex Amaral Monitor: Roberta Teixeira
1 Mat. Professor: Luanna Ramos Alex Amaral Monitor: Roberta Teixeira 2 Cones 08/10 ago RESUMO Cone: Elementos e classificação. Cone é um solido geométrico caracterizado pela reunião de todos os segmentos
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF
Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices
a) 6m b) 7m c) 8m d) 9m e) 10 m
Geometria Espacial II Exercícios 1. (G1 - ifsc 015) Um galão de vinho de formato cilíndrico tem raio da base igual a m e altura m. Se 40% do seu volume está ocupado por vinho, é CORRETO afirmar que a quantidade
REGULARES POLIEDROS IRREGULARES
GEOMETRIA ESPACIAL ESFERA OBLÍQUO RETO CILINDRO OBLÍQUO RETO CONE SÓLIDOS DE REVOLUÇÃO REGULAR OBLÍQUA RETA PIRÂMIDE REGULAR OBLÍQUO RETO PRISMA IRREGULARES ICOSAEDRO DODECAEDRO OCTAEDRO HEXAEDRO TETRAEDRO
Exercícios de Aprofundamento Mat Geom Espacial
1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento
REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO
REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura
V = 12 A = 18 F = = 2 V=8 A=12 F= = 2
Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.
Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016)
singular Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) 1. (Ita) Dado um prisma hexagonal regular, sabe-se que sua altura mede 3 cm e que sua área lateral é o dobro da área de sua base.
Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição
Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção
Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a
CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.
Lista 21 - GEOMETRIA ESPACIAL (Esfera e Pirâmides)
Lista 1 - GEOMETRIA ESPACIAL (Esfera e Pirâmides) 1) Certa quantidade de queijo é vendida em embalagens esféricas com tamanhos. A embalagem menor tem capacidade pra 50g de queijo, e seu raio é a metade
1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):
EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================
LISTA DE RECUPERAÇÃO - 2 0 SEMESTRE
LISTA DE RECUPERAÇÃO - 0 SEMESTRE 0 Ano Professor: Beto NUNES Data: / / 1. (G1 - ifsp 014) A figura a seguir representa uma piscina em forma de bloco retangular. De acordo com as dimensões indicadas, podemos
C O L É G I O F R A N C O - B R A S I L E I R O
C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de
Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição
Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância
UNITAU APOSTILA CILINDROS PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA CILINDROS PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: 1 CILINDROS Na figura abaixo, temos: - Dois planos paralelos α e β; - Um círculo contido em
COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016
COLÉGIO MILITR DO RIO E JNEIRO LIST 3 DE EXERCÍCIOS COMPLEMENTRES GEOMETRI ESPCIL º NO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 016 CILINDRO Sejam
Unidade 10 Geometria Espacial. Esfera
Unidade 10 Geometria Espacial Esfera Esfera Na série anterior, você estudou dois dos chamadas corpos redondos: o cilindro e o cone Estudaremos outro sólido que sem dúvida, aparece com extrema frequência
Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca
Relação da matéria para a recuperação final. º olegial / eometria / Jeca ula 33 - eometria métrica do espaço - Prisma reto. ula 34 - Paralelepípedo retorretângulo. ula 35 - ubo. ula 36 - Prisma regular.
2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.
1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o
MATEMÁTICA III Prof. Emerson Dutra 1 semestre de 2018 DCC05A, EDIF05A e LOG05A
MATEMÁTICA III Prof. Emerson Dutra [email protected] www.profedutra.webnode.com 1 semestre de 2018 DCC05A, EDIF05A e LOG05A Nome: RA: Lista 17 - Geometria Espacial 01/06/2018 Obs.: É importante
LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série
Matemática Professores: Leonardo 2ª Série LISTA P1T2 Cilindros 1- Um fabricante de caixas - d água pré moldadas deseja produzi-las na forma cilíndrica, com 2 metros de altura e interna e capacidade de
(Unifor CE/1999/Julho) Considere caixas iguais com a forma de um prisma retangular como a representada na figura.
(UEPB PB/005) Para se fabricar uma caixa de sabão em pó com 5 cm de altura, 16 cm de largura e 5 cm comprimento serão necessários quantos cm de papelão? a) 1 10 b) 1 100 c) 605 d) 550 e) 1 500 (Unifor
Sólidos Inscritos. Interbits SuperPro Web
Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.
Professor: Pedro Ítallo
Professor: Pedro Ítallo 01 - (UNIRG TO) O reservatório de água de uma cidade tem formato cilíndrico, com 4 m de altura e 6 m de diâmetro. Para resolver o problema de abastecimento de água decidiram construir
1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.
1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)
1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine:
I) PRISMAS 1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: a) a área da base, o apótema da base, a área lateral, área total e volume considerando
2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume
Matemática Pedro Paulo GEOMETRIA ESPACIAL VI são 1 TETRAEDRO REGULAR É uma piramide regular triangular, cujas faces triângulos equiláteros de lado 2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 2.1 Área lateral
Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:
GEOMETRIA ESPACIAL: ESTUDO DOS CORPOS REDONDOS Os corpos redondos são os sólidos que tem superfícies curvas, como o cilindro, o cone e a esfera. A sua principal característica é o fato de não apresentarem
Lista 19 GEOMETRIA ESPACIAL (Prismas)
Lista 19 GEOMETRIA ESPACIAL (Prismas) 1) A diagonal da base de um prisma quadrangular regular mede 6 dm e a altura do sólido, volume do sólido, em dm, vale a) c) 6 dm. O ) O volume de um prisma reto, cuja
Resumo de Geometria Espacial Métrica
1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos
Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e
Lista de exercícios - 2os anos - matemática 2 - prova 7-2013 Professores: Cebola, Figo, Guilherme, Rod e Sandra 1 - Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e 5 cm
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Observe a tabela abaixo. Seja n o número da quadrícula em que, pela primeira vez, o número
Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750
Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo
3ª Ficha de Trabalho
SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado
Geometria Métrica Espacial
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Métrica Espacial
COOPERATIVA EDUCACIONAL DE PORTO SEGURO
COOPERATIVA EDUCACIONAL DE PORTO SEGURO Aluno: Ano: º Turma: Ciclo: ÁREA: Prof.: Pablo Santos CORPOS REDONDOS 1. (Upe 015) A figura a seguir representa a vista de cima de uma cisterna cilíndrica. Os pontos
3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V
Matemática Pedro Paulo GEOMETRIA ESPACIAL V 1 ELEMENTOS DA PIRÂMIDE Pirâmide é um poliedro formado por um polígono que é a base e um ponto fora do plano da base que é o vértice. Cada lado do polígono da
PROFESSOR: Guilherme Franklin Lauxen Neto LISTA DE ESFERA
ALUNO TURMA: 2 Ano DATA / /205 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /205 LISTA DE ESFERA ) (UFJF-MG) Um reservatório de água tem a forma de um hemisfério acoplado a um cilindro circular,
Mat. Monitor: Roberta Teixeira
Professor: Rafael Jesus Monitor: Roberta Teixeira Exercícios de revisão sobre geometria espacial 22 set EXERCÍCIOS DE AULA 1. Dois dados, com doze faces pentagonais cada um, têm a forma de dodecaedros
Cone (sem outras figuras misturadas)
Cone (sem outras figuras misturadas) 1. (Pucrj 01) De um disco circular, de raio medindo 6 e centro C, cortamos um setor cujo arco mede 1. Usando o pedaço maior, fazemos um cone reto juntando os lados
MATEMÁTICA LISTA DE PRISMAS
NOME: MÊS: SÉRIE:: 1 a TURMA: ENSINO: MÉDIO LISTA DE PRISMAS MATEMÁTICA 1) Observe o prisma regular hexagonal ilustrado na figura a seguir. A medida da aresta da base é 6 cm e a medida da altura é 10 cm.
Projeto Jovem Nota 10
1. (Uff 99) Considere o cubo de vértices A, B, C, D, E, F, G e H representando na figura abaixo. Sabendo que a área do triângulo DEC é Ë2/2m, calcule o volume da pirâmide cujos vértices são D, E, G e C.
Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a
CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone
1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais.
1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. Esta figura é uma representação de uma superfície de revolução chamada de a) pirâmide. b) semiesfera. c)
Pirâmide, cone e esfera
A UA UL LA Pirâmide, cone e esfera Introdução Dando continuidade à unidade de Geometria Espacial, nesta aula vamos estudar mais três dos sólidos geométricos: a pirâmide, o cone e a esfera. Nossa aula A
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2017 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem e) 4. b) 3 3
e) 4 GEOMETRIA ESPACIAL FGV Questão 01 - (FGV /017) O líquido AZ não se mistura com a água. A menos que sofra alguma obstrução, espalha-se de forma homogênea sobre a superfície da água formando uma fina
