Transformações Geométricas
|
|
|
- Manuel Pinheiro Deluca
- 8 Há anos
- Visualizações:
Transcrição
1 Transformações Geométricas 2D Carolina Watanabe Referências Bibliográficas FOLEY, J. D, DAM, A. V.; HUGHES, J. F. Computer Graphics Principle and dpractice, 2 a edição Material elaborado por Marcela X. ribeiro, USFCar.
2 Roteiro Motivação Transformações Geométricas 2D Translação, Escala e Rotação Representação de Coordenadas Homogêneas e Matrizes de Transformação Composição de Matrizes Outras Transformações Espelhamento e Shearing Transformações Geométricas 3D 2
3 Transformações Geométricas Por que são necessárias? Animação: mover os objetos; Transformar descrições de objetos entre diferentes sistemas de coordenadas; d Posicionar objetos em relação ao sistema de coordenadas global; TGs fundamentais: translação, rotação, escala. 3
4 Transformações aplicadas somente nos vértices! Transformações 2D Translação translação P (, ) P'( ', ') ' ' d d ' P, P', ' T d d Translações não alteram geometria do objeto! (nem distâncias, nem ângulos) P' P T Eemplo lousa 4
5 Transformações 2D Escala escala P( (, ) P '( ', ') A operação de escala é feita em relação origem! Quando fator de escala maior que, aumenta objeto e o distância da origem; ' s ', s Quando fator de escala entre e, diminui objeto e aproima da origem. ' ' s s S(/2,/4) P' S P Eemplo lousa 5
6 P Transformações 2D Rotação r r P = r cos r cos ( + ) e = r sin Eq. r cos =rcos( ) =rcos cos - rsen sen = r sen ( ) = r sen cos + r sin cos Eq.2 substituindo Eq. em Eq.2, obtemos então: =. cos () -. sen (), =. sen () +. cos () 6
7 Transformações 2D Rotação (em relação à Origem) P rotação ( ) P' A operação de rotação é feita em relação origem! ' cos sen ' sen cos ' ' cos sen sen cos R ( 45 ) P' R P Ob  l iti t ã tid ti h ái Obs: Ângulos positivos: rotação sentido anti-horário Ângulos negativos: rotação sentido horário 7
8 Transformações 2D Rotação Eemplo: Na figura rotacionamos o ponto (6,) em 3 graus em torno de (,). ) P (4.7, 3.9) 3 o P(6) (6,) 8
9 Cisalhamento (shearing) S H a Cisalhamento na direção de esticado com um incremento proporcional a 9
10 Refleão Refleão e (através do eio ): Esp
11 Coordenadas Homogêneas As operações rotação e escala são efetuadas através de operações de multiplicação de matriz, mas a de translação é feita através de soma: A tripla (,,w) é chamada de coordenadas P = T+P P =S. P cartesianas do ponto homogêneo. P = R. P w=, não é permitido É possível colocar todas as operações para serem eecutadas como uma multiplicação de matriz usando coordenadas homogêneas, para isso: Epande-se as matrizes 22 por matrizes 33; Cada ponto passa a ser representado por uma tripla (,,w); Um conjunto de coordenadas (,, w) representam o mesmo ponto se forem múltiplos; Se normalizamos o ponto por w temos (/w, /w,), onde /w,/w são as coordenadas cartesianas do ponto homogêneo.
12 Coordenadas Homogêneas Ponto (,,w) projetado em w= Coordenadas do mesmo ponto 2D, correspondem a uma reta no espaço 3D (,,w), e para w =...os pontos, estão no plano 2
13 Matrizes Transformação 2D Propriedades especiais Uma seqüência arbitrária de rotação e translação preserva ângulos e medidas transformação de corpo rígido. ' r r2 t ' r2 r22 t Uma seqüência arbitrária de rotação, escala e translação, preserva somente paralelismo entre linhas transformação afim. 3
14 Eercício Como fazer a transformação inversa de: (a) translação T(d,d) (b) escala E(s,s) (c) rotação R( Uma matriz quadrada admite inversa se seu determinante é diferente de zero. Assim as matrizes de transformações T, E, R admitem inversa! Matriz Ortogonal: A inversa de uma matriz ortogonal é igual a transposta M - M T Matriz de rotação: Ortogonal Especial com determinante : 4
15 Composição de Transformações Ao invés de aplicar uma transformação por vez nos pontos de um objeto, é mais rápido calcular uma matriz resultante da composição de transformações, e depois multiplicar essa matriz para cada ponto do objeto. Eemplo: A rotação de um objeto de um ângulo sobre um ponto arbitrário P P P P P P = M. P t cos sen t M t sen cos t Atenção na ordem, multiplicações de matriz não são comutativas 5
16 Composição: translação Duas translações sucessivas (t,t ) e (t 2,t 2 ): P = T(t 2,t 2 )T(t,t ) P {T(t t ) T(t t )} P Calcule a matriz produto e ifi = {T(t 2,t 2 ) T(t,t )} P verifique... A matriz composta de transformação para esse caso é: t t t t t t t t Translações são aditivas!
17 Composição: Rotação Duas rotações sucessivas ( e 2 ) P = R( 2 ){R( ) P} Calcule a matriz produto e = {R( 2 ) R( )} P verifique... A matriz composta de transformação para esse caso é: cos sen cos 2 sen 2 cos( 2) sen( 2) sen cos sen 2 cos 2 sen( 2) cos( 2) Rotações são aditivas! 7
18 Composição: escala Duas escalas sucessivas (s,s ) e (s 2,s 2 ): P = S(s 2,s 2 ){S(s,s ) P} Calcule a matriz produto e = {S(s 2,s 2 ) S(s,s )} P verifique... A matriz composta de transformação para esse caso é: s 2 s s s 2 s2 s s s2 Escalas são multiplicativas! li i 8
19 Operações comutativas Translação -Translação Escala Escala Rotação Rotação Escala (s=s) Rotação (Eercício: Provar) 9
20 Eercícios. Qual é a seqüência de operações que mapeia o objeto da figura A para o objeto da Figura B. Qual é a composição de matrizes que gera a matriz composta de transformação? 2
21 Eercícios. T(-,-) 2. E(s,s) 3. R() 4. T(2,2) M =T(2,2) R() E(s,s) T(-,-) 2
22 Eercícios 2. Dado o objeto na figura A, forneça a matriz da composição de transformações em coordenadas homogêneas, para o objeto na figura B. 5 C A A B C, 5 Figura A B 5 Figura B 22
23 Eercícios 3. Dado o objeto na figura A, forneça a matriz da composição de transformações em coordenadas homogêneas, para o objeto na figura C. 5 C B A B C, 5 Figura A A 5 Figura C 23
24 Eficiência Uma composição geométrica de Rotação, Translação e Escala é fornecida pela matriz abaio: ' r r2 t ' r2 r22 t r ii : composição das matrizes de rotação e escala; t i : componente de translação Para calcular lar P = M. P são necessárias 9 multiplicações e 6 adições. Mas como a última linha da matriz é fia. Necessário somente 4 multiplicações e 4 adições (ganho de eficiência) 24
Transformações Geométricas 3D
Transformações Geométricas 3D Introdução Transformações 3D são uma etensão dos métodos 2D, incluindo-se a coordenada Z. Especificação de vetores em 3D translação: vetor de translação 3D escalonamento:
Transformações Geométricas. Transformações Geométricas. Sistemas de Coordenadas. Translação: M.C.F. de Oliveira Rosane Minghim 2006
Transformações Geométricas Transformações Geométricas 2D M.C.F. de Oliveira Rosane Minghim 2006 Aplicadas aos modelos gráficos para alterar a geometria dos objetos, sem alterar a topologia Porque são necessárias:
TRANSFORMAÇÕES LINEARES
1 TRANSFORMAÇÕES LINEARES Cristianeguedes.pro.br/cefet Transformação Linear 2 Definição: Sejam U e V dois espaços vetoriais reais. Uma função T (ou aplicação) é denominada Transformação Linear de U em
Translação. Sistemas de Coordenadas. Translação. Transformações Geométricas 3D
Translação Transformações Geométricas 3D Um ponto (objeto) é deslocado de uma posição para outra posição no mesmo espaço 3D Rosane Minghim Maria Cristina F. de Oliveira ICMC Universidade de São Paulo 26
Laboratório de Programação com Games. Conteúdo: Professor: - Transformações no plano. Instituto de Computação - UFF
Laboratório de Programação com Games Professor: Anselmo Montenegro www.ic.uff.br/~anselmo Conteúdo: - Transformações no plano Transformações geométricas: Introdução Na Computação Gráfica é essencial poder
Visualização por Computador: Teoria, Prática e Aplicações
Visualização por Computador: Teoria, Prática e Aplicações Noções de Geometria e Álgebra Linear Claudio Esperança Programa de Engenharia de Sistemas e Computação COPPE / UFRJ Master of Information Management,
Transformações Geométricas 2D e 3D
UNIVERSIDADE DE SÃO PAULO - USP Instituto de Ciências Matemáticas e de Computação ICMC Departamento de Ciências de Computação SCC Seminário para a Disciplina SCE 5799 Computação Gráfica Profa. Dra. Rosane
Introdução à Computação Gráfica
Introdução à Computação Gráfica Desenho de Construção Naval Manuel Ventura Instituto Superior Técnico Secção Autónoma de Engenharia Naval 27 Sumário Entidades Geométricas Transformações Geométricas 2D
Transformações (Cap 4.3, 4.4 e 4.6 a 4.10)
4.6 a 4.) Transformações (Cap 4.3, 4.4 e 4.6 a 4.) Instituto Superior Técnico, 26/27 Sumário Revisões Transformações Elementares Coordenadas Homogéneas Composição de Transformações Transformações em OpenGL
Transformações Geométricas
Transformações Geométricas Computação Gráfica CG & ND @ 26 ISEL/DEETC/S Computação Gráfica 2 http://hof.povra.org/images/office-3.jpg Sumário Transformações geométricas Translação Rotação Escala Shearing
Coordenadas Homogêneas
Coordenadas Homogêneas André Tavares da Silva [email protected] Capítulo 5 de Foley Capítulo 2 de Azevedo e Conci Coordenadas Homogêneas Promovem uniformidade no tratamento de qualquer transformação
Transformações de Pontos. Computação Gráfica Prof. Dr. Paulo Roberto Gomes Luzzardi Aluna: Karina da Silva Salles
Transformações de Pontos Computação Gráfica Prof. Dr. Paulo Roberto Gomes Luzzardi Aluna: Karina da Silva Salles Sumário Motivação Definição Translação Escala Rotação Reflexão Shearing Referências Motivação
REVISÃO DE NÚMEROS COMPLEXOS
REVISÃO DE NÚMEROS COMPLEXOS Ettore A. de Barros. INTRODUÇÃO. Definições Um número compleo pode ser definido pelo par ordenado, de números reais e,, O par, é identificado com o número real, e o par, é
Transformações Geométricas em C.G.
Transformações Geométricas em C.G. Cap 2 (do livro texto) Aula 3, 4 e 5 UFF - 214 Geometria Euclideana : 3D Geometria Axiomas e Teoremas Coordenadas de pontos, equações dos objetos Geometria Euclideana
1 Cônicas Não Degeneradas
Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi [email protected] 11 de dezembro de 2001 Estudaremos as (seções) cônicas,
Lista de Exercícios de Cálculo 3 Primeira Semana
Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.
Universidade Federal de Alagoas Instituto de Matemática. Geometria. Prof. Thales Vieira
Universidade Federal de Alagoas Instituto de Matemática Geometria Prof. Thales Vieira 2014 Geometria Euclidiana Espaço R n R n = {(x 1,...,x n ); x i 2 R} Operações entre elementos de R n Soma: (x 1,x
Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas
Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 3 Transformações Geométricas no plano e no espaço Introdução (Geometria) 2 Pontos, Vetores e Matrizes Dado
aula8 Transformações Geométricas no Plano e no Espaço 2016/2 IC / UFF
http://computacaografica.ic.uff.br/conteudocap2.html aula8 Transformações Geométricas no Plano e no Espaço 2016/2 IC / UFF Definição Transformações geométricas são operações que podem ser utilizadas para
Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC
Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante
4. Curvas Paramétricas e Transformações 2D
4. Curvas Paramétricas e Transformações 2D Curvas Paramétricas (fonte: Wikipédia) Em matemática, uma equação paramétrica é uma forma de representar uma curva (ou, em geral, uma superfície) como a imagem
Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais
Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que
Transformações Geométricas
Transformações Geométricas Computação Gráfica DCC065 Prof. Rodrigo Luis de Souza da Silva, D.Sc. Sumário Tópicos da aula de hoje: Por que transformações? Classificação das transformações Transformações
Forma Canônica de Matrizes 2 2
Forma Canônica de Matrizes Slvie Olison Kamphorst Departamento de Matemática - ICE - UFMG Versão. - Novembro 5 a b Seja A c d induzida por A uma matriz real e seja T a transformação operador linear de
Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável
Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =
Geometria Analítica. Prof Marcelo Maraschin de Souza
Geometria Analítica Prof Marcelo Maraschin de Souza Vetor Definido por dois pontos Seja o vetor AB de origem no ponto A(x 1, y 1 ) e extremidade no ponto B(x 2, y 2 ). Qual é a expressão algébrica que
Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro
Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Introdução A manipulação, visualiação e a construção de imagens gráficas tridimensionais
1 Axiomatização das teorias matemáticas 30 2 Paralelismo e perpendicularidade de retas e planos 35 3 Medida 47
ÍNDICE Números e operações Geometria e medida Relação de ordem em R 4 Intervalos de números reais 8 Valores aproimados de resultados de operações Eercícios resolvidos 6 Eercícios propostos 0 Eercícios
Geometria Analítica. Números Reais. Faremos, neste capítulo, uma rápida apresentação dos números reais e suas propriedades, mas no sentido
Módulo 2 Geometria Analítica Números Reais Conjuntos Numéricos Números naturais O conjunto 1,2,3,... é denominado conjunto dos números naturais. Números inteiros O conjunto...,3,2,1,0,1, 2,3,... é denominado
Transformações Geométricas
Computação Gráfica Interativa - M. Gattass & L. F. Martha 8// Transformações Geométricas por Marcelo Gattass Departamento de Informática PUC-Rio (adaptado por Lui Fernando Martha para a disciplina CIV8
Álgebra Linear I - Aula 4. Roteiro. 1 Determinantes (revisão rápida)
Álgebra Linear I - Aula 4 1. Determinantes (revisão). 2. Significado geométrico. 3. Cálculo de determinantes. 4. Produto vetorial. 5. Aplicações do produto vetorial. Roteiro 1 Determinantes (revisão rápida)
aula9 Coordenadas homogêneas e projeções 2016/2 IC / UFF
http://computacaografica.ic.uff.br/conteudocap2.html aula9 P p O Coordenadas homogêneas e projeções 2016/2 IC / UFF 2D TODAS AS Transformações Lineares Bidimensionais São representadas por matrizes 2 x
Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza
Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza É o lugar geométrico dos pontos de um plano cuja soma das distâncias a dois pontos fixos desse plano é constante. Considere dois pontos distintos
TRANSFORMAÇÕES EM SISTEMAS CARTESIANOS
TRANSFORMAÇÕES EM SISTEMAS CARTESIANOS Parte II Transformações nos Espaços Bidimensionais GA116 Sistemas de Referência e Tempo Profª. Érica S. Matos Departamento de Geomática Setor de Ciências da Terra
Coordenadas Homogêneas no Plano e no Espaço
http://computacaografica.ic.uff.br/conteudocap2.html Curso de CG 2019/1 IC / UFF Coordenadas Homogêneas no Plano e no Espaço (AB) T = B T A T Esse material estáno Livro do curso no cap 2. Resumindo transformações
Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais
Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado
Capítulo 6 Transformação de tensão no plano
Capítulo 6 Transformação de tensão no plano Resistência dos Materiais I SLIDES 06 Prof. MSc. Douglas M. A. Bittencourt [email protected] Objetivos do capítulo Transformar as componentes de tensão
Cap. 0. Cálculo tensorial
Cap. 0. Cálculo tensorial 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores. Álgebra tensorial 3. ensores cartesianos em D simétricos
Conceitos de vetores. Decomposição de vetores
Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas
Modelos Geométricos Transformações
Modelos Geométricos Transformações Edward Angel, Cap. 4 Instituto Superior Técnico Computação Gráfica 2009/2010 1 Aulas teóricas 11/03 Quinta-feira, dia 11 de Março Não vão ser leccionadas aula teóricas.
MATRIZES. Álgebra Linear e Geometria Analítica Prof. Aline Paliga
MATRIZES Álgebra Linear e Geometria Analítica Prof. Aline Paliga INTRODUÇÃO Definição: chama-se matriz de ordem m por n a um quadro de m xn elementos dispostos em m linhas e n colunas. a a a a a a a a
Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]
Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).
9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes
ROBÓTICA (ROB74) AULA 2. TRANSFORMAÇÕES GEOMÉTRICAS E COORDENADAS HOMOGÊNEAS PROF.: Michael Klug
ROBÓTICA (ROB74) AULA 2 TRANSFORMAÇÕES GEOMÉTRICAS E COORDENADAS HOMOGÊNEAS PROF.: Michael Klug PROGRAMA Transformações Geométricas e Coordenadas Homogêneas Notações Introdutórias Vetores, matrizes, pontos
Transformações Geométricas Grafos de Cena
Transformações Geométricas Grafos de Cena Edward Angel, Cap. 4 Instituto Superior Técnico Computação Gráfica 2009/2010 1 Na última aula... Transformações Geométricas Translação Escala Rotação Espaço Homogéneo
CURVAS PLANAS. A orientação de uma curva parametrizada é a direção definida pelos valores crescentes de t.
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: TÓPICOS EM MATEMÁTICA APLICADOS À EXPRESSÃO GRÁFICA II PROFESSORA: BÁRBARA DE
Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009
Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução
Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição, Cengage Learning.
1 0 Lista de Exercício de Mat 116- Álgebra Linear para Química Turma: 01410 ( 0 semestre 014) Referências principais (nas quais a lista foi baseada): 1. G. Strang, Álgebra linear e aplicações, 4o Edição,
Transformações geométricas planas
9 Transformações geométricas planas Sumário 9.1 Introdução....................... 2 9.2 Transformações no plano............... 2 9.3 Transformações lineares................ 5 9.4 Operações com transformações...........
FUNÇÕES. Módulo 3. Mottola 1. APRESENTAÇÃO
Módulo 3 FUNÇÕES 1. APRESENTAÇÃO A todo o momento estamos usando funções, eponenciais, logaritmos, matrizes, progressões, trigonometria, geometria, probabilidades, estatística, etc. Não com estes nomes,
Fundamentos de Matemática Curso: Informática Biomédica
Fundamentos de Matemática Curso: Informática Biomédica Profa. Vanessa Rolnik Artioli Assunto: determinantes e sistemas 13 e 27/06/14 Determinantes Def.: Seja M uma matriz quadrada de elementos reais, de
Álgebra Linear I - Aula 5. Roteiro
1. Produto vetorial. 2. Aplicações. 3. Produto misto. Álgebra Linear I - Aula 5 1 Produto vetorial Roteiro Definição: Dados vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3 definimos o produto
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-2 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia
1 Geometria Analítica Plana
UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria
Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)
SISTEMAS LINEARES. Obs 1. Quando o termo independente é nulo, como no exemplo, dizemos que é uma equação linear homogênea:
Disciplina: Álgebra Linear e Geometria Analítica Curso: Engenharia Mecânica Professora: Valéria Lessa APOSTILA SISTEMAS LINEARES Muitos problemas em várias áreas da Ciência recaem na solução de sistemas
Fundamentos Matemáticos de Computação Gráfica
Fundamentos Matemáticos de Computação Gráfica Fundamentos Matemáticos de CG Vetores e Pontos Matrizes Transformações Geométricas Referências: Mathematics for Computer Graphics Applications. M. E. Mortenson.
54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =
54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA
RESISTÊNCIA DOS MATERIAIS II MOMENTO DE INÉRCIA Prof. Dr. Daniel Caetano 2013-1 Objetivos Apresentar os conceitos: Momento de inércia Momento polar de inércia Produto de Inércia Eios Principais de Inércia
MATEMÁTICA 9.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA
MATEMÁTICA 9.º ANO TERCEIRO CICLO BRUNO SILVA CRISTINA SERRA ISABEL OLIVEIRA RAQUEL OLIVEIRA ÍNDICE Números e operações Geometria e medida 1 Relação de ordem em R 4 2 Intervalos de números reais 8 3 Valores
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Parte 1 - Matrizes e Sistemas Lineares
Parte 1 - Matrizes e Sistemas Lineares Matrizes: Uma matriz de tipo m n é uma tabela com mn elementos, denominados entradas, e formada por m linhas e n colunas. A matriz identidade de ordem 2, por exemplo,
Semestre 2017 Ximena Mujica - DMat - UFPR 3
CURVAS NO PLANO R E NO ESPAÇO R 3 o Semestre 07 Ximena Mujica - DMat - UFPR CURVAS NO PLANO R E NO ESPAÇO R 3 In[]:= ParametricPlot@8t, t
Notas de Aula - Fascículo 03 Transformações projetivas do plano
Tópicos em Computação Gráfica Notas de Aula - Fascículo 03 Transformações projetivas do plano Jorge Stolfi c 2009 Jorge Stolfi - Universidade Estadual de Campinas. É permitida a reprodução ou divulgação,
P4 de Álgebra Linear I de junho de 2005 Gabarito
P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana
2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão)
Cap.. Deformação 1. Deslocamento. Gradiente de deformação.1 ranslação, rotação e deformação da vizinhança elementar 3. ensor de deformação de agrange 4. ensor das pequenas deformações 4.1 Caracter tensorial
aula6 Curvas de Hermite 2016/2 IC / UFF Criadas por Charles Hermite ( ) https://pt.wikipedia.org/wiki/charles_hermite
Criadas por Charles Hermite (1822-1901) https://pt.wikipedia.org/wiki/charles_hermite aula6 Vetor é : Na matemática - um elemento com de um espaço vetorial Em Física em oposição as grandezas escalares,
n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1
n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Definição Dado um vetor u 0, chama-se versor do vetor u, um vetor unitário, paralelo e de mesmo sentido que u. Logo, se considerarmos
MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios
MAT5 - Cálculo Diferencial e Integral para Engenharia II a lista de eercícios - 0 I - Polinômio de Talor. Utilizando o polinômio de Talor de ordem, calcule um valor aproimado e avalie o erro: (a) 8, (b)
Produto Misto, Determinante e Volume
15 Produto Misto, Determinante e Volume Sumário 15.1 Produto Misto e Determinante............ 2 15.2 Regra de Cramer.................... 10 15.3 Operações com matrizes............... 12 15.4 Exercícios........................
Cap. 1. Tensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia
Cap. 1. ensores cartesianos, cálculo tensorial, aplicação aos momentos de inércia 1. Quantidades físicas 1.1 ipos das quantidades físicas 1. Descrição matemática dos tensores 1.3 Definição dos tensores.
CAPíTULO 1. Vetores e tensores Notação indicial
CAPíTULO 1 Vetores e tensores 1.1. Notação indicial A notação indicial é uma simplificação da notação de uma somatória. Por exemplo, seja a somatória de 3 monômios a i b i (a i multiplicado por b i ) com
1. Operações com vetores no espaço
Capítulo 10 1. Operações com vetores no espaço Vamos definir agora as operações de adição de vetores no espaço e multiplicação de um vetor espacial por um número real. O processo é análogo ao efetuado
Material Teórico - Módulo: Vetores em R 2 e R 3. Produto Vetorial. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Produto Vetorial Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta aula, estudaremos uma operação definida
TRANSFORMAÇÕES LINEARES
ransformação Linear RNSFORMÇÕES LINERES Sejam e espaços vetoriais reais Dizemos que uma função : é uma transformação linear se a função preserva as operações de adição e de multiplicação por escalar, isto
1 Matrizes Ortogonais
Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes [email protected]
Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?
X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões
