Lista 4.5 Derivada da Função Composta
|
|
|
- Marco Martinho Teves
- 10 Há anos
- Visualizações:
Transcrição
1 Faculdade de Economia da Universidade Nova de Lisboa Apontamentos Cálculo II. Função composta de duas unções e g, com o contradomínio de g contido ou igual ao domínio de (og): Função que resulta da utilização de imagens da unção g como objectos da unção e que, por isso, depende dos objectos da unção g, tendo como imagens vectores do espaço de chegada de. g: D g n p ; CD g A gx,,x n g x,,x n : D p m ; A D,,a p,,a p,, m,,a p og: D g n m ogx,,x n gx,,x n g x,,x n,, m g x,,x n. Função composta de uma unção, de em e uma unção g, de em, com o contradomínio de g contido ou igual ao domínio de : Função que resulta da utilização de imagens da unção g, vectores de, como objectos da unção, também vectores de e que, por isso, depende dos objectos da unção g, vectores de e tem como imagens vectores do espaço de chegada de, vectores de. g: D g ; CD g A gx,y g : D ; A D,b og: D g ogx,y g g 3. Função composta de uma unção, de em e uma unção g, de em, com o contradomínio de g contido ou igual ao domínio de : Função que resulta da utilização de imagens da unção g, vectores de, como objectos da unção, também vectores de e que, por isso, depende dos objectos da unção g, vectores de e tem como imagens vectores do espaço de chegada de, vectores de. g: D g ; CD g A g g, g
2 : D ; A D x,y x,y, og: D g og g g, g, g, g 4. Se: Teorema da Derivada da Função Composta: g: D g n p ; CD g A : D p m ; A D g é dierenciável em a Então: é dierenciável em g og é dierenciável em a g a J og J g. J 5. Derivada parcial de ª ordem da unção composta og, com uma unção escalar, em ordem a x, num ponto a, interior do seu domínio (og ): Taxa de variação og quando há um desvio ininitesimal na coordenada x a partir do ponto a. g: D g n p ; CD g A gx,,x n g x,,x n : D p ; A D b,,b p og: D g n ogx,,x n gx,,x n g x,,x n og x b g,,a n,,g p,,a n.g x,,a n bp g,,a n,,g p,,a n.g px,,a n x 6. Derivada parcial de ª ordem da unção composta og, com uma unção de em e g uma unção de em, em ordem a x (y), num ponto,a, interior do seu domínio: g: D g ; CD g A gx,y g
3 : D ; A D b,c og: D g ogx,y g g og x,a b g,a, g,a.g x,a c g,a, g,a.g x,a og y,a b g,a, g,a.g y,a c g,a, g,a.g y,a 7. Derivada parcial de ª ordem da unção composta og, com uma unção vectorial, em ordem a x, num ponto a, interior do seu domínio: Vector cujas coordenadas são as taxas de variação das unções coordenadas de og quando há um desvio ininitesimal na coordenada x a partir do ponto a. g: D g n p ; CD g A gx,,x n g x,,x n : D p m ; A D b,,b p b,,b p,, m b,,b p og: D g n m, m ogx,,x n gx,,x n g x,,x n,, m g x,,x n og x og,,ogm x x g. g b x g. g b p px,, m g. g b x m g. g b p px 8. Derivada parcial de ª ordem da unção composta og, com uma unção de em e g uma unção de em, num ponto a, interior do seu domínio: Vector cujas coordenadas são as taxas de variação de og e og quando há um desvio ininitesimal a partir do ponto a. g: D g ; CD g A gb g b, g b : D ; A D x,y x,y, og: D g ogb gb gb, gb 3
4 og og,og g. g x g. g y, g. g x g. g y 9. Derivada parcial de ª ordem da unção composta og, com uma unção escalar, em ordem a x i e x j, num ponto a, interior do seu domínio (og ): Taxa de variação de og x quando há um desvio ininitesimal na coordenada x i j a partir do ponto a. g: D g n p ; CD g A gx,,x n g x,,x n : D p ; A D b,,b p og: D g n ogx,,x n gx,,x n g x,,x n og xi x,,x n b g x,,x n.g x x,,x n i bp g x,,x n.g pxi x,,x n og xi x j b b g. g x b b j p g. g pxj.g x i b g. g x i x bp b j g. g x bp b j p g. g pxj.g pxi bp g. g pxi x j xi x j 0. Derivada parcial de ª ordem da unção composta og, com uma unção de em e g uma unção de em, em ordem a x e x, num ponto,a, interior do seu domínio: Taxa de variação de og x quando há um desvio ininitesimal na coordenada x a partir do ponto a,a. g: D g ; CD g A gx,y g : D ; A D b,c og: D g ogx,y g g 4
5 og x x,y b g.g x,y x c g.g x,y x og xx,a bb g,a, g,a.g x,a bc g,a, g,a.g x,a.g x,a b g,a, g,a.g xx,a cb g,a, g,a.g x,a cc g,a, g,a.g x,a.g x,a c g,a, g,a.g xx,a 5
Pos. Designação Tipo Medida Material 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X
1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X 6 VITON 5 RETENTORES CB 4,5 0X 16 X 7 6 RETENTORES CB 4,8 X 22 X 7 7 RETENTORES CC 5 X 15
5 Transformações Lineares e Matrizes
Nova School of Business and Economics Prática Álgebra Linear 5 Transformações Lineares e Matrizes 1 Definição Função de em Aplicação que faz corresponder a cada elemento de um conjunto (domínio), denominado
Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense
Curso Satélite de Matemática Sessão n.º 2 Universidade Portucalense Funções reais de variável real Deinição e generalidades Uma unção é uma correspondência que a qualquer elemento de um conjunto D az corresponder
* +,,- 5%67. 5%5%8 # ! " #$ %& ' %( ) .
http://indicadores.ethos.org.br/relatorioexternodiagnostico.aspx?id=1,2,,4,&ano=2007&questionari... Página 1 de 2 " # & ' "# * +,,-. * ' * //0 /1 2 &* '4/*5 / * / 1& &'56 ' &* 4/ &'*5 * 4 /*1 4' '4' &
Lista 7.4 Optimização com Restrições de Desigualdade
Faculdade de Economia da Universidade Nova de Lisboa Apontamentos Cálculo II Lista 7.4 Optimização com Restrições de Desigualdade 1. Problema de optimização de uma função escalar f, de n variáveis reais,
Exercícios Resolvidos sobre: II A Representação da Economia e a Contabilidade Nacional
Exercícios Resolvidos sobre: II A Representação da Economia e a Contabilidade Nacional Contabilidade Nacional Questão 6 O nosso objectivo é conhecer o valor da produção da economia ou PIB. Se as empresas
ANÁLISE MATEMÁTICA II
ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Noções Básicas de Funções em R n Topologia DMAT Noções Básicas sobre funções em n Introdução Vamos generalizar os conceitos de limite, continuidade e diferenciabilidade,
PROFº. LUIS HENRIQUE MATEMÁTICA
Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,
Aula 5 - Matemática (Gestão e Marketing)
ISCTE, Escola de Gestão Aula 5 - Matemática (Gestão e Marketing) Diana Aldea Mendes 29 de Outubro de 2008 Espaços Vectoriais Definição (vector): Chama-se vector edesigna-sepor v um objecto matemático caracterizado
Aula 7 Valores Máximo e Mínimo (e Pontos de Sela)
Aula 7 Valores Máximo e Mínimo (e Pontos de Sela) MA - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual
Respostas de Exercícios Propostos
Respostas de Exercícios Propostos Capítulo 1: 1 a) Não é associativa É comutativa ( ) x+y x + y 2 + z (x y) z z x + y + 2z 2 2 4 ( ) y + z x (y z) x x + x+y 2 2x + y + z 2 2 4 x y x + y y + x y x 2 2 b)
Capítulo V: Derivação 137
Capítulo V: Derivação 37 Esboço de gráicos: Para esboçar o gráico de uma unção deve-se sempre que possível seguir as seguintes etapas: Indicar o domínio; Determinar os zeros (caso eistam); Estudar a paridade;
FUNÇÃO COMO CONJUNTO R 1. (*)= ou, seja, * possui duas imagens. b) não é uma função de A em B, pois não satisfaz a segunda condição da
FUNÇÃO COMO CONJUNTO Definição 4.4 Seja f uma relação de A em B, dizemos que f é uma função de A em B se as duas condições a seguir forem satisfeitas: i) D(f) = A, ou seja, o domínio de f é o conjunto
Circuitos Digitais. Engenharia de Automação e Controle Engenharia Elétrica. São Paulo 2014. Prof. José dos Santos Garcia Neto
Engenharia de Automação e Controle Engenharia Elétrica Circuitos Digitais Prof. José dos Santos Garcia Neto São Paulo 2014 Prof. José dos Santos Garcia Neto 1 Introdução Esta apostila tem como objetivo
Aula 6 Derivadas Direcionais e o Vetor Gradiente
Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual
MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.
I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas
Diretor Executivo Márcio Augusto Magalhães. Diretor Departamento de Administração Márcio Wamilton Magalhães. Diretor de Operações Adriano de Magalhães
Diretor Executivo Márcio Augusto Magalhães Diretor Departamento de Administração Márcio Wamilton Magalhães Diretor de Operações Adriano de Magalhães Manual de Abastecimento de Água pág. 2 !"!#$$ %"&'()*%+,%-%+,%./&01
Gramáticas Livres de Contexto
Gramáticas Livres de Contexto 25 de novembro de 2011 Definição 1 Uma Regra (ou produção) é um elemento do conjunto V (V Σ). Sendo que V é um conjunto finito de elementos chamados de variáveis e Σ um conjunto
Siemens AG 2009 SIRIUS SENTRON SIVACON. Catálogo LV 90 2009. Baixa Tensão Corte, protecção e comando. Answers for industry.
SIRIUS SENTRON SIVACON Catálogo LV 90 2009 Baixa Tensão Corte, protecção e comando Answers for industry. Interruptores de corte em carga, sistemas de barramentos SENTRON 8US Introdução Tipo 3NP 1 3K 3NJ4
Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.
Vetores no R 2 : O conjunto R 2 = R x R = {(x, y) / x, y Є R} é interpretado geometricamente como sendo o plano cartesiano xoy. Qualquer vetor AB considerado neste plano tem sempre um representante OP
CUSTO ADICIONAL DA DEFICIÊNCIA
CUSTO ADICIONAL DA DEFICIÊNCIA Seminário Internacional Cidades e Inclusão Social -Moradias Independentes para PcD Rio de Janeiro 13 de novembro de 2014 Equipe: Coordenador Prof. Antonio Carlos Coelho Campino
Comandar, proteger, partir e monitorar. siemens.com.br/siriusinnovations
SIRIUS Innovations Comandar, proteger, partir e monitorar. siemens.com.br/siriusinnovations Contator de Potência e Auxiliar SIRIUS Innovations 3RT2/3RH2 Contatores de Potência - 3RT20 Potência máx. cv
3) O ponto P(a, 2) é equidistante dos pontos A(3, 1) e B(2, 4). Calcular a abscissa a do ponto P.
Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Lista 2: Plano cartesiano, sistema de coordenadas: pontos e retas. 1) Represente no plano cartesiano
Matriz de mudança de coordenadas: S B1!B 2. (como se faz e para que serve) transformação linear. (como se faz e para que serve)
Matriz de mudança de coordenadas: S B!B (como se faz e para que serve) Transformação linear A matriz de T em relação às bases B e B 0 : M(T ; B; B 0 ) (como se faz e para que serve) As 3 formas (equivalentes)
Teorema de Green no Plano
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires Teorema de Green no Plano O teorema de Green permite relacionar o integral de linha ao longo de uma
SIMULADO. Matemática. 2 (Unimontes-MG) 1 (Enem)
(Enem) (Unimontes-MG) A resolução das câmeras digitais modernas é dada em megapixels, unidade de medida que representa um milhão de pontos. As informações sobre cada um desses pontos são armazenadas, em
Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios
2 - Generalidades sobre funções reais de variável real
Análise Matemática - 009/010 - Generalidades sobre unções reais de variável real.1-deinição e Propriedades De..1 Sejam A e B conjuntos, e uma correspondência de A para B, isto é um processo de associar
Diagramas de Fases Ternários
Diagramas de Fases Ternários Tecnologia de Materiais Cerâmicos e Vidros I 2006-2007 3. Diagramas de fases ternários São diagramas de fases entre 3 componentes que mostram as fases presentes e as suas composições
Universidade Federal de Goiás Regional Catalão - IMTec
Universidade Federal de Goiás Regional Catalão - IMTec Disciplina: Álgebra I Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 11/03/2015 1. Prove que G é um grupo com a operação de multiplicação
Reconhecimento de Objectos
Dado um conjunto de características, relativas a uma região (objecto), pretende-se atribuir uma classe essa região, seleccionada de um conjunto de classes cujas características são conhecidas O conjunto
CILINDROS CILINDROS ISO SQ (PERFIL MK)...02 CILINDROS ISO SI (PADRÃO EUROPA)...03 CILINDROS SC (TIRANTADO)...04 ACESSÓRIOS - CANTONEIRA...
CILINDROS CILINDROS ISO SQ (PERFIL MK)..........................................02 CILINDROS ISO SI (PADRÃO EUROPA).....................................0 CILINDROS SC (TIRANTADO).............................................0
PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da
Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE CORRECÇÃO DO EXAME DE CÁLCULO I. Ano Lectivo 2007-08 - 1 o Semestre
Faculdade de Economia Universidade Nova de Lisboa TÓPICOS DE COECÇÃO DO EXAME DE CÁLCULO I Ano Lectivo 7-8 - o Semestre Exame Final em 7 de Janeiro de 8 Versão B Duração: horas e 3 minutos Não é permitido
Seqüências, Limite e Continuidade
Módulo Seqüências, Limite e Continuidade A partir deste momento, passaremos a estudar seqüência, ites e continuidade de uma função real. Leia com atenção, caso tenha dúvidas busque indicadas e também junto
AXB = {(x, y) x A e y B}
CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não
MATEMÁTICA CADERNO 1 CURSO D FRENTE 1 ÁLGEBRA. n Módulo 2 Equação do 2 ọ Grau
CADERNO CURSO D FRENTE ÁLGEBRA n Módulo Equação do ọ Grau n Módulo Equação do ọ Grau ) Na equação 6x x = 0, tem-se a = 6, b = e c =, então: I) = b ac = + = b ± ± II) x = = x = ou x = a Resposta: V = ;
Matemática 2 Módulo 9
Matemática Módulo 9 GEOMETRIA ANALÍTICA VI COMENTÁRIOS ATIVIDADES PARA SALA. Se duas circunferências são concêntricas, então os seus centros são coincidentes. Temos a circunferência λ : x + y 4x y + =
11 a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark, LERCI, LEGI, LEE 1 o semestre 2003/04 - semana de 2003-12-08
INSTITUTO SUPERIOR TÉCNICO - DEPARTAMENTO DE MATEMÁTICA a LISTA DE PROBLEMAS DE ÁLGEBRA LINEAR LEIC-Taguspark LERCI LEGI LEE o semestre 23/4 - semana de 23-2-8. Diga justificando quais dos seguintes ternos
ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) TURNO. 01. A) 83 16 B) 3 2005 D) 103 a. 02. A) 5 2 B) 3 2 C) 6 2 D) a 2006 E) (ab) 3 F) (3a) p 03.
SÉRIE 8º ANO OLÍMPICO ENSINO ENS. FUNDAMENTAL PROFESSOR(ES) SEDE ALUNO(A) Nº RESOLUÇÃO TURMA TURNO DATA / / ÁLGEBRA CAPÍTULO POTENCIAÇÃO Exercícios orientados para a sua aprendizagem (Pág. 6 e 7) 0. A)
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.
CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013
CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x
Artigo Inicial: 4 Artigo I ("A Semente é a Palavra de Deus"): 9 Artigo II ("Alvo de Contradição"): 20 Artigo III ("Novo Adão e Nova Eva"): 26 Artigo
1 !" #!#!$" %&''() 2 Artigo Inicial: 4 Artigo I ("A Semente é a Palavra de Deus"): 9 Artigo II ("Alvo de Contradição"): 20 Artigo III ("Novo Adão e Nova Eva"): 26 Artigo IV ("São José"): 37 Artigo V ("Corpo
Áreas e Aplicações em Geometria
1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das
Esboço de Gráficos (resumo)
Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)
Grau de monômio. a) 5a 3 b 3 c b) 30x 5 y 3 m 2 c) a 8 bc d) -6x 3 y 7 z 2 e) 24x -2
INTRODUÇÃO À ÁLGEBRA ORIENTADOR METODOLÓGICO Introdução à álgebra Objetivos de aprendizagem: Compreender os conceitos básicos relacionados a monômios; Aprender a realizar operações de adição e subtração
SIMULADO COMENTADO DE MATEMÁTICA FINANCEIRA
SIMULADO COMENTADO DE MATEMÁTICA FINANCEIRA Prof. Quilelli 1 ) Uma dívida contraída à taxa de juros simples de 10% ao mês, deverá ser paga em duas parcelas, respectivamente iguais a R$ 126,00, daqui a
Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart. Teorema de Menelaus. 9 ano E.F. Professores Cleber Assis e Tiago Miranda
Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart Teorema de Menelaus 9 ano E.F. Professores Cleber Assis e Tiago Miranda Estudo de Triângulos - Teorema de Menelaus e Relação de Stewart Teorema
Lista de Exercícios 03
Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados
Aula: Equações polinomiais
Aula: Equações polinomiais Turma 1 e 2 Data: 05/09/2012-12/09/2012 Tópicos Equações polinomiais. Teorema fundamental da álgebra. Raízes reais e complexas. Fatoração e multiplicação de raízes. Relações
INE 5118 Exercícios variáveis aleatórias Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0,2 de produzir um
Exemplo 1 - Uma fábrica produz recipientes de vidro. Existe uma probabilidade igual a 0, de produzir um recipiente defeituoso. Antes que esses recipientes sejam estocados, eles são inspecionados e os defeituosos
QUESTÕES DE ESCOLHA MÚLTIPLA
ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 9/ TÓPICOSDERESOLUÇÃODO o TESTE(DIURNO) QUESTÕES DE ESCOLHA MÚLTIPLA. [,]SejamAeB duas matrizes
Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima.
Dicas para a 6 a Lista de Álgebra 1 (Conteúdo: Homomorfismos de Grupos e Teorema do Isomorfismo para grupos) Professor: Igor Lima. 1 /2013 Para calcular Hom(G 1,G 2 ) ou Aut(G) vocês vão precisar ter em
2. O número de vectores da base de L construída na alínea anterior é a soma do número de vectores das bases de M e N.
2.4. PROJECÇÕES 2. dim(l)=dim(m)+dim(n) Demonstração. Se L=M N, qualquer vector x L se pode escrever de forma única como a soma de um vector x M M e outro vector x N N. 1. Dada uma base de M, x M pode
6.3 Equivalência entre Autômatos com Pilha Não-Determinísticos e Gramáticas Livre do Contexto
Capítulo 6. Autômatos com Pilha 6.3 Equivalência entre Autômatos com Pilha Não-Determinísticos e Gramáticas Livre do Contexto Nos exemplos da seção anterior, vimos que os autômatos com pilha existem para
1. Operações com vetores no espaço
Capítulo 10 1. Operações com vetores no espaço Vamos definir agora as operações de adição de vetores no espaço e multiplicação de um vetor espacial por um número real. O processo é análogo ao efetuado
TEOREMA DE CEVA E MENELAUS. Teorema 1 (Teorema de Ceva). Sejam AD, BE e CF três cevianas do triângulo ABC, conforme a figura abaixo.
TEOREMA DE CEVA E MENELAUS Definição 1. A ceviana de um triângulo é qualquer segmento de reta que une um dos vértices do triângulo a um ponto pertencente à reta suporte do lado oposto a este vértice. Teorema
Aplicações de Derivadas
Aplicações de Derivadas f seja contínua no [a,b] e que f '(x) exista no intervalo aberto a x b. Então, existe pelo menos um valor c entre a eb, tal que f '(c) f (b) f (a) b a. pelo menos um ponto c (a,
4 Sistemas de Equações Lineares
Nova School of Business and Economics Apontamentos Álgebra Linear 4 Sistemas de Equações Lineares 1 Definição Rank ou característica de uma matriz ( ) Número máximo de linhas de que formam um conjunto
MOQ-23 ESTATÍSTICA. Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo
MOQ-3 ESTATÍSTICA Proessor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Probabilidade e Estatística: The Science o collecting and analyzing data or the purpose o drawing conclusions and making
Aulas Teóricas e de Problemas de Álgebra Linear
Aulas Teóricas e de Problemas de Álgebra Linear Nuno Martins Departamento de Matemática Instituto Superior Técnico Maio de Índice Parte I (Aulas teóricas e chas de exercícios) Matrizes e sistemas de equações
( ) ( ) ( ( ) ( )) ( )
Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )
Mestrados Integrados em Engenharia Mecânica e em Eng Industrial e Gestão ANÁLISE MATEMÁTICA III DEMec 010-11-0 1ºTESTE A duração do exame é horas + 30minutos. Cotação: As perguntas 1 e 6 valem valores,
Circuitos Digitais Segunda Lista de Exercícios
Circuitos Digitais Segunda Lista de Exercícios Observação: o início da lista é composto dos problemas recomendados do livro-texto. exercícios nas últimas duas páginas da lista são novos (não estão no livro-texto).
Contatores de Potência 3RT10, 3TF6
3RT10 26 3RT10 36 3RT10 65 3TF69 Contatores de otência 3RT10, 3TF6 Motores trifásicos Contator 1) otências s AC-2 / AC-3, 60 z em 220 V 380 V 440 V AC-1 (Dimensões em mm) (cv / kw) (cv / kw) (cv / kw)
Álgebra Linear - Prof. a Cecilia Chirenti. Lista 3 - Matrizes
Álgebra Linear - Prof. a Cecilia Chirenti Lista 3 - Matrizes. Sejam A = C = 0 3 4 3 0 5 4 0 0 3 4 0 3, B = 3, D = 3,. Encontre: a A+B, A+C, 3A 4B. b AB, AC, AD, BC, BD, CD c A t, A t C, D t A t, B t A,
ficha 3 espaços lineares
Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
INTRODUÇÃO AOS MÉTODOS FACTORIAIS
Capítulo II INTRODUÇÃO AOS MÉTODOS FACTORIAIS A Análise Factorial de Correspondências é uma técnica simples do ponto de vista matemático e computacional. Porém, devido ao elevado suporte geométrico desta
! "! # " $ " # $!"#$%&! ( ")* +* $,+%) & - "). /)%$ +*# *""*) " # " $% " %! # % &! # $ ( *$!$%. %*!) +* # 0#%-$%&! *! **$)/$"# 10#%$ ( &!
o o! "! # " $ " # $!"#$%&! o ' ( ")* +* $,+%) & - "). /)%$ +*# *""*) % " # " $% " %! # % &! # $ ( *$!$%. %*!) +* # 0#%-$%&! *! **$)/$"# 10#%$!' % % ( &! ) " # $ (,-%. *! -*!* # +* $!$*%&! +* "02*!$%!*
Complementos de Análise Matemática
Instituto Politécnico de Viseu Escola Superior de Tecnologia Departamento: Matemática Ficha prática n o 1 - Cálculo Diferencial em IR n 1. Para cada um dos seguintes subconjuntos de IR, IR 2 e IR 3, determine
1º Teste Computação Gráfica
1º Teste Computação Gráfica LEIC-Tagus/LERCI Prof. Mário Rui Gomes Prof. João Brisson Lopes 23 de Abril de 25 Nº Nome: Responda às questões seguintes justificando adequadamente todas as respostas. O Teste
MAT 121 : Cálculo Diferencial e Integral II. Sylvain Bonnot (IME-USP)
MAT 121 : Cálculo Diferencial e Integral II Sylvain Bonnot (IME-USP) 2014 1 Informações gerais Prof.: Sylvain Bonnot Email: [email protected] Minha sala: IME-USP, 151-A (Bloco A) Site: ver o link para
rs r r ã tr ê s 1 t s rt t t át Pr r Pós r çã t át çõ s ét çã t át à tr ã ís
rs r r ã tr ê s 1 t s rt t t át Pr r Pós r çã t át çõ s ét çã t át à tr ã ís çõ s ét çã t át à tr ss rt çã r s t Pr r Pós r çã t át r q s t r r t çã r str t át r t r Pr t r s r r t r t át ã ís Ficha gerada
Antenas e Propagação. Artur Andrade Moura. [email protected]
1 Antenas e Propagação Artur Andrade Moura [email protected] 2 Parâmetros fundamentais das antenas Permitem caracterizar o desempenho, sobre vários aspectos, das antenas Apresentam-se definições e utilização
NORMALIZAÇÃO Comércio Electrónico e a sua Importância na Cadeia de Distribuição 14 de Dezembro 2010 Nuno Miranda
NORMALIZAÇÃO Comércio Electrónico e a sua Importância na Cadeia de Distribuição 14 de Dezembro 2010 Nuno Miranda The global language of business O que é ecommerce? Da perspectiva de processo de negócio,
Expansão linear e geradores
Espaços Vectoriais - ALGA - 004/05 4 Expansão linear e geradores Se u ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u ; u ; :::;
A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y
5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas
CDI-II. Trabalho. Teorema Fundamental do Cálculo
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Trabalho. Teorema Fundamental do Cálculo 1 Trabalho. Potencial Escalar Uma das noções mais importantes
Progressão Aritmética
Progressão Aritmética 1. (G1 - cftrj 14) Disponha os números 1,,, 4,, 6, 7, 8 e 9 nas casas do tabuleiro abaixo de modo que: o número 9 ocupe a casa central, os números da primeira linha sejam todos ímpares
Álgebra Linear - Exercícios resolvidos
Exercício 1: Álgebra Linear - Exercícios resolvidos Sejam E = L({(1, 1, 1), (1, 2, 2)}) e F = L({(, 1, 1), (1, 1, 2)}). a) Determine a dimensão de E + F. b) Determine a dimensão de E F. Resolução: a) Temos
Geometria Plana Noções Primitivas
Geometria Plana Noções Primitivas Questão 1 (CESGRANRIO-85) Numa carpintaria, empilham-se 50 tábuas, umas de 2 cm e outras de 5 cm de espessura. A altura da pilha é de 154 cm. A diferença entre o número
Momentos de uma variável aleatória
Momentos de uma variável aleatória O cálculo de E[X] (valor médio de X) e E[X 2 ] (que intervém na variância), pode ser generalizado pensando em E[X k ] com k IN. Definição: Dada uma v.a. X, chama-se momento
Favor aguardar a autorização do fiscal para abrir o caderno e iniciar a prova. Exame de Seleção Curso de Graduação em Administração
27/05/2007 Ingresso em agosto de 2007 Exame de Seleção Curso de Graduação em Administração Módulo Discursivo Lógica Quantitativa Leia atentamente as seguintes instruções: Confira se o seu nome e RG estão
