Tensão é uma das repostas do MC ao carregamento

Tamanho: px
Começar a partir da página:

Download "Tensão é uma das repostas do MC ao carregamento"

Transcrição

1 Cap. 3. Tensão. Eisência das forças inernas. rincípio das ensões de Euler e Cauch 3. Vecor das ensões no pono 3. Componenes caresianas 3. Componenes inrínsecas 4. Tensor das ensões no pono 4. Valores necessários para deerminar o esado das ensões 4. Componenes de ensão 4.3 rova da simeria de componenes em D 5. Equações de equilíbrio 5. rova em D 6. Cálculo das componenes do vecor das ensões 7. Carácer ensorial das ensões 7. rova da lei de ransformação em D 8. Noas sobre 3D 9. Tensões principais. Esados de ensão. Ouras designações. Ouras represenações. Elipse de Lamé. Quadricas de Cauch

2 Tensão é uma das reposas do MC ao carregameno. Eisência das forças inernas Forças eernas = carregameno sisema A F forças inernas = sisema 3 sisema sisema A B core F B sisema Conjuno (sisema & sisema ) esá em equilíbrio forças inernas Conjuno (sisema & sisema 3) esá em equilíbrio = - sisema 3 sisema e sisema 3 são equivalenes sisema 3 eprime o efeio da pare reirada B, carregada com o sisema Conjuno (sisema & (- sisema 3)) esá em equilíbrio sisema e sisema 3 são equivalenes - sisema 3 eprime o efeio da pare reirada A carregada com o sisema

3 . rincípio das ensões de Euler e Cauch Leonhard Euler (77-783) em vez de forças inernas usa-se a densidade das forças inernas Densidade das forças inernas no pono, efeio de V n n n = normal eerior uniária n V n V Densidade das forças inernas no pono, efeio de V V Augusin Cauch ( )

4 O vecor da densidade das forças inernas no pono chama-se A B 3. Vecor das ensões no pono core Escolha-se um pono, que perence à superfície de core Define-se à vola do um elemeno infiniesimal de área A que perence à superfície de core e que corresponde a duas faceas A facea ligada a pare A com a normal eerior uniária Força inerna elemenar A facea é sempre ligada ao reso do MC Densidade das forças inernas, ou seja o vecor das ensões n A F A n F n B B lim A F A A facea ligada a pare B com a normal eerior uniária Força inerna elemenar Unidade N/m =a 6 a=ma

5 n é indiferene do modo que ΔA ende para zero é indiferene da superfície de core, desde que a normal no é igual O vecor das ensões no pono é unicamene definido para uma dada normal, o senido é sempre relacionado com a facea onde acua O senido do vecor das ensões relacionado às duas faceas no mesmo pono com a normal da mesma direcção é sempre oposo 3. Componenes caresianas n n, A, A n, A n, A n A,, z : componenes caresianas do vecor das ensões componenes em D, 3 em 3D Verifica-se que o sinal das componenes caresianas é oposo n B n, B n, B n, B n, B

6 3. Componenes inrínsecas n, n A n n, A n A n, : componenes inrínsecas do vecor das ensões componenes em D e em 3D n : componene normal : componene angencial ou de core n B n n, B n, B n n : com senido da normal n : conra senido da normal racção, posiiva compressão, negaiva Verifica-se que o sinal da componene inrínseca normal é igual nas duas faceas. Verifica-se que as inensidades de ambas componenes não dependem do referencial ode-se aribuir o sinal à componene angencial, mas apenas em D. Ese sinal depende do referencial e segue as regras das faceas posiivas e negaivas (eplicação mais arde). Se o referencial for igual nas duas faceas, o sinal seria ambém igual. Noa: onos da circunferência Mohr = componenes inrínsecas das faceas

7 4. Tensor das ensões no pono 4. Valores necessários para deerminar o esado das ensões Maném-se o pono mas escolha-se uma facea com normal diferene as componenes do vecor das ensões serão diferenes Diz-se que se conhece o esado das ensões no pono, quando se conhecem as componenes do vecor das ensões em qualquer facea que nele passa É preciso deerminar o número dos valores necessários para poder unicamene eprimir componenes do vecor das ensões a qualquer facea ode-se provar, que para isso em que se saber vecor das ensões relacionado: - em 3D a 3 faceas diferenes, que ambém passam pelo pono - em D a faceas diferenes, que ambém passam pelo pono Devido a simeria do ensor das ensões (provada mais arde) as componenes deses vecores das ensões devem finalizar 3 dados não conradiórios em D e 6 dados não conradiórios em 3D

8 rova em D Marque-se uma vizinhança infiniesimal em orno do pono Lados da vizinhança são infiniesimais, por isso a disribuição das componenes do vecor das ensões pode ser considerada uniforme Sabendo componenes caresianas nas faceas () e () é possível deerminar as componenes caresianas na facea inclinada n s s sin n s cos n s n cos n n cos s As forças de volume não foram consideradas, porque conribuem com o ermo de ordem maior (área versus aresa) sin sin Noa: as condições de equilíbrio escrevem-se para forças e momenos, nunca para componenes de ensão

9 4. Componenes de ensão Represenação geomérica das componenes de ensão em D no recângulo elemenar Comprovando, que o conhecimeno de vecor das ensões nas duas faceas é suficiene para deerminar o vecor das ensões a qualquer facea, ou seja é suficiene para definir o esado das ensões no pono, cosumam-se escolher faceas do referencial original e em vez de componenes caresianas marcam-se nelas componenes inrínsecas. Mais ainda, cada facea represena-se nas suas duas formas e assim de faco recora-se um recângulo elemenar do MC. Convenciona-se Quando o senido da normal coincide com o senido do eio coordenado Facea posiiva : o senido da componene posiiva coincide com o senido do eio coordenado Quando o senido da normal é oposo ao senido do eio coordenado Facea negaiva : o senido da componene posiiva é oposo ao senido do eio coordenado

10 Nese caso as componenes inrínsecas do vecor das ensões chamam-se componenes do ensor das ensões Componene normal Faceas posiivas Faceas negaivas Componene angencial ou componene de core o índice da componene angencial corresponde à normal, o à direcção Nese caso as direcções das componenes caresianas e inrínsecas do vecor das ensões em cada facea coincidem, conudo o senido posiivo saisfaz as regras definidas no slide anerior Represenação das componenes na forma maricial

11 4.3 rova da simeria de componenes em D Escolha-se vizinhança elemenar recangular em orno do pono, mergulhada no MC e escreve-se o equilíbrio dos binários As forças de volume e as variações de ensão não foram consideradas, porque conribuem com o ermo de ordem maior Represenação das componenes na forma maricial força momeno força Equilíbrio dos binários momeno

12 5. Equações de equilíbrio 5. rova em D Vizinhança elemenar recangular em orno do pono, mergulhada no MC Noa: o equilíbrio dos momenos dava a relação de simeria, agora com a prova mais rigorosa do que no slide anerior Inerior f Augusin Cauch ( ) f f f f equações de equilíbrio não são suficienes para resolver 3 incógnias

13 Froneira p, s p, n cos,sin T s sin p Carga caresiana disribuída na superfície, valores dados s cos, p p, cos s sin, n n Vizinhança elemenar riangular do pono de superfície p, n n n p 6. Cálculo das componenes do vecor das ensões Condições de froneira Componenes caresianas de analogia: : pono inerior, a normal {n} em que ser eerior e uniária n D n cos,sin T 3D n cos,cos,cos T

14 Componenes inrínsecas n n n n n Componene normal e angencial calculam-se como escalares n n n n n n T n n n cos A componene normal é posiiva quando o senido dela coincide com o senido da normal: racção n Tensão normal na direcção {n} Tensão angencial na facea {n} O senido da componene angencial não esá definido pela esa epressão cos,sin Alernaivamene, em D apenas!!! T n n s n n n n s sin,cos T nt s

15 7. Carácer ensorial das ensões 7. A prova da lei de ransformação em D s s sin s cos cos sin sin cos s cos sin sincos sincos cos sin Equações de equilíbrio em D sin cos cos sin s Analogamene: sin cos sincos Tensão é ensor da ª ordem

16 8. Noas sobre 3D Represenação geomérica das componenes no paralelepípedo elemenar (faceas posiivas) z z z z z z z Equações de equilíbrio (de Cauch) no inerior z z z z z z z f f f z Represenação das componenes na forma maricial 3 equações de equilíbrio não são suficienes para resolver 6 incógnias sim z z z Tensão é ensor simérico 6 componenes em 3D Condições de froneira n p

17 , 9. Tensões principais ara o ângulo de roação θ p, que saisfaz a ensão de core anula-se e as ensões normais aingem os seus máimos e mínimos; esas componenes normais chamam-se ensões principais m ma m R R m min R p onde R qualquer componene normal m m g ma p R Tensão de core máima: R m acompanhada de ma m ma m

18 Noas sobre a circunferência de Mohr Os ponos da circunferência correspondem às componenes inrínsecas do vecor das ensões nas faceas correspondenes As faceas posiivas e negaivas diferem de 8º, o que represena a roação de 36º na circunferência, por isso as componenes são iguais, como era de esperar Orienação das componenes de core deermina a posição do pono na circunferência de Mohr indiferenemene do referencial acima abaio

19 . Esados de ensão Homogéneo ou uniforme: as componenes do ensor das ensões não variam com a posição p p p Tracção pura Compressão pura p ressão hidrosáica Esado angencial puro m ma ma m C

20 Isosáicas Tangenes às direcções principais Tracção pura Esado angencial puro analogamene p p p Compressão pura p ressão hidrosáica Qualquer direcção é principal, isosáicas não fazem senido

21 Tensor esférico e ensor desviador de ensão. Ouras designações imporane para a energia de deformação I ' m onde σ m é a ensão média consequenemene I m z I 3 Tensão ocaédrica são as componenes inrínsecas do vecor ensão no plano cuja normal é n / 3,/ 3,/ 3 T 3 oc I / 3 m oc I 3I Tensão de von Mises vm 3I Imporane para eoria de plasicidade imporane para eoria de plasicidade vm m 3R D vm 3 3 3D Richard von Mises ( )

22 . Ouras represenações. Elipse de Lamé Gabriel Lamé (795-87) ~ ~ min ma em D Elipsóide de Lamé em 3D z~ ~ ~ 3 correspondem às componenes do vecor das ensões numa facea com a normal {n} de componenes n, n, n z no referencial principal z~ ~, ~, z 3 n z~, n ~, n ~ z 3 n z~, n ~, n ~ Assume-se, que n n n z~ ~ ~ z 3

23 Em D min min n n ma ma ma min

24 em D. Quádricas de Cauch Quádrica = superfície que se pode represenar por uma equação algébrica do segundo grau Quádrica de Cauch = coeficienes desa equação coincidem com as componenes do ensor das ensões, A curva não depende do referencial, porque o deerminane de [σ] é invariane Quando de d ou seja quando os valores próprios êm o mesmo sinal, a curva corresponde a elipse ma ~ min ~ ~ / ma ~ / min ~ min / min / ma ~ ma d osiivo para v.p. posiivos Negaivo para v.p. negaivos

25 ma min ma min ma min b ma min Real para + Imag. para - a a a Real para + Imag. para - a b b b Real para - Imag. para + ma b min a Real para - Imag. para + a ma Hipérboles Real para + Imag. para - b min Assimpoas com declives m ma min b a Real para - Imag. para + No referencial principal

26 em 3D T T Vamos analisar superfícies reais como em D d Todos v.p. posiivos e + no lado direio Todos v.p. negaivos e - no lado direio Elipsóide valores posiivos negaivo Hiperbolóides assimpóicos à mesma superfície cónica De uma folha, real para + De duas folhas, real para -

27 valor posiivo negaivos Hiperbolóides assimpóicos à mesma superfície cónica De uma folha, real para - De duas folhas, real para + As roações são apenas consequências da ordenação dos valores próprios, no slide anerior o eio foi formado pelo (3), nese slide o eio coincide com ()

Cap. 3. Tensão. 1. Existência das forças internas. 2. Princípio das tensões de Euler e Cauchy. 3. Vector das tensões no ponto P

Cap. 3. Tensão. 1. Existência das forças internas. 2. Princípio das tensões de Euler e Cauchy. 3. Vector das tensões no ponto P Cap. 3. Tensão 1. Existência das forças internas 2. Princípio das tensões de Euler e Cauchy 3. Vector das tensões no ponto P 3.1 Componentes cartesianas 3.2 Componentes intrínsecas 4. Tensor das tensões

Leia mais

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, )

NOTAÇÕES. x 2y < 0. A ( ) apenas I. B ( ) apenas I e II. C ( ) apenas II e III. D ( ) apenas I e III. E ( ) todas. . C ( ) [ ] 5, 0 U [1, ) NOTAÇÕES C é o conjuno dos números complexos R é o conjuno dos números reais N = {,,,} i denoa a unidade imaginária, ou seja, i = - z é o conjugado do número complexo z Se X é um conjuno, P(X) denoa o

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

António Costa. Paulo Roma Cavalcanti

António Costa. Paulo Roma Cavalcanti Inrodção à Compação Gráfica Geomeria Adapação: Aoria: João alo ereira Anónio Cosa Cladio Esperança alo Roma Caalcani onos e Vecores (2D) ono: Denoa posição no plano ( Vecor: Denoa deslocameno, iso é, incli

Leia mais

Capítulo 11. Corrente alternada

Capítulo 11. Corrente alternada Capíulo 11 Correne alernada elerônica 1 CAPÍULO 11 1 Figura 11. Sinais siméricos e sinais assiméricos. -1 (ms) 1 15 3 - (ms) Em princípio, pode-se descrever um sinal (ensão ou correne) alernado como aquele

Leia mais

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo

Tensores cartesianos. Grandezas físicas como funções de posição e/ou de tempo ensores cartesianos Quantidades (grandeas) físicas: Classificação: Escalares Vectores ensores de segunda ordem... ensores de ordem ero ensores de primeira ordem ensores de segunda ordem... Relacionadas

Leia mais

CAPÍTULO III TORÇÃO SIMPLES

CAPÍTULO III TORÇÃO SIMPLES CAPÍTULO III TORÇÃO SIPLES I.INTRODUÇÂO Uma peça esará sujeia ao esforço de orção simples quando a mesma esiver submeida somene a um momeno de orção. Observe-se que raa-se de uma simplificação, pois no

Leia mais

Capítulo 1 Tensão. (corresponde a σ

Capítulo 1 Tensão. (corresponde a σ Capíulo Tesão Problema Cosidere o esado bidimesioal de esões idicado a figura. Deermie: a) os valores e as direcções das esões pricipais do esado dado; b) compoees irísecas o plao que faz o âgulo de 0º

Leia mais

(I)

(I) Duas parículas esão em movimeno uniforme descrevendo circunferências concênricas de raio diferenes e períodos de 80 s e 0 s. No insane inicial as parículas esão alinhadas com o cenro das circunferências.

Leia mais

1. Tensão Uma das repostas do MC ao carregamento

1. Tensão Uma das repostas do MC ao carregamento Dscla RM-LEG, Z. Drovová, DEC/FCT/UNL, 6. Tesão Ua das reosas do MC ao carregaeo. Vecor das esões forças eras ssea ssea core ssea A F F - ssea ssea ssea B Cojuo( ssea + ssea ) esá e equlíbro Cojuo( ssea

Leia mais

Admita-se que o eixo de uma peça prismática coincide com o eixo z do referencial ortonormado (x,y,z), como representado na figura 1.

Admita-se que o eixo de uma peça prismática coincide com o eixo z do referencial ortonormado (x,y,z), como representado na figura 1. ANÁISE DE SECÇÕES. Esados de ensão e de deformação Admia-se que o eixo de uma peça prismáica coincide com o eixo do referencial oronormado (x,y,), como represenado na figura. x y Figura - Sisema de eixos

Leia mais

Introdução à Computação Gráfica Geometria. Claudio Esperança Paulo Roma Cavalcanti

Introdução à Computação Gráfica Geometria. Claudio Esperança Paulo Roma Cavalcanti Inrodção à Compação Gráfica Geomeria Cladio Esperança alo Roma Caalcani onos e Veores (2D) ono: Denoa posição no plano Veor: Denoa deslocameno, iso é, incli a noção de direção e magnide Ambos são normalmene

Leia mais

LISTA 1 FUNÇÕES VETORIAIS CONCEITOS BÁSICOS CÁLCULO III

LISTA 1 FUNÇÕES VETORIAIS CONCEITOS BÁSICOS CÁLCULO III LISTA FUNÇÕES VETORIAIS CONCEITOS BÁSICOS CÁLCULO III. Faça a represenação gráfica dos campos veoriais gerados por: a) V [, y] x b) V y i x j c) V [ x, y ]. Deermine o lugar no espaço onde os veores, do

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL RELATIVIDADE ESPECIAL AULA N O ( Quadriveores - Velocidade relaivísica - Tensores ) Vamos ver um eemplo de uma lei que é possível na naureza, mas que não é uma lei da naureza. Duas parículas colidem no

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

Capítulo 2 Deformação. dum componente mecânico, mediram-se as seguintes deformações:

Capítulo 2 Deformação. dum componente mecânico, mediram-se as seguintes deformações: Capítulo Deformação Problema Numa roseta de etensómetros (ver figura) colocada na superfície dum componente mecânico, mediram-se as seguintes deformações: ε etensómetro (a): εa 900μ c etensómetro (b):

Leia mais

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP

Exercícios de torção livre em seção circular fechada - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 2015. 1) a. Deerminar a dimensão a de modo a se er a mesma ensão de cisalhameno máxima nos rechos B-C e C-D. b. Com al dimensão pede-se a máxima ensão de cisalhameno no recho A-B.

Leia mais

4 O Fenômeno da Estabilidade de Tensão [6]

4 O Fenômeno da Estabilidade de Tensão [6] 4 O Fenômeno da Esabilidade de Tensão [6] 4.1. Inrodução Esabilidade de ensão é a capacidade de um sisema elérico em maner ensões aceiáveis em odas as barras da rede sob condições normais e após ser submeido

Leia mais

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima.

) quando vamos do ponto P até o ponto Q (sobre a reta) e represente-a no plano cartesiano descrito acima. ATIVIDADE 1 1. Represene, no plano caresiano xy descrio abaixo, os dois ponos (x 0,y 0 ) = (1,2) e Q(x 1,y 1 ) = Q(3,5). 2. Trace a rea r 1 que passa pelos ponos e Q, no plano caresiano acima. 3. Deermine

Leia mais

3 Estudo da Barra de Geração [1]

3 Estudo da Barra de Geração [1] 3 Esudo da Barra de eração [1] 31 Inrodução No apíulo 2, raou-se do máximo fluxo de poência aiva e reaiva que pode chear à barra de cara, limiando a máxima cara que pode ser alimenada, e do possível efeio

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim Cálculo Diferencial e Inegral II - Tagus Park o. Semesre 5/6 o. Tese 7/Novembro/5 JUSTIFIQUE AS SUAS RESPOSTAS RESOLUÇÃO..5+.5 vals.) Calcule ou mosre que não eise: a) a) + b) + + 4 + + Como, não eise.

Leia mais

Física C Extensivo V. 7

Física C Extensivo V. 7 Física C Exensivo V. 7 Resolva Aula 6 Aula 8 6.01) C 6.0) E 8.01) D 8.0) 60º 7.01) B 7.0) E F m = µ 0 π F m = µ 0 π F m = µ 0 π. i i 1.. l d. I. I. l d. I. l d Aula 7 l = 50 cm l,5 m a) φ 1 = B 1. A. cos

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIIDADE ESPECIAL AULA N O 5 ( Equações de Mawell em forma ensorial Equação da Coninuidade 4-veor densidade de correne) Anes de prosseguirmos com a Teoria da Relaividade, observando as consequências

Leia mais

Análise Matemática II

Análise Matemática II Análise Maemáica II Exame/Tese 3 - de Junho de 5 Licenciaura em Eng. Informáica e de Compuadores Nome: Número: Exame: Todas as pergunas Tese: Pergunas 5, 6, 7, 8 e 9 Indique na erceira coluna da abela

Leia mais

Teórica 3_complementar

Teórica 3_complementar Teórica _complementar Problema 1 Considere o estado bidimensional de tensões indicado na figura. Detere: a) As tensões e as direcções principais (define a base do referencial principal em que a primeiro

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

2 CONCEITOS TEÓRICOS FUNDAMENTAIS

2 CONCEITOS TEÓRICOS FUNDAMENTAIS 2 CONCEITOS TEÓRICOS FUNDAMENTAIS Ese capíulo esá dividido em rês pares. A primeira é dedicada aos fundamenos da Teoria da Elasicidade, em paricular da Elasicidade Linear. A segunda pare raa dos conceios

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Notação Equações de Maxwell Caracterização de Ondas Electromagnéticas Escrita em valores instantâneos e em Amplitudes Complexas Propagação no ar, em

Notação Equações de Maxwell Caracterização de Ondas Electromagnéticas Escrita em valores instantâneos e em Amplitudes Complexas Propagação no ar, em Revisão de Conceios Fundamenais Noação quações de Maxwell Caracerização de Ondas lecromagnéicas scria em valores insanâneos e em Ampliudes Complexas Propagação no ar, em Meios Dielécricos e em Meios Conduores

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20. Palavras-chaves: derivada,derivada direcional, gradiente Assuno: Derivada direcional UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 20 Palavras-chaves: derivada,derivada direcional, gradiene Derivada Direcional Sejam z = fx, y) uma função e x

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2013/2014. EIC0014 FÍSICA II 2o ANO 1 o SEMESTRE

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2013/2014. EIC0014 FÍSICA II 2o ANO 1 o SEMESTRE MESTRADO NTEGRADO EM ENG. NFORMÁTCA E COMPUTAÇÃO 2013/2014 EC0014 FÍSCA 2o ANO 1 o SEMESTRE Nome: Duração 2 horas. Prova com consula de formulário e uso de compuador. O formulário pode ocupar apenas uma

Leia mais

Análise e Processamento de BioSinais

Análise e Processamento de BioSinais Análise e Processameno de BioSinais Mesrado Inegrado em Engenaria Biomédica Faculdade de Ciências e Tecnologia Slide Análise e Processameno de BioSinais MIEB Adapado dos slides S&S de Jorge Dias Tópicos:

Leia mais

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática.

CONCURSO PÚBLICO EDITAL Nº 06/2010. Professor do Magistério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA. Matemática. CONCURSO PÚBLICO EDITAL Nº 6/ Professor do Magisério do Ensino Básico, Técnico e Tecnológico DISCIPLINA / ÁREA Maemáica Caderno de Provas Quesões Objeivas INSTRUÇÕES: - Aguarde auorização para abrir o

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

uma função qualquer com uma variável independente. A derivada de uma função é

uma função qualquer com uma variável independente. A derivada de uma função é Ondas (EE) Análise vecorial. Derivadas parciais.. Derivada de uma função Seja a função f () uma função qualquer com uma variável independene. A derivada de uma função é d d lim 0 Geomericamene, a derivada

Leia mais

Problema Inversor CMOS

Problema Inversor CMOS Problema nersor CMS NMS: V = ol K = 30 μa/v PMS: V = ol K = 30 μa/v A figura represena um inersor CMS em que os dois ransísores apresenam caracerísicas siméricas A ensão de alimenação ale V =5 ol ) Sabendo

Leia mais

Geodesia Física Aula 12

Geodesia Física Aula 12 As reduções graviméricas, aravés da deerminação dos efeios do erreno em excesso sobre o valor da gravidade medida, surge como um requisio obrigaório; Na abordagem de Sokes, o geóide é a superfície de froneira

Leia mais

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença

Leia mais

Figuras do Livro Introdução à Análise Complexa, Séries de Fourier e Equações Diferenciais

Figuras do Livro Introdução à Análise Complexa, Séries de Fourier e Equações Diferenciais Figuras do Livro Inrodução à Análise Complea, Séries de Fourier e Equações Diferenciais Pedro Marins Girão Deparameno de Maemáica Insiuo Superior Técnico Julho de 04 Capíulo Números compleos iiz θ = π

Leia mais

Cap. 0. Cálculo tensorial

Cap. 0. Cálculo tensorial Cap. 0. Cálculo tensorial 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores. Álgebra tensorial 3. ensores cartesianos em D simétricos

Leia mais

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t)

Lista 5: Superfícies. (e) x = 4 tan(t) (f) x = (g) x = 1 4 csc(t) y = cosh(2t) 1. Parametrize as seguintes curvas. + = 16 + 5 = 15 = 4 = 16 + 5 + 8 7 = 0 (f) + 4 + 1 + 6 = 0. Lista 5: Superfícies (g) = + (h) + = (i) + = 4 (j) + = 1 (k) 6 + 18 = 0 (l) r = sin(θ). Determine a equação

Leia mais

Membranas Lista de Exercícios - Gabarito. ΔT = 165 ºF (uniforme no conjunto) 2 R = 150 mm t = 3 mm 1

Membranas Lista de Exercícios - Gabarito. ΔT = 165 ºF (uniforme no conjunto) 2 R = 150 mm t = 3 mm 1 Membranas Lisa de xercícios - Gabario ()Um placa fina de alumínio, reforçada com um anel de aço sofre um acréscimo de emperaura ΔT. Calcule a ensão circunferencial no anel, a força que ese exerce sobre

Leia mais

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo

Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Lista 5: Superfícies Engenharia Mecânica - Professora Elisandra Bär de Figueiredo Nos eercícios 1 ao 18 identique e represente geometricamente as superfícies dadas pelas equações: 1. + 9 = 6. = 16. = 9.

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Curvas e Superfícies Paramétricas

Curvas e Superfícies Paramétricas Curvas e Superfícies araméricas Eemplo de superfícies NURBS Curvas e Superfícies ara aplicações de CG normalmene é mais conveniene adoar a forma paramérica Independene do sisema de coordenadas Represenação

Leia mais

LISTA CÁLCULO II 2017/1 FUNÇÕES DE VÁRIAS VARIÁVEIS

LISTA CÁLCULO II 2017/1 FUNÇÕES DE VÁRIAS VARIÁVEIS LISTA CÁLCULO II 07/ FUNÇÕES DE VÁRIAS VARIÁVEIS. Dada as funções y f ( y) e y g( y ) ( y) 5 deermine: y f ( ) f ( ) c) g( ) d) g( s s s ). Deermine e esboce o domínio da região: f y ln y ( ) ( ) f ( y)

Leia mais

2 Formulação do Problema

2 Formulação do Problema 30 Formulação do roblema.1. Dedução da Equação de Movimeno de uma iga sobre Fundação Elásica. Seja a porção de viga infinia de seção ransversal consane mosrada na Figura.1 apoiada sobre uma base elásica

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão)

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão) Cap.. Deformação 1. Deslocamento. Gradiente de deformação.1 ranslação, rotação e deformação da vizinhança elementar 3. ensor de deformação de agrange 4. ensor das pequenas deformações 4.1 Caracter tensorial

Leia mais

Aula 6 Geração de Grades

Aula 6 Geração de Grades Universidade Federal do ABC Aula 6 Geração de Grades EN34 Dinâmica de Fluidos Compuacional TRANSFORMAÇÕES DE COORDENADAS Grade de ponos discreos A abordagem de diferenças finias apresenada aé agora, que

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 2 quadrimestre 2011

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 2 quadrimestre 2011 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI, 998) (N) (HAYKIN; VEEN,, p 79) O pulso rapezoidal x( ) da figura a seguir é aplicado

Leia mais

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo.

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo. Inrodução ao Conrole Óimo: Oimização de funções e funcionais. Oimização paramérica. Problema de conrole óimo com empo final fio. Oimização Deerminação de uma ação que proporciona um máimo de benefício,

Leia mais

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA ESUDO DA CONDUÇÃO DE CALOR OBJEIVOS - Deerminar a disribuição de emperaura em um meio - Calcular o fluo de calor usando a Lei de Fourier Aplicações: - Conhecer a ineridade esruural de um meio em aluns

Leia mais

5 0,5. d d ,6 3. v Δt 0,03s Δt 30ms. 3. Gabarito: Lista 01. Resposta da questão 1: [D]

5 0,5. d d ,6 3. v Δt 0,03s Δt 30ms. 3. Gabarito: Lista 01. Resposta da questão 1: [D] Gabario: Lisa 01 Resposa da quesão 1: [D] Seja v 1 a velocidade média desenvolvida por Juliana nos reinos: ΔS1 5 v 1 v1 10 km h. Δ1 0,5 Para a corrida, a velocidade deverá ser reduzida em 40%. Enão a velocidade

Leia mais

3 O Modelo SAGA de Gestão de Estoques

3 O Modelo SAGA de Gestão de Estoques 3 O Modelo SG de Gesão de Esoques O Sisema SG, Sisema uomaizado de Gerência e poio, consise de um sofware conendo um modelo maemáico que permie fazer a previsão de iens no fuuro com base nos consumos regisrados

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

Cap. 1. Tensores cartesianos, cálculo tensorial

Cap. 1. Tensores cartesianos, cálculo tensorial Cap. 1. ensores cartesianos, cálculo tensorial 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores. Álgebra tensorial 3. ensores cartesianos

Leia mais

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia Cap. 1. ensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores.

Leia mais

Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão

Mecânica dos Sólidos I Parte 3 Estado Plano de Tensão Departamento de Engenharia Mecânica Parte 3 Estado Plano de Tensão Prof. Arthur M. B. Braga 15.1 Mecânica dos Sólidos Problema F 1 Corpo sujeito a ação de esforços eternos (forças, momentos, etc.) F 7

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS Terceira Edição CAPÍTULO RESISTÊNCIA DOS MATERIAIS Ferdinand P. Beer E. Russell Johnston, Jr. Análise de Tensões no Estado Plano Capítulo 6 Análise de Tensões no Estado Plano 6.1 Introdução 6. Estado Plano

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Lista de exercícios 3. September 15, 2016

Lista de exercícios 3. September 15, 2016 ELE-3 Inrodução a Comunicações Lisa de exercícios 3 Sepember 5, 6. Enconre a ransformada de Hilber x() da onda quadrada abaixo. Esboce o especro de x() j x(). [ ] x() = Π ( n). n=. Um sinal em banda passane

Leia mais

Sinais e Sistemas. Caderno de Exercícios de Casa (Horas não presenciais) (Compilação de exercícios de exames)

Sinais e Sistemas. Caderno de Exercícios de Casa (Horas não presenciais) (Compilação de exercícios de exames) Sinais e Sisemas Caderno de Exercícios de Casa (Horas não presenciais) (Compilação de exercícios de exames) Capíulo - Sinais. Escreva as linhas de código em Malab para criar e represenar os seguines sinais:

Leia mais

2.5 Impulsos e Transformadas no Limite

2.5 Impulsos e Transformadas no Limite .5 Impulsos e Transformadas no Limie Propriedades do Impulso Uniário O impulso uniário ou função dela de Dirac δ não é uma função no senido maemáico esrio. Ela perence a uma classe especial conhecida como

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

UNIVERSIDADE NOVA DE LISBOA FACULDADE DE CIÊNCIAS E TECNOLOGIA CURSO DE LICENCIATURA EM ENGENHARIA GEOLÓGICA

UNIVERSIDADE NOVA DE LISBOA FACULDADE DE CIÊNCIAS E TECNOLOGIA CURSO DE LICENCIATURA EM ENGENHARIA GEOLÓGICA UNIVERSIAE NOVA E LISBOA FACULAE E CIÊNCIAS E TECNOLOGIA CURSO E LICENCIATURA EM ENGENHARIA GEOLÓGICA Resistência de Materiais (LEG): Exame de época normal Semestre par 005/006, 6 de Julho 006, duração

Leia mais

9. COMPORTAMENTO DINÂMICO COMPLEXO

9. COMPORTAMENTO DINÂMICO COMPLEXO 9. COMPORTAMENTO DINÂMICO COMPLEXO 9. Movimeno no Espaço de Esado A resposa de um sisema começando em um esado inicial o, acompanha uma curva num espaço de (n+) dimensões. Esamos bem acosumados ao ipo

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações.

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações. .. Sisemas Escalonados Os sisemas abaio são escalonados: 7 Veja as maries associadas a esses sisemas: 7 Podemos associar o nome "escalonado" com as maries ao "escalar" os eros ou energar a "escada" de

Leia mais

Questão 1 Questão 2. Resposta. Resposta

Questão 1 Questão 2. Resposta. Resposta Quesão Quesão Dois amigos, Alfredo e Bruno, combinam dispuar a posse de um objeo num jogo de cara coroa. Alfredo lança moedas e Bruno moedas, simulaneamene. Vence o jogo e, conseqüenemene, fica com o objeo,

Leia mais

Problemas das Aulas Práticas

Problemas das Aulas Práticas Mesrado Inegrado em Engenharia Elecroécnica e de Compuadores Conrolo em Espaço de Esados Problemas das Aulas Práicas J. Miranda Lemos Fevereiro de 3 J. M. Lemos, IST P. Consrução do modelo de esado a parir

Leia mais

APÊNDICE A. Rotação de um MDT

APÊNDICE A. Rotação de um MDT APÊNDICES 7 APÊNDICE A Roação de um MDT 8 Os passos seguidos para a realização da roação do MDT foram os seguines: - Deerminar as coordenadas do cenro geomérico da região, ou pono em orno do qual a roação

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Esadual do Sudoese da Bahia Dearameno de Ciências Exaas e Naurais.1- Roações, Cenro de Massa e Momeno Física I Prof. Robero Claudino Ferreira Índice 1. Movimeno Circular Uniformemene Variado;.

Leia mais

As cargas das partículas 1, 2 e 3, respectivamente, são:

As cargas das partículas 1, 2 e 3, respectivamente, são: 18 GAB. 1 2 O DIA PROCSSO SLTIVO/2006 FÍSICA QUSTÕS D 31 A 45 31. A figura abaixo ilusra as rajeórias de rês parículas movendo-se unicamene sob a ação de um campo magnéico consane e uniforme, perpendicular

Leia mais

Capítulo 6 Transformação de tensão no plano

Capítulo 6 Transformação de tensão no plano Capítulo 6 Transformação de tensão no plano Resistência dos Materiais I SLIDES 06 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Transformar as componentes de tensão

Leia mais

Lista de Função Exponencial e Logarítmica Pré-vestibular Noturno Professor: Leandro (Pinda)

Lista de Função Exponencial e Logarítmica Pré-vestibular Noturno Professor: Leandro (Pinda) Lisa de Função Eponencial e Logarímica Pré-vesibular Nourno Professor: Leandro (Pinda) 1. (Ueg 018) O gráfico a seguir é a represenação da 1 função f() log a b 3. (Epcar (Afa) 017) A função real f definida

Leia mais

2.1 Translação, rotação e deformação da vizinhança elementar. 4.3 Significado físico das pequenas deformações

2.1 Translação, rotação e deformação da vizinhança elementar. 4.3 Significado físico das pequenas deformações Sebenta da Disciplina MMC, Zuzana Dimitrovová, DEC/FC/UNL, 016 Cap. 4. Deformação 1. Deslocamento. Gradiente de deslocamento.1 ranslação, rotação e deformação da vizinhança elementar. Significado físico

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico)

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico) ESOMENTOS VIÁVEIS EM ESSÃO (hoque idráulico) Méodo das aracerísicas -6-3 Méodo das aracerísicas -6-3 Méodo das aracerísicas hoque idráulico Equações Diferenciais: Equilíbrio Dinâmico onservação da Massa

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/14 Resistência dos Materiais 00/004 Curso de Gestão e Engenharia Industrial ª ula Duração - Horas Data - 5 de Setembro de 00 Sumário: Tensões numa Barra Traccionada. Conceito de Tensão. Tensor das Tensões.

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre

Cinemática em uma dimensão. o Posição, deslocamento velocidade, aceleração. o Movimento com aceleração constante, o Queda livre Cinemáica em uma dimensão o Posição, deslocameno velocidade, aceleração. o Movimeno com aceleração consane, o Queda livre Mecânica( Dinâmica! é! o! esudo! do! movimeno! de! um! corpo! e! da! relação!dese!movimeno!com!conceios!lsicos!como!força!

Leia mais

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2 Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:

Leia mais

Modelos BioMatemáticos

Modelos BioMatemáticos Modelos BioMaemáicos hp://correio.fc.ul.p/~mcg/aulas/biopop/ edro J.N. Silva Sala 4..6 Deparameno de Biologia Vegeal Faculdade de Ciências da Universidade de Lisboa edro.silva@fc.ul.p Genéica opulacional

Leia mais

MECÂNICA DOS SÓLIDOS

MECÂNICA DOS SÓLIDOS Deparameno de Engenharia Mecânica Mecânica dos Sólidos 05/06 MECÂNICA DOS SÓLIDOS 05/6 Noas das aulas e problemas Versão 0. Prof. Luis Faria Prof. Luís Sousa Draf 0.- 30--05 Pág. Deparameno de Engenharia

Leia mais

Cálculo I - Lista 3: Derivadas

Cálculo I - Lista 3: Derivadas Faculdade de Zooecnia e Engenharia de Alimenos Universidade de São Paulo - Lisa : Derivadas Prof. Responsável: Andrés Vercik. (i) U a definição para ober o coeficiene angular da angene ao gráfico de f

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

INSTITUTO DE ENGENHARIA DE ESTRUTURAS, TERRITÓRIO E CONSTRUÇÃO

INSTITUTO DE ENGENHARIA DE ESTRUTURAS, TERRITÓRIO E CONSTRUÇÃO INSTITUTO DE ENGENHARIA DE ESTRUTURAS, TERRITÓRIO E CONSTRUÇÃO I C I S T Av. Rovisco Pais, 049-00 Lisboa Tel: 8 48 44 Placa-Leg Programa de Aplicação de um Modelo Híbrido-Miso de Tensão à Análise Elasoplásica

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais