Coordenadas Homogêneas no Plano e no Espaço
|
|
|
- Diego Barros de Carvalho
- 7 Há anos
- Visualizações:
Transcrição
1 Curso de CG 2019/1 IC / UFF Coordenadas Homogêneas no Plano e no Espaço (AB) T = B T A T Esse material estáno Livro do curso no cap 2.
2 Resumindo transformações elementares em 2D
3 Cisalhamento:
4 Quase TODAS AS Transformações Lineares Bidimensionais 2D São representadas por matrizes 2 x 2. T=( a b d)( c x y) = ( ax+cy bx+dy)
5 Transformações De corpo rígido (semelhança) são as em que A Distância entre 2 pontos quaisquer é inalterada. O Ângulo entre vetores é inalterado. São as : Rotações, reflexões e translações
6 Transformações Rígidas Rotações, Reflexões e Translações. Preservam ângulos e comprimentos. Para matrizes ortonormais a Inversa é a matriz transposta (T -1 = T T ). Importante: conceito de rígida e linear (ou afim) é diferente? Cisalhamento é rígida? E a Mudança de escala?
7 Objetos em CG: Basta multiplicar T aos vetores ou pontos do objeto MAS TEMOS UMA PROBLEMA: A translação não é uma transformação linear.
8 Coordenadas Homogêneas Reflexão, rotação e escala podem ser executadas com o uso de matrizes Mas a transformação de translação não. Para solucionar esse e outros problemas é recomendado o uso de coordenadas homogêneas para todas as operações.
9 Coordenadas homogêneas - CH no R 2 a CH considera um ponto um elemento do R 3, o dado adicional é uma relação de escala. P=(x,y,λ);λ 0,(x/λ,y/λ,1) Um ponto do plano é definido como: Chamado P = [x,y,1] em coordenadas homogêneas (uma classe de equivalência).
10 As Transformações elementares por multiplicação anteriores ficam: M=( a c 0 b d )( x y 1) = ( ax+cy bx+dy 1 )
11 Matriz de Translação em Coordenadas Homogêneas 1 0 m x x+m M= 0 1 n y = y+n
12 E as demais Transformações Lineares em Coordenadas Homogêneas M=( a c 0 b d )( x y 1) = ( ax+cy bx+dy 1 )
13 Agora todas podem ser combinadas da mesma forma Ou concatenadas Ou multiplicadas Resultando em uma única de mesma dimensão
14 Composição de Transformações afins
15 Imagine que se queira rodar o segmento de reta (2,0)(5,0) em torno de (2,0)
16 Imagine que se queira girar o segmento de reta (2,0)(5,0) em torno de (2,0)
17 Imagine que se queira rotar o segmento de reta (2,0)(5,0) em torno de (2,0)
18 Transformações elementares por multiplicação em coordenadas não homogêneas, ficam iguais em homogêneas! M=( a c 0 b d )( x y 1) = ( ax+cy bx+dy 1 )
19 Matriz de Translação em Coordenadas Homogêneas fica em uma coluna (ou linha se for na forma transposta) separada M=( 1 0 m 0 1 n 0 0 1)( x y 1) ( x+m = y+n 1 )
20 Todas as matrizes de transformações possíveis em 2D em coordenadas homogêneas Devem ser 3 x 3 para qualquer transformações bidimensionais. M=( a c m b d n p q s) Mas qual o sentido da ultima linha?? (ou coluna se for na forma transposta???)
21 Transformação Perspectiva em Coordenadas Homogêneas M=( p q 1)( x y 1) = ( x y px+qy+1)
22 Efeito da Transformação Perspectiva 2D paralelas parecem se encontrar
23 Transformação Perspectiva 2D (50,50) (110,50) (110,110) (50,110)
24 Ponto no infinito (em Coordenadas Homogêneas) : M=( p q 1)( x y 0) = ( x y px+qy)
25 Pontos de Fuga Um ponto no infinito pode ser levado em um ponto P 0 do plano afim. Família de retas paralelas que se intersectam no infinito são transformadas numa família de retas incidentes em P 0. P 0 é chamado de ponto de fuga. Ponto de fuga principal corresponde a uma direção paralela aos eixos coordenados. Imagem de [x,0,0] ou [0,y,0].
26 1Ponto de fuga
27 Perspectiva (pintura em tela)
28 2 Pontos de fuga principais
29 3 Pontos de fuga principais 3 pontos de fuga e realidade Possível que não seja muito realista, as vezes
30 Mas ocorre se o observador estiver muito perto do objeto:
31 Espaço 3D Um ponto do espaço 3D é definido como: P={( x,y,z,λ );λ 0,( x/λ,y/λ,z/λ,1)} Ou Denotado por P = [x,y,z,w] em coordenadas homogêneas. (AB) T = B T A T
32 Translação no Espaço 3D em Coordenadas Homogêneas
33 Escala em torno da origem do Espaço 3D em Coordenadas Homogêneas *Obs: se o objeto não estiver definido na origem do sistema de coordenadas ocorrerá também uma translação
34 Rotações no Espaço 3D (ângulos de Euler)
35 Rotação em torno de um eixo Ângulos de Euler Regra da mão direita Dedão esticado no sentido do eixo (eixo x) Dedo indicador apontando para segundo eixo (eixo y) Gire a mão e veja se esse giro é em torno do sentido positivo do terceiro eixo, se isto acontecer significa que as três direções formam um sistema de eixos positivos
36 Considerando vetor coluna a rotação no plano xy em torno da origem =( cos(θ ) sin(θ ) ) R θ sin(θ ) cos(θ)
37 Lembra como esse chegou a essa fórmula: f
38 Rotação no plano xy ou em torno do eixo z Girar um ponto 2D em torno da origem do sistema de eixos. x = x cos(θ) - y sen(θ) y = y cos(θ) + xsen(θ) se for na forma transposta [x y ] = [x y] cosθ senθ -senθ cosθ se for usado vetor linha (AB) T = B T A T *Obs: se o objeto não estiver definido na origem do sistema de coordenadas ocorrerá também uma translação
39 Rotação em 3D em torno dos eixos se for usado vetor linha (AB) T = B T A T Eixo z => inalterado [x y z ] = [x y z] [x cos(α) y sen(α) x sen(α) + y cos(α) z ] cos(α) sen(α) 0 -sen(α) cos(α) Eixo x => inalterado [x y z ] = [x y z] [x y cos(β) - z sen(β) y sen(β) + z cos(β) ] cos(β) sen(β) 0 -sen(β) cos(β) Eixo y => inalterado [x y z ] = [x y z] [x cos(δ) + z sen(δ) y -x sen(δ) + z cos(δ) ] cos(δ) 0 -sen(δ) sen(δ) 0 cos(δ)
40 Em torno de Z em CH se for usado vetor coluna (AB) T = B T A T Quando só tenho componente y E giro em torno de z, passo a ter uma Coordenada x, negativa Ou seja do outro lado da origem do Espaço 3D. Assim a coluna 2 da matriz tem que ter um negativo na posição correspondente.
41 Em torno de X em CH se for usado vetor coluna (AB) T = B T A T Quando só tenho componente y e rodo em torno de x, passo a ter para o ponto só coordenadas positivas. Ou seja na segunda coluna tudo será positivo. Mas veja que nesta orientação do Espaço 3D, quando se desenha em 2D, o Z positivo esta contrario de um X positivo usual em 2D
42 Em torno de Y em CH se for usado vetor coluna (AB) T = B T A T Quando só tenho componente x e rodo em torno de y, passo a ter uma coordenada x, negativa. Ou seja do outro lado da origem do Espaço 3D. Ou seja na coluna 1 tem que ter negativo. Veja que nesta orientação do Espaço 3D, quando se desenha em 2D, o Z positivo esta contrario de um y positivo usual em 2D
43 Em resumo: Coordenadas Homogêneas 3D O sistema de coordenadas homogêneas (SCH) utiliza quatro valores para representar um ponto P no espaço, que será descrito por (x, y, z, M). A transformação do SCH para o cartesiano se dá pela relação (x, y, z) = (x /M, y /M, z /M) Os pontos onde M=0 estão fora do espaço dimensional ( infinito!!!! ). O uso de coordenadas homogêneas é importante em Computação também para permitir a representação de reais por inteiros Quando M=1 a representação é a mesma das coordenadas cartesianas usuais.
44 Matrizes em coordenadas homogêneas na forma de vetores linha precisa usar a transporta!! [x y z 1]. cosθ senθ 0 0 -senθ cosθ Matriz de rotação [x y z 1 ]. Sx Sy Escala [x y z 1]. Sx Sy Sz se for usado vetor linha (AB) T = B T A T
45 Translação Pode ser representada por operações com matrizes quando usamos coordenadas homogêneas, uniformizando as transformações geométricas [x y z 1] Tx Ty Tz 1 se for usado vetor linha (AB) T = B T A T Isso na forma de vetor linha mas na forma de vetores colunas ficaram como transpostas como mostrado nas paginas anteriores...
46 Matriz de Transformação Transformações geométricas correspondem a operações de soma e multiplicação nas coordenadas que compõem o objeto Para evitar que diversas operações matemáticas sejam feitas individualmente em cada vértice é criada uma matriz de transformação única com coordenadas homogêneas a qual é aplicada todas as transformações Esta matriz é denominada matriz de transformação corrente e é utilizada para transformação de todos os pontos dos objetos
47 Escopo de Transformações Podem ser feitas em serie e a aplicadas uma só fez como uma única (a matriz de transformação de uma serie) Essa operação de transformação nem sempre é comutativa!!! - A ordem é muito importante!!
48 Vamos marcar nossa P1? O Assunto dela é o capitulo 1 e 2 do livro texto (estrutura de dados, formula de Euler, transformações, projeções e quaternios). Que tal 14/05?
49 Voltado a mais um detalhe sobre o TRAB1: A ideia é você e seu grupo fazer um com pelo menos 10 figuras onde se conta a quantidade de acertos e o tempo de resposta da pessoa que está fazendo o teste. Essas 10 figuras devem aparecer como suas estrutura de dados topológicas (lista de faces com vértices que caracterizam cada face) e geométricas (lista da posição de cada vértice em coordenadas homogêneas) na primeira definição do objeto. Isso é como descrito na aula de modelagem. Estar explícita essas 10 estruturas dos seus objetos como arrays de faces e de vértices é super importante! Você deve mostrar onde elas estão no seu programa. Deve usar ao Maximo também matrizes de transformação para copiar suas figuras diversas vezes no seu trabalho.
50 Os testes são do tipo deste Isto é devem usar figuras 2D, estruturas de dados o para armazenar cada figura e transformações geométricas para faz as perguntas do teste Em caso de dúvidas mostre esses desenhos e especialmente o projeto do que será seu game na forma de um story board (layout das telas que compõem seu game) como esse ao lado.
51 Trabalho 1 Implementação cont. O trabalho pode ser feito em grupos de até 3 pessoas e em qualquer linguagem. Cada grupo deve escolher na seqüência para a imagem faltante transformações 2 D que são ensinada em sala de aula (e será feita por matrizes). Com o assunto da aula de hoje você já pode ir desenhar suas 10 figuras 2D. Nesta primeira parte do trabalho (que pode ser visto como um jogo) se mostrarão os desenhos estáticos. A parte INICIAL (ou estática) é para ser entregue até 18/04/2019. (devido a não ter tido a aula passada)
aula8 Transformações Geométricas no Plano e no Espaço 2016/2 IC / UFF
http://computacaografica.ic.uff.br/conteudocap2.html aula8 Transformações Geométricas no Plano e no Espaço 2016/2 IC / UFF Definição Transformações geométricas são operações que podem ser utilizadas para
aula9 Coordenadas homogêneas e projeções 2016/2 IC / UFF
http://computacaografica.ic.uff.br/conteudocap2.html aula9 P p O Coordenadas homogêneas e projeções 2016/2 IC / UFF 2D TODAS AS Transformações Lineares Bidimensionais São representadas por matrizes 2 x
Transformações Geométricas em C.G.
Transformações Geométricas em C.G. Cap 2 (do livro texto) Aula 3, 4 e 5 UFF - 214 Geometria Euclideana : 3D Geometria Axiomas e Teoremas Coordenadas de pontos, equações dos objetos Geometria Euclideana
aula6 Curvas de Hermite 2016/2 IC / UFF Criadas por Charles Hermite ( ) https://pt.wikipedia.org/wiki/charles_hermite
Criadas por Charles Hermite (1822-1901) https://pt.wikipedia.org/wiki/charles_hermite aula6 Vetor é : Na matemática - um elemento com de um espaço vetorial Em Física em oposição as grandezas escalares,
Aula9 e 10. Projeções Planas. Como representar objetos 3D em dispositivos 2D? 2019/1 IC / UFF. Paginas 91 a 101 livro texto de computacao grafica
Aula9 e 10 Como representar objetos 3D em dispositivos 2D? Projeções Planas 2019/1 IC / UFF P p O Paginas 91 a 101 livro texto de computacao grafica Como desenhar o mundo 3D no planos? Fazendo as projeções
Transformações geométricas no plano e no espaço
Transformações geométricas no plano e no espaço Sistemas de Coordenadas Sistemas de Referência com finalidades específicas: SRU Sistema de Referência do Universo SRO Sistema de Referência do Objeto SRN
Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas
Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 3 Transformações Geométricas no plano e no espaço Introdução (Geometria) 2 Pontos, Vetores e Matrizes Dado
Transformações Geométricas
Transformações Geométricas Computação Gráfica DCC065 Prof. Rodrigo Luis de Souza da Silva, D.Sc. Sumário Tópicos da aula de hoje: Por que transformações? Classificação das transformações Transformações
Projeções. Cap 2 (do livro texto) Aula 6 UFF
Projeções Cap 2 (do livro texto) Aula 6 UFF - 2014 Projeções PLANAS: Classificação BÁSICA: B Características: Um objeto no espaço o 3D A forma mais simples de representar um objeto 3D em 2D é simplesmente
4. Curvas Paramétricas e Transformações 2D
4. Curvas Paramétricas e Transformações 2D Curvas Paramétricas (fonte: Wikipédia) Em matemática, uma equação paramétrica é uma forma de representar uma curva (ou, em geral, uma superfície) como a imagem
Transformações Geométricas
Licenciatura em Engenharia Informática e de Computadores Computação Gráfica Transformações Geométricas Edward Angel, Cap. 4 Questão 1, exame de 29/06/11 [1.0v] Considere o triângulo T={V 1, V 2, V 3 },
Transformações Geométricas Grafos de Cena
Transformações Geométricas Grafos de Cena Edward Angel, Cap. 4 Instituto Superior Técnico Computação Gráfica 2009/2010 1 Na última aula... Transformações Geométricas Translação Escala Rotação Espaço Homogéneo
Transformações Geométricas. Transformações Geométricas. Sistemas de Coordenadas. Translação: M.C.F. de Oliveira Rosane Minghim 2006
Transformações Geométricas Transformações Geométricas 2D M.C.F. de Oliveira Rosane Minghim 2006 Aplicadas aos modelos gráficos para alterar a geometria dos objetos, sem alterar a topologia Porque são necessárias:
TRANSFORMAÇÕES EM SISTEMAS CARTESIANOS
TRANSFORMAÇÕES EM SISTEMAS CARTESIANOS Parte II Transformações nos Espaços Bidimensionais GA116 Sistemas de Referência e Tempo Profª. Érica S. Matos Departamento de Geomática Setor de Ciências da Terra
Transformações de Pontos. Computação Gráfica Prof. Dr. Paulo Roberto Gomes Luzzardi Aluna: Karina da Silva Salles
Transformações de Pontos Computação Gráfica Prof. Dr. Paulo Roberto Gomes Luzzardi Aluna: Karina da Silva Salles Sumário Motivação Definição Translação Escala Rotação Reflexão Shearing Referências Motivação
Coordenadas Homogêneas
Coordenadas Homogêneas André Tavares da Silva [email protected] Capítulo 5 de Foley Capítulo 2 de Azevedo e Conci Coordenadas Homogêneas Promovem uniformidade no tratamento de qualquer transformação
Introdução ao Processamento e Síntese de imagens - Projeções
Introdução ao Processamento e Síntese de imagens - Projeções Júlio Kiyoshi Hasegawa Fontes: Esperança e Cavalcanti (22) (UFRJ) e Traina e Oliveira (24) (USP) Antonio Maria Garcia Tommaselli - notas de
Translação. Sistemas de Coordenadas. Translação. Transformações Geométricas 3D
Translação Transformações Geométricas 3D Um ponto (objeto) é deslocado de uma posição para outra posição no mesmo espaço 3D Rosane Minghim Maria Cristina F. de Oliveira ICMC Universidade de São Paulo 26
Capítulo 2 Vetores. 1 Grandezas Escalares e Vetoriais
Capítulo 2 Vetores 1 Grandezas Escalares e Vetoriais Eistem dois tipos de grandezas: as escalares e as vetoriais. As grandezas escalares são aquelas que ficam definidas por apenas um número real, acompanhado
Visualização por Computador: Teoria, Prática e Aplicações
Visualização por Computador: Teoria, Prática e Aplicações Noções de Geometria e Álgebra Linear Claudio Esperança Programa de Engenharia de Sistemas e Computação COPPE / UFRJ Master of Information Management,
Sumário COMPUTAÇÃO GRÁFICA E INTERFACES. Modelos e modelagem. Modelos e modelagem. Transformações Geométricas e Visualização 2D
Sumário COMPUTAÇÃO GRÁFICA E INTERFACES Transformações Geométricas e Visualização D Transformações geométricas Pipeline de visualização D Transformação de coordenadas Window-Viewport Recorte (Clipping)
Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais
Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que
Modelos Geométricos Transformações
Modelos Geométricos Transformações Edward Angel, Cap. 4 Instituto Superior Técnico Computação Gráfica 2009/2010 1 Aulas teóricas 11/03 Quinta-feira, dia 11 de Março Não vão ser leccionadas aula teóricas.
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes [email protected]
Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza
Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza É o lugar geométrico dos pontos de um plano cuja soma das distâncias a dois pontos fixos desse plano é constante. Considere dois pontos distintos
Introdução à Computação Gráfica
Introdução à Computação Gráfica Desenho de Construção Naval Manuel Ventura Instituto Superior Técnico Secção Autónoma de Engenharia Naval 27 Sumário Entidades Geométricas Transformações Geométricas 2D
carga do fio: Q. r = r p r q figura 1
Uma carga Q está distribuída uniformemente ao longo de um fio reto de comprimento infinito. Determinar o vetor campo elétrico nos pontos situados sobre uma reta perpendicular ao fio. Dados do problema
Aula 5 - Produto Vetorial
Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa
Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco
Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Transformação direta de coordenadas 1 2... N Variáveis de junta Variáveis cartesianas Transformação inversa de coordenadas Transformação
Sistemas de coordenadas Transformação entre sistemas
http://computacaografica.ic.uff.br/conteudocap2.html Sistemas de coordenadas Transformação entre sistemas 2019-1 Sistemas de Coordenadas Referência sobre o tamanho e a posição dos objetos na área de trabalho;
Sumário. Computação Gráfica. Transformações Geométricas. Transformações Geométricas. Translação: Transformações Geométricas
5 Computação Gráfica Aula 04 - e Projeções Vinicius Graciano Santos [email protected] Sumário Translação Escala Rotação Espelhamento Cisalhamento Coordenadas Homogêneas Composição e Inversão de Transformações
ROBÓTICA (ROB74) AULA 2. TRANSFORMAÇÕES GEOMÉTRICAS E COORDENADAS HOMOGÊNEAS PROF.: Michael Klug
ROBÓTICA (ROB74) AULA 2 TRANSFORMAÇÕES GEOMÉTRICAS E COORDENADAS HOMOGÊNEAS PROF.: Michael Klug PROGRAMA Transformações Geométricas e Coordenadas Homogêneas Notações Introdutórias Vetores, matrizes, pontos
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES
PROGRAMA DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: VETORES DURANTE AS AULAS DE VETORES VOCÊ APRENDERÁ: Diferença entre grandezas escalares e vetoriais
1) A seguir são dados operadores lineares T em IR e em IR. Verificar quais são inversíveis e, nos casos afirmativos, determinar uma fórmula para T.
Lista de Exercícios cap 5 1) A seguir são dados operadores lineares T em IR e em IR. Verificar quais são inversíveis e, nos casos afirmativos, determinar uma fórmula para T. a) T: IR²IR², T(x, y) = (3x
Vetores no plano Cartesiano
Vetores no plano Cartesiano 1) Definição de vetor Um vetor (geométrico) no plano R² é uma classe de objetos matemáticos (segmentos) com a mesma direção, mesmo sentido e mesmo módulo (intensidade). 1. A
Aula /2 Sistemas de coordenadas Transformação entre sistemas
http://computacaografica.ic.uff.br/conteudocap2.html Aula 19 2017/2 Sistemas de coordenadas Transformação entre sistemas Sistemas de Coordenadas O Sistema de Coordenadas nos dá uma referência sobre o tamanho
3D no OpenGL. Visualização e Transformações Perspectiva. Transformações do Modelview. Processo
Visualização e Transformações Perspectiva 3D no OpenGL Para gerar imagens de um objeto 3D, é necessário compreender transformações perspectiva Foley & van Dam - Cap. 6 Notas de aula do Prof. Mount: aulas
1 Segmentos orientados e vetores, adição e multiplicação
MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )
Orientação de Objetos e Imagens por Métodos Tensoriais.
Orientação de Objetos e Imagens por Métodos Tensoriais. PISB - 2017 Aura Conci Física. Mecânica. Estática Teorias de momentos de inércia de corpo rígidos. Momentos geométricos (também chamados de momentos
Material Teórico - Módulo: Vetores em R 2 e R 3. Produto Vetorial. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Produto Vetorial Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta aula, estudaremos uma operação definida
Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco
Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Transformação direta de coordenadas 1 2... N Variáveis de junta Variáveis cartesianas Transformação inversa de coordenadas Transformação
Mudança de Coordenadas
Mudanças de Coordenadas Mudança de Coordenadas A origem O = (0, 0, 0) e os vetores i, j, k da base canônica de R determinam um sistema de coordenadas: se as coordenadas de um ponto no espaço são (x, y,
Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC
Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante
Transformações Geométricas
Transformações Geométricas 2D Carolina Watanabe Referências Bibliográficas FOLEY, J. D, DAM, A. V.; HUGHES, J. F. Computer Graphics Principle and dpractice, 2 a edição Material elaborado por Marcela X.
RESISTÊNCIA DOS MATERIAIS AULAS 01
Engenaria da Computação 1 4º / 5 Semestre RESISTÊNCI DOS MTERIIS ULS 01 Prof Daniel Hasse Características Geométricas de Figuras Planas SÃO JOSÉ DOS CMPOS, SP ula 01 Figuras Planas I 1- FIGURS PLNS Nesta
Aula 07 - Momento (formulação vetorial) 2011 Pearson Prentice Hall. Todos os direitos reservados.
Aula 07 - Momento (formulação vetorial) slide 1 2011 Pearson Prentice Hall. Todos os direitos reservados. Lembrete: 24/08 Momento sobre um eixo específico. Momento de um binário 29/08 Revisão e esclarecimento
Transformações Geométricas 2D e 3D
UNIVERSIDADE DE SÃO PAULO - USP Instituto de Ciências Matemáticas e de Computação ICMC Departamento de Ciências de Computação SCC Seminário para a Disciplina SCE 5799 Computação Gráfica Profa. Dra. Rosane
Geometria Analítica. Prof. M.Sc. Guilherme Schünemann
Geometria Analítica Prof. M.Sc. Guilherme Schünemann Ponto de partida Um ponto é a unidade básica de toda a geometria analítica. A partir dele, definem-se retas, segmentos, vetores, planos, etc. Reta definida
Álgebra Linear I - Aula Forma diagonal de uma matriz diagonalizável
Álgebra Linear I - Aula 18 1 Forma diagonal de uma matriz diagonalizável 2 Matrizes ortogonais Roteiro 1 Forma diagonal de uma matriz diagonalizável Sejam A uma transformação linear diagonalizável, β =
Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco
Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Mário Prof. Mário Luiz Tronco Luiz Tronco Transformação direta de coordenadas θ 1 θ 2... θ N Variáveis de junta Variáveis cartesianas
Sistemas de Referência
Sistemas de Referência Um sistema de coordenada é denominado de Sistema de Referência quando servir para alguma finalidade específica; Aspectos a serem observados na definição de um sistema de referência:
Equação Geral do Segundo Grau em R 2
8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................
Álgebra Linear I - Aula 2. Roteiro
Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,
Universidade Federal de Alagoas Instituto de Matemática. Geometria. Prof. Thales Vieira
Universidade Federal de Alagoas Instituto de Matemática Geometria Prof. Thales Vieira 2014 Geometria Euclidiana Espaço R n R n = {(x 1,...,x n ); x i 2 R} Operações entre elementos de R n Soma: (x 1,x
Álgebra Linear I - Aula 5. Roteiro
1. Produto vetorial. 2. Aplicações. 3. Produto misto. Álgebra Linear I - Aula 5 1 Produto vetorial Roteiro Definição: Dados vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3 definimos o produto
Álgebra Linear I - Aula 14. Roteiro
Álgebra Linear I - Aula 14 1 Matrizes 2 Forma matricial de uma transformação linear 3 Composição de transformações lineares e produto de matrizes 4 Determinante do produto de matrizes Roteiro 1 Matrizes
Sistema de coordenadas
Sistema de coordenadas Sistema de coordenadas Coordenadas cartesianas Coordenadas polares Transformação sistema de coordenadas Coordenadas relativas Sistema de coordenadas cartesianas Sistema de coordenadas
Conceitos de vetores. Decomposição de vetores
Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas
7. Calcule o valore de x + y z sabendo que as
. Considere as matrizes: A 3, B 3 e C 3 3. Assinale a alternativa que apresenta um produto ineistente: A) A B B) B A C) C A D) A t C E) B t C 3 3. Seja a matriz A =. 3 3 O termo 3 da matriz X = A é igual
CAPíTULO 1. Vetores e tensores Notação indicial
CAPíTULO 1 Vetores e tensores 1.1. Notação indicial A notação indicial é uma simplificação da notação de uma somatória. Por exemplo, seja a somatória de 3 monômios a i b i (a i multiplicado por b i ) com
ROBÓTICA TRANSFORMAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial
SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial TRANSFORMAÇÕES MATRICIAIS https://giovanatangerino.wordpress.com [email protected] [email protected]
Geometria Analítica. Geometria Analítica 28/08/2012
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação
Resistência dos Materiais
Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Cap.04 1 Resultantes de um sistema de forças Prof. Antonio Dias Antonio Dias / Cap.04 2 Objetivo Discutir o conceito do momento de uma força
Processamento de Imagens CPS755
Processamento de Imagens CPS755 aula 03 - visualizando a planar Antonio Oliveira Ricardo Marroquim 1 / 40 laboratório de processamento de imagens tópicos visualizando a planar discussão dos primeiros 2
G3 de Álgebra Linear I
G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1
ALGEBRA LINEAR 1 RESUMO E EXERCÍCIOS* P1 *Exercícios de provas anteriores escolhidos para você estar preparado para qualquer questão na prova. Resoluções em VETORES Um vetor é uma lista ordenada de números
P4 de Álgebra Linear I de junho de 2005 Gabarito
P4 de Álgebra Linear I 25.1 15 de junho de 25 Gabarito 1) Considere os pontos A = (1,, 1), B = (2, 2, 4), e C = (1, 2, 3). (1.a) Determine o ponto médio M do segmento AB. (1.b) Determine a equação cartesiana
Unidade 14 - Operadores lineares e mudança de base nos espaços euclidianos bi e tri-dimensionais
MA33 - Introdução à Álgebra Linear Unidade 14 - Operadores lineares e mudança de base nos espaços euclidianos bi e tri-dimensionais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT -
Cirlei Xavier Bacharel e Mestre em Física pela Universidade Federal da Bahia
David J. Griffiths SOLUÇÃO ELETRODINÂMICA Bacharel e Mestre em Física pela Universidade Federal da Bahia Maracás Bahia Novembro de 2015 Sumário 1 Análise Vetorial 3 1.1 Álgebra vetorial...................................
n. 1 Matrizes Cayley (1858) As matrizes surgiram para Cayley ligadas às transformações lineares do tipo:
n. Matrizes Foi um dos primeiros matemáticos a estudar matrizes, definindo a ideia de operarmos as matrizes como na Álgebra. Historicamente o estudo das Matrizes era apenas uma sombra dos Determinantes.
Álgebra Linear I - Aula 4. Roteiro. 1 Determinantes (revisão rápida)
Álgebra Linear I - Aula 4 1. Determinantes (revisão). 2. Significado geométrico. 3. Cálculo de determinantes. 4. Produto vetorial. 5. Aplicações do produto vetorial. Roteiro 1 Determinantes (revisão rápida)
ROBÓTICA REPRESENTAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial
SP CAMPUS PIRACICABA ROBÓTICA Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial REPRESENTAÇÕES MATRICIAIS https://giovanatangerino.wordpress.com [email protected] [email protected]
