2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão)

Tamanho: px
Começar a partir da página:

Download "2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão)"

Transcrição

1 Cap.. Deformação 1. Deslocamento. Gradiente de deformação.1 ranslação, rotação e deformação da vizinhança elementar 3. ensor de deformação de agrange 4. ensor das pequenas deformações 4.1 Caracter tensorial das deformações 4. eoria geometricamente linear 4.3 Significado físico das pequenas deformações Variação relativa do comprimento (Etensão) 4.3. Variação do ângulo (Distorção) 4.4 Representação geométrica no quadrado elementar unitário 5. Deformação volúmica 6. Medição das deformações: etensómetros, rosetas 7. Equações de compatibilidade 8. Forma matricial das equações introduzidas 9. Estados de deformação 10. Vector das deformações

2 Deformação é outra reposta do meio contínuo ao carregamento. Neste caso, a sua definição não é fictícia como no caso das tensões, mas pode se visualizar. Cada vizinhança em torno de um ponto interior do meio contínuo, depois da aplicação do carregamento muda: a sua posição via translação e rotação do corpo rígido o seu volume representado pela parte volúmica do tensor das deformações a sua forma representada pela parte desviatórica do tensor das deformações 1. Deslocamento Deslocamento define se como o vector que liga a posição inicial, com a posição final de cada ponto do meio contínuo. Nota se que para definição de vectores, basta falar sobre pontos e não é preciso introduzir vizinhanças, como no caso de tensores. Deslocamento é visível, porque pode se medir pelo menos nos pontos de superfície, ao contrário de tensão, que é a nossa ficção. Vamos usar a designação u u, v, w para evitar índices. Salienta se que é preciso ter cuidado, e de conteto, distinguir o vector de deslocamento u da sua primeira componente u.. Gradiente de deformação O gradiente de deformação M define se usando pontos vizinhos na posição original e deformada.

3 Na figura acima representa se um corpo na sua posição inicial, ou seja, sem o carregamento aplicado. Escolhem se pontos vizinhos, ou seja, o ponto Q está contido na vizinhança elementar do ponto P. A figura no entanto representa os dois pontos bastante afastados para uma melhor visualização. Após a aplicação do carregamento, o corpo muda a sua posição, volume e forma. Os pontos P e Q encontram se nas posições novas, designadas P e Q. e as componentes correspondem a Q P, y yq yp, z zq zp. De acordo com a definição do deslocamento, up P P e uq Q Q. Fazendo uma paralela ao vector u P que passa pelo ponto Q, observa se facilmente da figura acima, que a variação do deslocamento u, pode se escrever como O vector que liga os dois pontos designa se s, y, z u s s ou seja s s u Caso s s P, Q verificar se para cada escolha dos pontos P e Q diz se que não há deformação, ou seja, no máimo pode eistir movimentos na forma do corpo rígido. No entanto, não podemos já designar o corpo como rígido, isso só seria possível no caso em que não haja deformação para qualquer carregamento. É possível aproimar a variação do deslocamento. al como no capítulo anterior, para esta aproimação usa se o primeiro termo da epansão de aylor. Neste caso, a variação efectua se ao longo de uma direcção arbitrária, e não como no capítulo anterior, na direcção do eio cartesiano. Por esta razão é preciso efectuar as três derivadas parciais em cada componente, ou seja u u u u y z y z e analogamente v v v v y z, y z w w w w y z y z Na forma matricial por isso s s u s M s

4 e M chama se gradiente de deformação. M u u u y z v v v y z w w w y z Nota se que estamos perante uma epansão em que foram utilizados apenas dois termos e outros foram desprezados..1 ranslação, rotação e deformação da vizinhança elementar Para se definir a deformação, é preciso apenas a variação de forma e de volume, por isso tem que se eliminar a translação e a rotação do corpo rígido.... V D s I s M s I s I s Define se como tensor de deformação, a parte simétrica do gradiente de deformação, ou seja / M M e como tensor de rotação a parte anti simétrica do gradiente de deformação, ou seja / M M u u u u 1u v 1u w 1u v 1u w 0 y z y z y z v v v v 1v w 1v w 0 y z y z y z y w w w w antis sim im 0 y z z Voltando às relações acima, o movimento do corpo rígido representa se pela translação, I, e V rotação. A deformação envolve a variação de volume, que designa a parte volúmica do tensor e a variação de forma, D que designa a parte desviatórica do tensor. Neste caso, o tensor chama se tensor das pequenas deformações, como se vai justificar no teto seguinte.

5 3. ensor de deformação de agrange Em alternativa, eprimindo a diferença entre os quadrados das normas dos comprimentos novos e originais, obtém se directamente a deformação, ou seja, já com a translação e a rotação do corpo rígido eliminadas s s su su s s u s s u u u M s s s M s M s M s s M s s M s s M M s s M M M M s s s Na dedução em cima usou se o facto que a norma de um vector pode ser escrita como o produto interno deste vector consigo. Em conclusão: 1 M M e M M 1 O tensor chama se o tensor das pequenas deformações e o tensor agrangiano das deformações grandes. Eistem várias definições para descrever deformações grandes nesta cadeira, apenas esta única definição será introduzida. 4. ensor das pequenas deformações O tensor das pequenas deformações contém os termos de gradiente de formação com epoente 1 e o tensor agragiano contém ainda os termos em que os termos de gradiente de deformação aparecem em multiplicação. Pode se assim facilmente concluir que o tensor das pequenas deformações é possível usar sempre, quando os termos de gradiente de deformação são pequenos, ou seja, quando M ij 1 i, j. Neste caso, os termos de gradiente de deformação em multiplicação são desprezáveis. 4.1 Caracter tensorial das deformações O gradiente de deformação é definido como o gradiente do vector, e por isso corresponde ao tensor de segunda ordem (assimétrico). A soma ou a subtracção dos tensores de segunda ordem é também o tensor de segunda ordem, o que comprova que e são tensores de

6 segunda ordem. O tensor agrangiano é também um tensor de segunda ordem porque o termo que se soma a representa um produto interno de dois tensores de segunda ordem, cujo resultado é também um tensor de segunda ordem. As componentes de deformação não têm unidade, visto que os números costumam ser bastante 6 pequenos, às vezes usa se o prefio 10 para aumentar a grandeza do número. Salienta se que não é unidade. 4. eoria geometricamente linear O tensor das pequenas deformações é uma função linear dos termos de gradiente de deformação, ou seja, função linear de derivadas de componentes do vector de deslocamento. Esta linearidade chama se linearidade geométrica. Neste caso, usa se também o termo a teoria das pequenas deformações. Nota se que as pequenas deformações não impedem deslocamentos grandes. Por eemplo, o movimento do corpo rígido pode representar deslocamentos grandes, no entanto, o tensor das deformações é nulo. Usa se por isso também o termo, a teoria dos pequenos deslocamentos. A teoria dos pequenos deslocamentos implica a teoria das pequenas deformações, mas não vice versa. Neste caso, visto que os deslocamentos são pequenos, não se costuma distinguir a forma do corpo original da deformada, para a determinação das propriedades, ou para escrever as condições de equilíbrio. Salienta se que na disciplina de estática, as equações de equilíbrio escreveram se na posição da estrutura indeformada. Esta limitação não consegue analisar outros fenómenos como por eemplo, a instabilidade. Usam se por isso os termos a teoria de I. ordem e a teoria de II. ordem. Na teoria de II. ordem, as equações de equilíbrio escrevem se na fora do corpo deformada. Nota se que a palavra deformada não corresponde ao termo deformação. O corpo na posição deformada corresponde ao corpo constituído pelos pontos na sua posição final, ou seja, aplicando o campo de deslocamento. Visto que os pontos de superfície mantém se na superfície após aplicação do carregamento e o corpo mantém se contínuo, a posição deformada pode se obter como a posição deslocada de superfície, aplicando o vector do deslocamento a cada ponto de superfície. 4.3 Significado físico das pequenas deformações Variação relativa do comprimento (Etensão) As componentes normais do tensor das pequenas deformações chamam se etensões. O significado físico corresponde à variação relativa do comprimento. O valor positivo representa alongamento, e o valor negativo encurtamento. al como no caso das tenções, o sinal da componente normal não depende do referencial.

7 Na realidade, a variação relativa do comprimento aproima se pela variação relativa do u comprimento projectado na direcção original, ou seja. Esta interpretação só é possível na teoria dos pequenos deslocamentos. Assume se que o comprimento é infinitesimal e na direcção do eio cartesiano. A variação relativa da distância destes pontos (não se pode dizer comprimento, porque a ligação PQ pode ser curva) é u. Pode se provar que e assim, o significado físico descrito acima confirma se. Prova: De acordo com a definição P u PQ PQ lim PQ0 PQ P Pretende se provar que: lim PQ PQ PQ PQ lim PQ PQ PQ0 PQ0 Assumiu se que: s Por isso, a relação acima pode se escrever como PQ PQ s s s PQ s Usando a definição do tensor de pequenas deformações s s s s s Voltando à relação anterior

8 s s s s Substituindo s Consequentemente u f, f i, i du u e para distribuição uniforme de deformações, mesmo para comprimentos finitos:,, Variação do ângulo As componentes tangenciais do tensor das pequenas deformações chamam se distorções e correspondem às variações angulares dos ângulos. Assume se um ângulo formado pelos braços unitários n A e n B A B A B n n n n cos sin Quando o ângulo é originalmente recto, a fórmula simplifica se para A B n n Por eemplo em D, alinhando os braços com o referencial cartesiano A n 1, 0, B n 0,1 A B n n y. Pode se provar que E por isso, o dobro da componente tangencial representa a variação do ângulo originalmente recto. Note se que foi introduzido para diminuir o ângulo e por isso a distorção positiva diminui o ângulo, e a distorção negativa aumenta o.

9 u v Por esta razão introduz se a distorção de engenharia, y y y. Assim y, ou seja, corresponde à variação total do ângulo formado pelos eios cartesianos, como já dito anteriormente. u v y tan tan y Em resumo tem significado físico de variação angular do ângulo originalmente recto. 4.4 Representação geométrica no quadrado elementar unitário

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia

Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia Cap. 1. ensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores.

Leia mais

Física I 2010/2011. Aula 13 Rotação I

Física I 2010/2011. Aula 13 Rotação I Física I 2010/2011 Aula 13 Rotação I Sumário As variáveis do movimento de rotação As variáveis da rotação são vectores? Rotação com aceleração angular constante A relação entre as variáveis lineares e

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705)

Método dos trabalhos virtuais. Jacob Bernoulli (também James ou Jacques) (Suiça, 27 December August 1705) Método dos trabalhos virtuais Jacob ernoulli (também James ou Jacques) (Suiça, 7 December 1654 16 ugust 1705) Trabalho mecânico de uma força num deslocamento infinitesimal (trabalho elementar) x z 0 Trabalho

Leia mais

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento

2 Cinemática 2.1 CINEMÁTICA DA PARTÍCULA Descrição do movimento 2 Cinemática A cinemática tem como objeto de estudo o movimento de sistemas mecânicos procurando descrever e analisar movimento do ponto de vista geométrico, sendo, para tal, irrelevantes os fenómenos

Leia mais

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Transformações 2D

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Transformações 2D Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática Transformações 2D Computação Visual Beatriz Sousa Santos, Joaquim Madeira Transformações 2D Posicionar, orientar e escalar

Leia mais

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9

Teoria da Membrana. Cascas de Revolução 9.1. Capítulo 9 Teoria da Membrana. Cascas de evolução 9. Capítulo 9 Teoria de Membrana. Cascas de evolução 9. Sistema de Eixos Uma casca de revolução tem uma superfície média que forma uma superfície de revolução. Esta

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/16 Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 3ª Aula Duração - 2 Horas Data - 29 de Setembro de 2003 Sumário: Equações de Equilíbrio de Forças. Equações de Equilíbrio

Leia mais

CIR CIR CIR m CIR 12 CIR 1. Problema

CIR CIR CIR m CIR 12 CIR 1. Problema roblema C B 4 A 3 4 m Calcule todas as reacções externas. As forças aplicadas actuam no meio das barras. Resolução (verificação da estatia: Estática) H A : libertação e a introdução da reacção incógnita

Leia mais

Agrupamento de Escolas da Senhora da Hora

Agrupamento de Escolas da Senhora da Hora Agrupamento de Escolas da Senhora da Hora Curso Profissional de Técnico de Multimédia Informação Prova da Disciplina de Física - Módulo: 1 Forças e Movimentos; Estática Modalidade da Prova: Escrita Ano

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA

UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLIÉCNICA DEPARAMENO DE CONSRUÇÃO E ESRUURAS O ENSOR ENSÃO DE CAUCHY João Augusto de Lima Rocha Módulo didático: DCE MD - 02/2002 O ENSOR ENSÃO DE CAUCHY João Augusto

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial Fleão Pura de Vigas - Tensões Aiais 1/ Resistência dos Materiais 003/004 Curso de Gestão e Engenharia Industrial 1ª Aula Duração - Horas Data - 10 de Novembro de 003 Sumário: Fleão Pura de Vigas. Tensões

Leia mais

Física I 2009/2010. Aula02 Movimento Unidimensional

Física I 2009/2010. Aula02 Movimento Unidimensional Física I 2009/2010 Aula02 Movimento Unidimensional Sumário 2-1 Movimento 2-2 Posição e Deslocamento. 2-3 Velocidade Média 2-4 Velocidade Instantânea 2-5 Aceleração 2-6 Caso especial: aceleração constante

Leia mais

Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff.

Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff. Sumário e Objectivos Sumário: Tensões de Cauchy. Tensões de Piolla Kirchhoff. Objectivos da Aula: Apreensão das diferenças entre as grandes deformações e as pequenas deformações no contexto da análise

Leia mais

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2

Resistência dos. Materiais. Capítulo 2. - Elasticidade Linear 2 Resistência dos Materiais - Elasticidade Linear Acetatos baseados nos livros: - Mechanics of Materials - Beer & Jonhson - Mecânica e Resistência dos Materiais V. Dias da Silva Índice Carregamento Genérico:

Leia mais

Transformações (Cap 4.3, 4.4 e 4.6 a 4.10)

Transformações (Cap 4.3, 4.4 e 4.6 a 4.10) 4.6 a 4.) Transformações (Cap 4.3, 4.4 e 4.6 a 4.) Instituto Superior Técnico, 26/27 Sumário Revisões Transformações Elementares Coordenadas Homogéneas Composição de Transformações Transformações em OpenGL

Leia mais

MECÂNICA APLICADA II

MECÂNICA APLICADA II Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil 2º ANO EXERCICIOS PRÁTICOS Ano lectivo 2004/2005 MECÂNICA APLICADA II I - Teoria do estado de tensão I.1 - Uma barra, com a

Leia mais

Ficha de Exercícios nº 1

Ficha de Exercícios nº 1 Nova School of Business and Economics Álgebra Linear Ficha de Exercícios nº 1 Espaços Vectoriais 1 Qual das seguintes afirmações é verdadeira? a) Um espaço vectorial pode ter um número ímpar de elementos.

Leia mais

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I - 2007/08 1. Objectivo FORÇA GRAVÍTICA Comparar a precisão de diferentes processos de medida; Linearizar

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

MECÂNICA APLICADA II

MECÂNICA APLICADA II Escola Superior de Tecnologia e Gestão MECÂNICA APLICADA II Engenharia Civil º ANO EXERCICIOS PRÁTICOS Ano lectivo 005/006 Ano lectivo: 005/006.º semestre MECÂNICA APLICADA II I - Teoria do estado de

Leia mais

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido

Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

MODELO DE TRÊS GRAUS DE LIBERDADE POR PISO

MODELO DE TRÊS GRAUS DE LIBERDADE POR PISO Álvaro Azevedo - Novembro 998 MODELO DE TRÊS GRAUS DE LIBERDADE OR ISO Quando a estrutura de um edifício é constituída por uma associação de pórticos, paredes e lajes é possível basear o estudo do seu

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/14 Resistência dos Materiais 00/004 Curso de Gestão e Engenharia Industrial ª ula Duração - Horas Data - 5 de Setembro de 00 Sumário: Tensões numa Barra Traccionada. Conceito de Tensão. Tensor das Tensões.

Leia mais

Tensores Cartesianos

Tensores Cartesianos Tensores Cartesianos Mecânica II Notas de apoio à disciplina de Mecânica II Vitor Leitão Departamento de Engenharia Civil e Arquitectura Instituto Superior Técnico Lisboa, 2011 vitor@civil.ist.utl.pt -

Leia mais

Cap. 2. Conceito do meio contínuo, objectivos e restrições de MMC

Cap. 2. Conceito do meio contínuo, objectivos e restrições de MMC Cap. 2. Conceito do meio contínuo, objectivos e restrições de MMC 1. Hierarquia de Mecânica Clássica ou Newtoniana 2. Meio contínuo 3. Objectivos de MMC 3.1 Carregamento 3.2 Resposta ao carregamento 3.3

Leia mais

Cap. 1. Tensores cartesianos, cálculo tensorial

Cap. 1. Tensores cartesianos, cálculo tensorial Sebenta da Disciplina MMC, Zuzana Dimitrovová, DEC/FC/UNL, 016 Cap. 1. ensores cartesianos, cálculo tensorial 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores

Leia mais

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência

UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência UC: STC 6 Núcleo Gerador: URBANISMO E MOBILIDADES Tema: Construção e Arquitectura Domínio de Ref.ª:RA1 Área: Ciência Sumário: Betão armado armadura aplicações Equilíbrio estático de um ponto material Momento

Leia mais

Transformações Geométricas

Transformações Geométricas Transformações Geométricas 2D Carolina Watanabe Referências Bibliográficas FOLEY, J. D, DAM, A. V.; HUGHES, J. F. Computer Graphics Principle and dpractice, 2 a edição Material elaborado por Marcela X.

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

Curso de Geomática Aula 2. Prof. Dr. Irineu da Silva EESC-USP

Curso de Geomática Aula 2. Prof. Dr. Irineu da Silva EESC-USP Curso de Geomática Aula Prof. Dr. Irineu da Silva EESC-USP Sistemas de Coordenadas Determinar a posição de um ponto, em Geomática, significa calcular as suas coordenadas. Calcular as coordenadas de um

Leia mais

PARAMETRIZAÇÃO DE CURVA:

PARAMETRIZAÇÃO DE CURVA: PARAMETRIZAÇÃO DE CURVA: parametrizar uma curva C R n (n=2 ou 3), consiste em definir uma função vetorial: r : I R R n (n = 2 ou 3), onde I é um intervalo e r(i) = C. Equações paramétricas da curva C de

Leia mais

Aula 31 Funções vetoriais de uma variável real

Aula 31 Funções vetoriais de uma variável real MÓDULO 3 - AULA 31 Aula 31 Funções vetoriais de uma variável real Objetivos Conhecer as definições básicas de funções vetoriais de uma variável real. Aprender a parametrizar curvas simples. Introdução

Leia mais

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T4 FÍSICA EXPERIMENTAL I - 007/08 MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO 1. Objectivo Estudo do movimento de rotação de um corpo

Leia mais

Vectores. Figura Vector PQ

Vectores. Figura Vector PQ Vectores 1 Introdução Neste tutorial vou falar sobre vectores. Os vectores são muito importantes em muitas ciências quer para a matemática, quer para alguns tipos de programação (especialmente programação

Leia mais

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular

Física I. Aula 05 Forças e Movimentos IV 2010/2011. Movimento Circular Física I 2010/2011 Aula 05 Forças e Movimentos IV Movimento Circular Sumário Movimento circular Movimento circular uniforme Movimento relativo a uma dimensão Movimento relativo a duas dimensões Física

Leia mais

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA

PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CÁLCULO APLICADO A CINEMÁTICA TÓPICOS A SEREM ABORDADOS O que é cinemática? Posição e Deslocamento

Leia mais

DEFORMAÇÕES 2.1 INTRODUÇÃO

DEFORMAÇÕES 2.1 INTRODUÇÃO DEFORMAÇÕES. INRODUÇÃO Neste capítulo procede-se ao estudo da Mecânica de Deformação do Sólido numa perspectiva macroscópica, isto é, ignorando o que se passa ao nível atómico e molecular. Para se proceder

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques 7 DERIVADAS PARCIAIS TÓPICO Gil da Costa Marques Fundamentos da Matemática II 7.1 Introdução 7. Taas de Variação: Funções de uma Variável 7.3 Taas de variação: Funções de duas Variáveis 7.4 Taas de Variação:

Leia mais

Transformações Geométricas Grafos de Cena

Transformações Geométricas Grafos de Cena Transformações Geométricas Grafos de Cena Edward Angel, Cap. 4 Instituto Superior Técnico Computação Gráfica 2009/2010 1 Na última aula... Transformações Geométricas Translação Escala Rotação Espaço Homogéneo

Leia mais

FUNÇÃO QUADRÁTICA. Vamos fazer agora o estudo da função, tendo em conta a sua representação geométrica.

FUNÇÃO QUADRÁTICA. Vamos fazer agora o estudo da função, tendo em conta a sua representação geométrica. FUNÇÃO QUADRÁTICA Definição: Uma função quadrática é uma função f definida por f () a b c, a 0 a, b e c são números reais. - O domínio de uma função quadrática é o conjunto dos números reais. - O gráfico

Leia mais

1 Espaços Vectoriais

1 Espaços Vectoriais Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Espaço Vectorial Conjunto de elementos que verifica as seguintes propriedades: Existência de elementos: Contém pelo menos um

Leia mais

Revisão, apêndice A Streeter: SISTEMAS DE FORÇAS, MOMENTOS, CENTROS DE GRAVIDADE

Revisão, apêndice A Streeter: SISTEMAS DE FORÇAS, MOMENTOS, CENTROS DE GRAVIDADE UNVERSDDE FEDERL D BH ESCOL POLTÉCNC DEPRTMENTO DE ENGENHR QUÍMC ENG 008 Fenômenos de Transporte Profª Fátima Lopes FORÇS HDRÁULCS SOBRE SUPERFÍCES SUBMERSS Revisão, apêndice Streeter: SSTEMS DE FORÇS,

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

Ondas. Jaime Villate, FEUP, Outubro de 2005

Ondas. Jaime Villate, FEUP, Outubro de 2005 Ondas Jaime Villate, FEUP, Outubro de 2005 1 Descrição matemática das ondas Uma onda é uma perturbação que se propaga num meio. Por eemplo, uma onda que se propaga numa corda ou o som que se propaga no

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

4. Curvas Paramétricas e Transformações 2D

4. Curvas Paramétricas e Transformações 2D 4. Curvas Paramétricas e Transformações 2D Curvas Paramétricas (fonte: Wikipédia) Em matemática, uma equação paramétrica é uma forma de representar uma curva (ou, em geral, uma superfície) como a imagem

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Matemática /09 - Produto Interno 32. Produto Interno

Matemática /09 - Produto Interno 32. Produto Interno Matemática - 2008/09 - Produto Interno 32 Produto Interno A noção de produto interno (ou escalar) de vectores foi introduzida no ensino secundário, para vectores com duas ou três coordenadass. Neste capítulo

Leia mais

REVISÃO DE NÚMEROS COMPLEXOS

REVISÃO DE NÚMEROS COMPLEXOS REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é

Leia mais

Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro

Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Introdução A manipulação, visualiação e a construção de imagens gráficas tridimensionais

Leia mais

CAMPO ELÉCTRICO E POTENCIAL

CAMPO ELÉCTRICO E POTENCIAL TRALHO PRÁTICO Nº 5 CAMPO ELÉCTRICO E POTENCIAL Objectivo - O objectivo deste trabalho é estudar a forma do campo eléctrico criado por algumas distribuições de carga. Experimentalmente determinam-se linhas

Leia mais

ENG01140 Turma C (Prof. Alexandre Pacheco)

ENG01140 Turma C (Prof. Alexandre Pacheco) ENG01140 Turma C (rof. leandre acheco) 32 11 TENSÃO Tensão Normal e Tensão Cisalhante: Na ilustração a seguir, considera-se, primeiramente, a mesma parte seccionada do corpo rígido de forma genérica ilustrado

Leia mais

Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc.

Turma/curso: 5º Período Engenharia Civil Professor: Elias Rodrigues Liah, Engº Civil, M.Sc. PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS CURSO DE ENGENHARIA CIVIL Disciplina: TEORIA DAS ESTRUTURAS I Código: ENG2032 Tópico: ENERGIA DE DEFORMAÇÃO E PRINCÍPIO DA CONSERVAÇÃO DE ENERGIA Turma/curso:

Leia mais

Caso mais simples MÉTODO DOS ELEMENTOS FINITOS. Álvaro Azevedo. Faculdade de Engenharia Universidade do Porto

Caso mais simples MÉTODO DOS ELEMENTOS FINITOS. Álvaro Azevedo. Faculdade de Engenharia Universidade do Porto MÉTODO DOS ELEMENTOS FINITOS Álvaro Azevedo http://www.fe.up.pt/~alvaro Novembro 2000 Faculdade de Engenharia Universidade do Porto 1 Caso mais simples Método dos deslocamentos Comportamento linear elástico

Leia mais

8. Estabilidade e bifurcação

8. Estabilidade e bifurcação 8. Estabilidade e bifurcação Os sistemas dinâmicos podem apresentar pontos fixos, isto é, pontos no espaço de fase onde o sistema permanece sempre no mesmo estado. Para identificar os pontos fixos e estudar

Leia mais

MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais

MECÂNICA DO CONTÍNUO. Tópico 3. Método dos Trabalhos Virtuais MECÂNICA DO CONTÍNUO Tópico 3 Método dos Trabalhos Virtuais PROF. ISAAC NL SILVA Aspecto físico do equilíbrio Instável Estável P y1 y2 P Indiferente P Aspecto matemático: Eq. Instável d 2 V/dx 2

Leia mais

Aluno Data Curso / Turma Professor

Aluno Data Curso / Turma Professor Apostila Modelagem e Simulação de Sistemas Dinâmicos Aluno Data Curso / Turma Professor 24/10/09 Engenharia Industrial Mecânica / 2006-1 MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS Everton Farina, Eng.º

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Introdução à Computação Gráfica Desenho de Construção Naval Manuel Ventura Instituto Superior Técnico Secção Autónoma de Engenharia Naval 27 Sumário Entidades Geométricas Transformações Geométricas 2D

Leia mais

Transformações Geométricas

Transformações Geométricas Transformações Geométricas Computação Gráfica CG & ND @ 26 ISEL/DEETC/S Computação Gráfica 2 http://hof.povra.org/images/office-3.jpg Sumário Transformações geométricas Translação Rotação Escala Shearing

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Módulo 4 - Princípio dos trabalhos virtuais. Método do esforço unitário. Deslocamentos em vigas com e sem articulações. Exemplos.

Módulo 4 - Princípio dos trabalhos virtuais. Método do esforço unitário. Deslocamentos em vigas com e sem articulações. Exemplos. ódulo 4 - Princípio dos trabalhos virtuais. étodo do esforço unitário. Deslocamentos em vigas com e sem articulações. Eemplos. O Princípio dos Trabalhos Virtuais (P.T.V.), para os corpos sólidos deformáveis

Leia mais

AULA 2: RESPOSTAS DOS MATERIAIS SEGUNDO A MECÂNICA DOS MEIOS CONTÍNUOS

AULA 2: RESPOSTAS DOS MATERIAIS SEGUNDO A MECÂNICA DOS MEIOS CONTÍNUOS Universidade de São Paulo Escola Politécnica Departamento de Engenharia de Estruturas e Fundações Laboratório de Mecânica Computacional Universidade de São Paulo Escola de Engenharia de São Carlos Departamento

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Capítulo 6 Transformação de tensão no plano

Capítulo 6 Transformação de tensão no plano Capítulo 6 Transformação de tensão no plano Resistência dos Materiais I SLIDES 06 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com Objetivos do capítulo Transformar as componentes de tensão

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

Controlo Em Espaço de Estados. Trabalho de Laboratório nº 1 Dinâmica no Espaço de Estados

Controlo Em Espaço de Estados. Trabalho de Laboratório nº 1 Dinâmica no Espaço de Estados Mestrado em Engenharia Electrotécnica e de Computadores Controlo Em Espaço de Estados 2010/11 Trabalho de Laboratório nº 1 Dinâmica no Espaço de Estados Objectivos Após realizar este trabalho, o aluno

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 34 DeMat-ESTiG Sumário Cálculo

Leia mais

CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais.

CAPÍTULO 2 CÁLCULO VECTORIAL Grandezas escalares e vectoriais. Noção de Vector. As grandezas físicas podem ser escalares ou vectoriais. CAPÍTULO CÁLCULO VECTORIAL.1. Grandeas escalares e vectoriais. Noção de Vector. As grandeas físicas podem ser escalares ou vectoriais. As grandeas massa, comprimento, tempo ficam completamente definidas

Leia mais

CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS

CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS 82 CPÍTULO 9 CINEMÁTIC DO MOVIMENTO ESPCIL DE CORPOS RÍGIDOS O estudo da dinâmica do corpo rígido requer o conhecimento da aceleração do centro de massa e das características cinemáticas do corpo denominadas

Leia mais

Capítulo 1 - Cálculo Matricial

Capítulo 1 - Cálculo Matricial Capítulo 1 - Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática I - 1 o Semestre 2011/2012 Matemática I 1/ 33 DeMat-ESTiG Sumário Cálculo

Leia mais

Escola Básica Integrada c/ Jardim de Infância da Malagueira SÍNTESE DO TÓPICO ISOMETRIAS. rotaçã

Escola Básica Integrada c/ Jardim de Infância da Malagueira SÍNTESE DO TÓPICO ISOMETRIAS. rotaçã Escola Básica Integrada c/ Jardim de Infância da Malagueira Ficha informativa nº9 Matemática Nome: Nº: Ano: 8º Turma: Data: 11 SÍNTESE DO TÓPICO ISOMETRIAS ISOMETRIAS I - Transformações geométricas: reflexão,

Leia mais

Conceitos Fundamentais 1.1

Conceitos Fundamentais 1.1 Conceitos Fndamentais. Capítlo Conceitos Fndamentais. Introdção Um sólido deformável sob a acção de forças eternas, deformar-se-á e no sólido desenvolver-se-ão esforços internos. Estes esforços serão em

Leia mais

Exercícios Resolvidos Esboço e Análise de Conjuntos

Exercícios Resolvidos Esboço e Análise de Conjuntos Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA PLANIFICAÇÃO ANUAL 7.

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA PLANIFICAÇÃO ANUAL 7. AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA PLANIFICAÇÃO ANUAL 7.º ANO ANO LECTIVO 2009/2010 DOMÍNIO TEMÁTICO: NÚMEROS E CÁLCULO 1.º PERÍODO

Leia mais

Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II

Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II Tema : Cálculo diferencial de funções de duas variáveis Este teto foi retirado do manual de apoio à

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIVIDADE ESPECIAL AULA N O 06 (Noções de Cosmologia Métrica Constante de Hubble ) Vamos entrar ligeiramente no campo da Relatividade Geral, para vermos o que é Cosmologia e o que de fato é o espaço-tempo.

Leia mais

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18

Nº de aulas de 45 minutos previstas 66. 1º Período. 1- Isometrias Nº de aulas de 45 minutos previstas 18 Escola Secundária de Lousada Planificação anual disciplina de Matemática Ano: 8º Ano lectivo: 01-013 CALENDARIZAÇÃO Nº de aulas de 5 minutos previstas 1 1º Período º Período 3º Período 9 7 DISTRIBUIÇÃO

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 9 (entregar em 11-03-011)

Leia mais

Preparação para o Teste de Maio 2012 (GEOMETRIA)

Preparação para o Teste de Maio 2012 (GEOMETRIA) Nº8 Matemática: ºA Preparação para o Teste de Maio (GEOMETIA) Grupo I. Num referencial o.n. Oy, considera um ponto A pertencente ao semieio positivo O e um ponto B pertencente ao semieio positivo Oy. Quais

Leia mais

O Princípio dos Trabalhos Virtuais

O Princípio dos Trabalhos Virtuais Sebenta de Disciplina DCR, Zuzana Dimitrovová, DEC/FCT/UNL, 06 O Princípio dos Trabalhos Virtuais O princípio dos trabalhos virtuais estipula que o trabalho virtual das forças externas equivale ao trabalho

Leia mais

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t.

CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t. MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: TÓPICOS EM MATEMÁTICA APLICADOS À EXPRESSÃO GRÁFICA II PROFESSORA: BÁRBARA DE

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

O equilíbrio e a qualidade do equilíbrio

O equilíbrio e a qualidade do equilíbrio Sebenta de Disciplina DCR, Zuzana Dimitrovová, DEC/FCT/UNL, 016 O equilíbrio e a qualidade do equilíbrio O princípio dos trabalhos virtuais fundamenta vários outros princípios. Um deles é o princípio de

Leia mais

Marília Peres. Adaptado de Serway & Jewett. Fonte: The New Yorker Book of Teacher Cartoons (2012), by Robert Mankoff (Editor), Lee Lorenz

Marília Peres. Adaptado de Serway & Jewett. Fonte: The New Yorker Book of Teacher Cartoons (2012), by Robert Mankoff (Editor), Lee Lorenz INTRODUÇÃO À FÍSICA Adaptado de Serway & Jewett SOBRE A FÍSICA Fonte: The New Yorker Book of Teacher Cartoons (2012), by Robert Mankoff (Editor), Lee Lorenz 1 SOBRE A FÍSICA BBC - Vídeo: Learn The History

Leia mais

AULA 13 Aproximações Lineares e Diferenciais (página 226)

AULA 13 Aproximações Lineares e Diferenciais (página 226) Belém, de maio de 05 Caro aluno, Nesta nota de aula você aprenderá que pode calcular imagem de qualquer unção dierenciável num ponto próimo de a usando epressão mais simples que a epressão original da.

Leia mais

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5.

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5. Relações X Funções Considere a equação + =. Embora esta equação tenha duas variáveis, ela possui um número finito de soluções naturais. O conjunto solução desta equação, no universo dos números naturais,

Leia mais

CAMPO ELÉCTRICO E POTENCIAL

CAMPO ELÉCTRICO E POTENCIAL TRALHO PRÁTICO Nº 5 CAMPO ELÉCTRICO E POTENCIAL Objectivo - O objectivo deste trabalho é ilustrar a forma do campo eléctrico criado por algumas distribuições de carga. Experimentalmente determinam-se linhas

Leia mais

PMR2560 Visão Computacional Detecção de bordas. Prof. Eduardo L. L. Cabral

PMR2560 Visão Computacional Detecção de bordas. Prof. Eduardo L. L. Cabral PMR56 Visão Computacional Detecção de bordas Prof. Eduardo L. L. Cabral Objetivos Processamento de imagens: Características; Detecção de bordas. Características Tipos de características: Bordas; Cantos;

Leia mais

ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE

ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Electromagnetismo A 009/010 ESTUDO DO CAMPO MAGNÉTICO NO INTERIOR DE UM SOLENÓIDE 1. O campo magnético no interior dum solenóide

Leia mais

ção o de cortes e secçõ

ção o de cortes e secçõ Representação de cortes e secções Conceito e aplicação Tipos de corte e de secção Definição de corte e secção Alcínia Zita de Almeida Sampaio Representaçã ção o de cortes e secçõ ções Conceito e aplicação

Leia mais

GDC I AULA TEÓRICA 3

GDC I AULA TEÓRICA 3 GDC I AULA TEÓRICA 3 O Sistema axonométrico: - O caso geral da axonometria ortogonal: o triângulo fundamental e o rebatimento dos planos coordenados. - Subsistemas axonométricos ortogonais: trimetria ou

Leia mais

Teoria Clássica das Placas

Teoria Clássica das Placas Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Fleão de Placas ANÁLISE DE ESTRUTURAS I PROF. EVANDRO PARENTE JUNIOR (UFC) PROF. ANTÔNIO MACÁRIO

Leia mais