Projeções. Cap 2 (do livro texto) Aula 6 UFF
|
|
|
- Benedito Marreiro Prada
- 9 Há anos
- Visualizações:
Transcrição
1 Projeções Cap 2 (do livro texto) Aula 6 UFF
2 Projeções PLANAS:
3 Classificação BÁSICA: B
4 Características:
5
6 Um objeto no espaço o 3D A forma mais simples de representar um objeto 3D em 2D é simplesmente Descartar uma das suas coordenadas. Este é um caso especial das projeções paralelas ortogonais ao plano de projeção, ou ORTOGRAFICAS Se os eixos principais do objeto forem paralelos aos sistemas de eixos considerados, e ainda se os raios projetores forem paralelos aos eixos e perpendiculares ao plano de projeção.
7 O que são eixos principais? Maior e menor momento de inércia. Não há produto de inércia para os eixos principais Podem ser entendidos como os do menor BB possível para o objeto de interesse.
8 Projeção paralela ORTOGRAFICA OU VISTAS Projeção paralela ORTOGRAFICA no PLANO z=0 (só restam x,y) :
9 Projeção paralela ORTOGRÁFICA no PLANO y=0: (só restam x,z) (só restam y,z) Projeção paralela ORTOGRAFICA no PLANO x=0: E SE TIVERMOS Projeção paralela ORTOGRAFICA POR UM PLANO PARALELO A x=0, i.e. x=tx?
10 Projeção paralela axonométrica Raios projetores paralelos mas não na mesma direção dos eixos principais do objeto, e perpendiculares ao plano de projeção : Orientação qualquer: TRIMÉTRICA De forma que 2 eixos tenha a mesma métrica: DIMÉTRICA Os 3 eixos tenha a mesma métrica: ISOMÉTRICA
11
12 Projeção paralela isométrica Vamos reposicionar nosso cubo inicial!
13 Reposicionar o cubo e Depois projetá-lo Projeção paralela isométrica
14 Projeção paralela isométrica Os vetores unitários agora são: Os vetores unitários em x e y: Considerando só senos: Simplificando a expressão:
15 Projeção paralela isométrica Os vetores unitários em z e y: Considerando só senos: Simplificando a expressão:
16 Projeção paralela isométrica Em engenharia e desenho técnico um ângulo importante na projeção isométrica é o chamado A na figura ao lado (que ângulo é esse?) Considerando o vetor unitário x : Se vê : como Tem-se que:
17 Projeção paralela isométrica Em engenharia e desenho técnico saber o quanto muda o comprimento na projeção isométrica é importante: Vamos chamar o novo comprimento de F, voltando as medidas dos vetores depois de projetados : O comprimento na projeção isométrica muda 82%!
18 Projeção paralela isométrica Como ficaria nossa figura em isométrica no plano xy ou z=0?
19 Cavaleira (cavalier) direção perpendicular ao plano de projeção não é reduzida. Ou seja os raios projetores devem chegar com um ângulo ß de 45 graus no plano de projeção! Cabinet direção perpendicular ao plano de projeção é reduzida a metade. Ou seja os raios projetores devem chegar com um ângulo ß cuja tangente seja 0,5=1/2! ß = 26,5651
20 Projeção paralela oblíqua Raios projetores paralelos mas não perpendiculares ao plano de projeção Geralmente essa é obtida considerando como um vetor unitário é mostrado:
21 Projeção paralela oblíqua Como um tetraedro com os vértices: Ficaria? Cavaleira (cavalier) l = 1 com θ = 45 Exemplo:
22
23 Características
24 Ponto de fuga
25 Pontos de fuga principais
26 Possível mas não é muito realista 3 pontos de fuga e realidade
27 Transformação Perspectiva M=( p q 1)( x y 1) = ( x y px+qy+1) (10,10) (100,10) (100,100) (10,100) p=0,2 e q = 0,1 (x,y,1) - > (x,y,px px+qy+1) (10/4,10/4) = (2,5 ; 2,5) (100/22,10/22)=(4,5 ; 0,5) (100/31,100/31)= (3,2 ; 3,2) (10/13,100/13)= (0,7 ; 7,7)
28 Efeito em um ponto no infinito (pedindo desculpa aos matemáticos pela notação!) M=( p q 1)( x y 0) = ( px+qy) x y
29 Pontos de Fuga Um ponto no infinito pode ser levado em um ponto P 0 do plano afim. Família de retas paralelas que se intersectam no infinito são transformadas numa família de retas incidentes em P 0. P 0 é chamado de ponto de fuga. Ponto de fuga principal corresponde a uma direção paralela aos eixos coordenados. Imagem de [x,0,0] ou [0,y,0].
30
31 Perspectiva (tela do museu de Montreal)
32 Dois pontos de fuga: Foto de uma rua de (Podgorica) Montenegro 2014
33 Mas ocorre se o observador estiver muito perto do objeto: Museu De Mont. real
34 Matriz Projetiva Uma transformação projetiva M do R 3 é uma transformação linear do R 4. A matriz 4 x 4 de uma transformação projetiva representa uma transformação afim tridimensional. a d g m M= b e h n c f i o p q r s
35 Transformação Perspectiva Ponto P do espaço afim é levado no hiperplano w = r z + 1 Se z = -1/r, então P é levado em um ponto no infinito. Pontos do espaço afim com z = 0 não são afetados M=(1 1)=( x y y z z rz+1) 0 0 r 1)(x
36 Ponto de Fuga Principal A imagem do ponto ideal, correspondendo a direção z, tem coordenadas [0, 0, 1/r, 1] Este é o ponto de fuga principal da direção z. Semi-espaço infinito 0 < z é transformado no semi-espaço finito 0 < z 1/r M=( )=(0 r) 0 0 r 1)(0
37 Mais de Um Ponto de Fuga A transformação perspectiva com 3 pontos de fuga, possui 3 centros de projeção: [-1/p, 0, 0, 1] [0, -1/q, 0, 1] [0, 0, -1/r, 1] O mesmo resultado é obtido com a aplicação em cascata de 3 transformações perspectivas, com um único ponto de fuga em cada eixo.
38 Basta Implementar Transformações Com um Único Ponto de Fuga Transformações perspectivas com dois pontos de fuga equivalem a combinação de: rotação ao redor de um eixo perpendicular ao eixo que contém o centro de projeção. transformação perspectiva com um único ponto de fuga. Com duas rotações, obtêm-se transformações com três pontos de fuga.
39 Projetar Sempre Acarreta Perder de Informação
40 Bibliografia: Anton, H. Rorres, C. Algebra linear com aplicações, Bookman, Porto Alegre 2001 E. Azevedo, A. Conci, Computação Gráfica: teoria e prática, Campus ; - Rio de Janeiro, 2003 J.D.Foley,A.van Dam,S.K.Feiner,J.F.Hughes. Computer Graphics- Principles and Practice, Addison-Wesley, Reading, Gardan, Y., Numerical Methods for CAD, MIT press, Cambridge, 1985.
Aula9 e 10. Projeções Planas. Como representar objetos 3D em dispositivos 2D? 2019/1 IC / UFF. Paginas 91 a 101 livro texto de computacao grafica
Aula9 e 10 Como representar objetos 3D em dispositivos 2D? Projeções Planas 2019/1 IC / UFF P p O Paginas 91 a 101 livro texto de computacao grafica Como desenhar o mundo 3D no planos? Fazendo as projeções
Transformações Geométricas em C.G.
Transformações Geométricas em C.G. Cap 2 (do livro texto) Aula 3, 4 e 5 UFF - 214 Geometria Euclideana : 3D Geometria Axiomas e Teoremas Coordenadas de pontos, equações dos objetos Geometria Euclideana
aula9 Coordenadas homogêneas e projeções 2016/2 IC / UFF
http://computacaografica.ic.uff.br/conteudocap2.html aula9 P p O Coordenadas homogêneas e projeções 2016/2 IC / UFF 2D TODAS AS Transformações Lineares Bidimensionais São representadas por matrizes 2 x
Projeção 3D. André Tavares da Silva. Capítulo 5 de Foley Capítulo 2 de Azevedo e Conci
Projeção 3D André Tavares da Silva [email protected] Capítulo 5 de Foley Capítulo 2 de Azevedo e Conci Projeção Permite ver 2D objetos 3D Elementos: Plano de Projeção Raio de Projeção Centro de Projeção
Sistema de coordenadas
Sistema de coordenadas Sistema de coordenadas Coordenadas cartesianas Coordenadas polares Transformação sistema de coordenadas Coordenadas relativas Sistema de coordenadas cartesianas Sistema de coordenadas
Projeções: conceitos. Projetar pontos no espaço d dimensional no plano d-1 dimensional, usando um ponto especial chamado centro de projeção
Projeções Projeções: conceitos Projetar pontos no espaço d dimensional no plano d-1 dimensional, usando um ponto especial chamado centro de projeção Pontos no espaço 3D projetados em um plano 2D centro
Computação Gráfica. Prof. MSc. André Yoshimi Kusumoto
Computação Gráfica Prof. MSc. André Yoshimi Kusumoto [email protected] Para que objetos tridimensionais possam ser visualizados é necessário que suas imagens sejam geradas na tela. Para isso,
Introdução ao Processamento e Síntese de imagens - Projeções
Introdução ao Processamento e Síntese de imagens - Projeções Júlio Kiyoshi Hasegawa Fontes: Esperança e Cavalcanti (22) (UFRJ) e Traina e Oliveira (24) (USP) Antonio Maria Garcia Tommaselli - notas de
Computação Gráfica Transformações Projetivas
Computação Gráfica Transformações Projetivas Professora: Sheila Cáceres Transformações Projetivas Projetar modelos geométricos 3D numa imagem 2D, exibível em dispositivos de saída 2D Exemplo: 2 Projeção
Projeções. Prof. Márcio Bueno
Projeções Prof. Márcio Bueno {cgtarde,cgnoite}@marciobueno.com Projeções Visão humana: enxerga em 2D, a sensação de profundidade vem da diferença entre as vistas esquerda e direita do mesmo objeto Projeção:
Visualização em 3-D - Projeções Planares
Visualização em 3-D - Projeções Planares Projetores PRP - Centro de Projeção A n (u,v,n) - sistema de coordenadas do plano de projeção (x,y,z) - sistema de coordenadas do objeto (regra da mão direita -
Coordenadas Homogêneas no Plano e no Espaço
http://computacaografica.ic.uff.br/conteudocap2.html Curso de CG 2019/1 IC / UFF Coordenadas Homogêneas no Plano e no Espaço (AB) T = B T A T Esse material estáno Livro do curso no cap 2. Resumindo transformações
SEM DESENHO TÉCNICO MECÂNICO I
SEM 0564 - DESENHO TÉCNICO MECÂNICO I Notas de Aulas v.2017 Aula 02 Projeção: tipos, vistas e diedros Prof. Assoc. Carlos Alberto Fortulan Departamento de Engenharia Mecânica Escola de Engenharia de São
DESENHO TÉCNICO MECÂNICO I. Aula 02 Projeção, vistas, diedros. Desenho Técnico Mecânico I
DESENHO TÉCNICO MECÂNICO I Aula 02 Projeção, vistas, diedros PROJEÇÕES Projeção Cônica Projeção Cilíndrica Perspectiva Linear Projeção Oblíqua Projeção Ortogonal Um ponto de fuga Dois pontos de fuga Dimétrica
DTE0003 Desenho Técnico Aula#10
CENTRO DE CIÊNCIAS TECNOLÓGICAS CCT DEPARTAMENTO DE ENGENHARIA DE PRODUÇÃO E SISTEMAS DTE0003 Desenho Técnico Aula#10 Professor Claudio Decker Junior [email protected] PROJEÇÕES ORTOGONAIS http://www.youtube.com/watch?v=yogme48af8g
Perspectivas Professora Valéria Peixoto Borges
Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Agroalimentar Perspectivas Professora Valéria Peixoto Borges INTRODUÇÃO A perspectiva é um tipo especial de projeção, na qual são
Perspectiva / / Perspectiva Isométrica. Fonte: Miceli, Perspectiva Cavaleira. Fonte: Miceli, 2008.
Perspectiva De acordo com MICELI (2008) a Perspectiva é o método de representação gráfica dos objetos que apresenta sua forma no modo mais próximo como são vistos. É uma representação tridimensional que
Prof. Regis de Castro Ferreira
1. INTRODUÇÃO As perspectivas são utilizadas para termos uma visão geral em três dimensões do objeto auxiliando na compreensão e execução do mesmo. As perspectivas se dividem em: 2. PERSPECTIVAS BASEADAS
Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 6. Projeções
Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 6 Projeções 2 Projeções Geométricas Projeções permitem a visualização bidimensional de objetos tridimensionais.
Perspectiva. Perspectiva Isométrica. Fonte: Miceli, Perspectiva Cavaleira. Fonte: Miceli, 2008.
Perspectiva De acordo com MICELI (2008) a Perspectiva é o método de representação gráfica dos objetos que apresenta sua forma no modo mais próximo como são vistos. É uma representação tridimensional que
P E R S P E C T I V A S
P E R S P E C T I V A S Definição de perspectiva : Ciência da representação gráfica dos objetos com o aspecto visto por nossos olhos. A palavra perspectiva vem do latim - Perspicere (ver através de) e
10 Visualização em 3D - Projeções
INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO DEPARTAMENTO DE CIÊNCIAS DE COMPUTAÇÃO E ESTATÍSTICA 10 Visualização em 3D - Projeções Após a criação de cenas e objetos tridimensionais o próximo passo
Perspectivas. Perspectivas. Perspectivas. Fonte: tela software de pesquisa google
Perspectivas Perspectivas Perspectivas Fonte: tela software de pesquisa google Perspectivas Perspectivas Perspectivas Fonte: www.novasperspectivas.com.br Fonte: site.dotstore.com.br Perspectivas Perspectivas
. Vistas ortográficas: desenhos resultantes das projeções ortogonais do objeto
1 Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro PROJEÇÕES ORTOGONAIS 1. GEOMETRIA DESCRITIVA. Método desenvolvido por Gaspard Monge no século XVIII com o objetivo de representar
Documentação técnica de produto- Vocabulário Parte 2: Termos relativos aos métodos de projeção
OUT 2004 Projeto Revisão NBR 10647 ABNT Associação Brasileira de Normas Técnicas Sede: Rio de Janeiro Av. Treze de Maio, 13 28º andar CEP 20003-900 Caixa Postal 1680 Rio de Janeiro RJ Tel.: PABX (021)
Projeções paralelas. Professor: João Carmo
Projeções paralelas Professor: João Carmo Projeções paralelas Introdução As múltiplas vistas (projeções ortogonais) não mostram, de forma direta, a configuração tridimensional do objeto. Elas são mais
Como desenharemos um objeto Real tridimensional em uma folha de papel?
1.Questionamento Como desenharemos um objeto Real tridimensional em uma folha de papel? Como faremos se quisermos mandar um desenho de uma peça para um fornecedor ou para outra seção da empresa? Os métodos
aula6 Curvas de Hermite 2016/2 IC / UFF Criadas por Charles Hermite ( ) https://pt.wikipedia.org/wiki/charles_hermite
Criadas por Charles Hermite (1822-1901) https://pt.wikipedia.org/wiki/charles_hermite aula6 Vetor é : Na matemática - um elemento com de um espaço vetorial Em Física em oposição as grandezas escalares,
EXPRESSÃO GRÁFICA AXONOMETRIA ORTOGONAL PASSAGEM DAS VISTAS PARA AXONOMETRIA 1/38
EXPRESSÃO GRÁFICA AXONOMETRIA ORTOGONAL PASSAGEM DAS VISTAS PARA AXONOMETRIA 1/38 PERSPECTIVAS Perspectiva é uma forma de representar graficamente objetos tridimensionais através de uma única projeção.
EXPRESSÃO GRÁFICA AXONOMETRIA ORTOGONAL PASSAGEM DAS VISTAS PARA AXONOMETRIA 1/38
EXPRESSÃO GRÁFICA AXONOMETRIA ORTOGONAL PASSAGEM DAS VISTAS PARA AXONOMETRIA 1/38 PERSPECTIVAS Perspectiva é uma forma de representar graficamente objetos tridimensionais através de uma única projeção.
A perspectiva geométrica é uma projeção que resulta numa imagem semelhante aquela vista pelo nosso sentido da visão.
PERSPECTIVA GEOMÉTRICA OU EXATA A. Introdução B. Elementos C. Tipos: paralela ou axonométrica / cônica D. Projeção paralela: isométrica, militar, cavaleira. A. Na perspectiva geométrica Utilizamos os sistemas
Resumo. Maria Bernardete Barison apresenta Perspectivas em Geometria Descritiva. Geométrica vol.2 n PERSPECTIVAS
1 PERSPECTIVAS PERSPECTIVAS A palavra perspectiva vem do latim - Perspicere (ver através de). Se você se colocar atrás de uma janela envidraçada e, sem se mover do lugar, riscar no vidro o que está "vendo
Pipeline de Visualização 3D
Pipeline de Visualização 3D André Tavares da Silva [email protected] Capítulo 5 de Foley Capítulo 2 de Azevedo e Conci Processo de Visualização https://www.youtube.com/watch?v=ogqam2mykng Processo de
Processamento de Imagens CPS755
Processamento de Imagens CPS755 aula 03 - visualizando a planar Antonio Oliveira Ricardo Marroquim 1 / 40 laboratório de processamento de imagens tópicos visualizando a planar discussão dos primeiros 2
Perspectiva. Perspectiva é o método de representação gráfica dos objetos que apresenta sua forma no modo mais próximo como são vistos.
Perspectiva Prof. Luiz Antonio do Nascimento Perspectiva: Um tipo de Projeção 2/35 Perspectiva: definição Perspectiva é o método de representação gráfica dos objetos que apresenta sua forma no modo mais
Guilherme da Rocha. João Guilherme Macioro. Lucas Balasso Moraes. Mariana Steffens. Mário Celso Machado. Victor Otavio Preuss
Guilherme da Rocha João Guilherme Macioro Lucas Balasso Moraes Mariana Steffens Mário Celso Machado Victor Otavio Preuss Perspectivas Representação gráfica que mostra os objetos em 3 dimensões Perspectivas
DESENHO TÉCNICO MECÂNICO I. Aula 02 Projeção, vistas, diedros. Desenho Técnico Mecânico I
DESENHO TÉCNICO MECÂNICO I Aula 02 Projeção, vistas, diedros PROJEÇÕES Utiliza-se de projeções para comunicar a forma de um desenho 3D (três dimensões) em uma folha de papel (2D duas dimensões). São envolvidos
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA PROF. ANDERSON ROGES TEIXEIRA GÓES GEOMETRIA NO ENSINO
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA PROF. ANDERSON ROGES TEIXEIRA GÓES GEOMETRIA NO ENSINO Representações Geométricas Uma das formas de comunicação
Desenho técnico I. Faculdade Educacional de Medianeira. Curso: Agronomia. Disciplina: Desenho técnico. Aula 02 - Normatização
Faculdade Educacional de Medianeira Curso: Agronomia Desenho técnico I Disciplina: Desenho técnico Perspectiva Prof. Arq. Anderson Turmina Docente: Anderson Turmina Aula 02 - Normatização Perspectiva Introdução
1. Encontre as equações simétricas e paramétricas da reta que:
Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância
Computação Gráfica. Prof. MSc. André Yoshimi Kusumoto
Prof. MSc. André Yoshimi Kusumoto [email protected] Prof. MSc. André Yoshimi Kusumoto Email: [email protected] Site: http://www.kusumoto.com.br CARGA HORÁRIA SEMANAL: 02 horas-aula
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u
Curso Superior de Tecnologia em Refrigeração, Ventilação e Ar Condicionado Disciplina: Desenho Técnico Tema: Projeções, Perspectivas, Vistas e
Curso Superior de Tecnologia em Refrigeração, Ventilação e Ar Condicionado Disciplina: Desenho Técnico Tema: Projeções, Perspectivas, Vistas e Diedros Profº Milton 2014 Projeções Utiliza-se de projeções
3D no OpenGL. Visualização e Transformações Perspectiva. Transformações do Modelview. Processo
Visualização e Transformações Perspectiva 3D no OpenGL Para gerar imagens de um objeto 3D, é necessário compreender transformações perspectiva Foley & van Dam - Cap. 6 Notas de aula do Prof. Mount: aulas
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
Sistemas de coordenadas Transformação entre sistemas
http://computacaografica.ic.uff.br/conteudocap2.html Sistemas de coordenadas Transformação entre sistemas 2019-1 Sistemas de Coordenadas Referência sobre o tamanho e a posição dos objetos na área de trabalho;
I Lista Introodução a Planos
Colegiado de Engenharia Elétrica Prof. Pedro Macário de Moura [email protected] Geometria Analítica 201.2 Discente CPF Turma I Lista Introodução a Planos 01. Determine a equação do plano que
6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2
Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)
Lista 3.2: Retas - Planos e Distâncias PARTE 1: RETAS. 1. Verificar se os pontos P 1 (5, 5,6) e P 2 (4, 1,12) pertencem à reta r : x 3 1 = y + 1
Curso:Licenciatura em Matemática Professor: Luis Gustavo Longen Lista 3.: Retas - Planos e Distâncias PARTE 1: RETAS 1. Verificar se os pontos P 1 (5, 5,6) e P (4, 1,1) pertencem à reta r : x 3 1 = y +
2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC
1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,
Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas
Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 3 Transformações Geométricas no plano e no espaço Introdução (Geometria) 2 Pontos, Vetores e Matrizes Dado
Transformações Geométricas
Computação Gráfica Interativa - M. Gattass & L. F. Martha 8// Transformações Geométricas por Marcelo Gattass Departamento de Informática PUC-Rio (adaptado por Lui Fernando Martha para a disciplina CIV8
Aula /2 Sistemas de coordenadas Transformação entre sistemas
http://computacaografica.ic.uff.br/conteudocap2.html Aula 19 2017/2 Sistemas de coordenadas Transformação entre sistemas Sistemas de Coordenadas O Sistema de Coordenadas nos dá uma referência sobre o tamanho
CONHECIMENTOS ESPECÍFICOS
De acordo com o comando a que cada um dos itens de 51 a 120 se refira, marque, na folha de respostas, para cada item: o campo designado com o código C, caso julgue o item CERTO; ou o campo designado com
- Aula 6 - Visualização 3D: Projeções
- Aula 6 - Visualiação 3D: Projeções Visualiação 3D Modelo geométrico Imagem Pipeline de visualiação Modificado de M.M. Oliveira Visualiação 3D câmera Projeção ortográfica projeção perspectiva câmera Projeções
Realismo Visual. Aula 11 UFF
Realismo Visual Aula 11 UFF - 2018 Objetivos Melhorar o entendimento das cenas e objetos criados Possibilidade de representação de dados, objetos e cenas complexas Realismo até o nível desejado da forma
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança
O objetivo desta aula é apresentar os principais p tipos de perspectivas utilizados no desenho técnico e no desenho arquitetônico, destacando suas
Perspectivas Prof. Cristiano Arbex Introdução O objetivo desta aula é apresentar os principais p tipos de perspectivas utilizados no desenho técnico e no desenho arquitetônico, destacando suas características
aula8 Transformações Geométricas no Plano e no Espaço 2016/2 IC / UFF
http://computacaografica.ic.uff.br/conteudocap2.html aula8 Transformações Geométricas no Plano e no Espaço 2016/2 IC / UFF Definição Transformações geométricas são operações que podem ser utilizadas para
Computação Gráfica - 09
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Computação Gráfica - 9 [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav Objetos
Computação Gráfica - 09
Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Computação Gráfica - 9 [email protected] www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav Objetos
Álgebra Linear I - Aula 9. Roteiro
Álgebra Linear I - Aula 9 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. oteiro 1 Distância de um ponto
Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial
Lista 2 de Exercícios Geometria Analítica e Cálculo Vetorial 9 de abril de 2017 1. Dados os pontos R = (1, 2) e S = ( 2, 2) (a) Encontrar as coordenadas do vetor que tem origem no ponto R e o extremos
MAT 112 Vetores e Geometria. Prova SUB C
MAT 112 Vetores e Geometria Prof. Paolo Piccione 02 de julho de 2019 Prova SUB C Turmas: 2019146 e 2019134 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos.
Álgebra Linear I - Aula 8. Roteiro
Álgebra Linear I - Aula 8 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. 5. Distância entre duas retas.
UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA
1 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 a Lista de exercícios MAT 41 - Cálculo III - 01/II Coordenadas no espaço 1. Determinar o lugar geométrico
Álgebra Linear I - Aula 6. Roteiro
Álgebra Linear I - Aula 6 1. Posições relativas e sistemas de equações. 2. Distância de um ponto a uma reta. 3. Distância de um ponto a um plano. Roteiro 1 Sistemas de equações lineares (posição relativa
Expressão Gráfica. Perspectiva. Professor: Dr. João Paulo Bestete de Oliveira
Expressão Gráfica Perspectiva Professor: Dr. João Paulo Bestete de Oliveira Perspectiva é um tipo de desenho projetivo que mostra em um plano que os objetos ocupam um lugar no espaço, ou seja, possuem
Perspectiva Cavaleira
Aluno: Fernando José Nunes Rodrigues Junior Orientadora: Anna Virgínia Machado Roteiro Perspectiva O que são perspectivas? Quais tipos existem? Perspectiva Oblíqua Origem Construção Aplicação Exercícios
Sistema de Coordenadas Intrínsecas
Sistema de Coordenadas Intrínsecas Emílio G. F. Mercuri a a Professor do Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Curitiba, Paraná Resumo Depois da introdução a cinemática
Visualização por Computador: Teoria, Prática e Aplicações
Visualização por Computador: Teoria, Prática e Aplicações Noções de Geometria e Álgebra Linear Claudio Esperança Programa de Engenharia de Sistemas e Computação COPPE / UFRJ Master of Information Management,
Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)
Projeções ortográficas. Desenho Técnico 2017/1 Prof. Rafael Berti Schmitz
Projeções ortográficas Desenho Técnico 2017/1 Prof. Rafael Berti Schmitz Conceitos fundamentais Face Superfícies que delimitam um sólido Aresta Linhas formadas pelo encontro de duas faces Vértices Pontos
DESENHO TÉCNICO PROJEÇÕES E SISTEMAS DE REPRESENTAÇÃO PROJEÇÕES E SISTEMAS DE REPRESENTAÇÃO CONCEITOS GERAIS 1/30
DESENHO TÉCNICO PROJEÇÕES E SISTEMAS DE REPRESENTAÇÃO PROJEÇÕES E SISTEMAS DE REPRESENTAÇÃO CONCEITOS GERAIS 1/30 GEOMETRIA GRÁFICA É o estudo através do desenho, de qualquer propriedade de forma. PROJEÇÕES
Reconstrução Geométrica a Partir de Imagens TIC
29/3/26 Reconstrução Geométrica a Partir de Imagens TIC-.73 Aula 4 Conteúdo Geometria Projetiva 2D Professor Leandro Augusto Frata Fernandes [email protected] Material disponível em http://www.ic.uff.br/~laffernandes/teaching/26./tic-.73
Processamento de Imagens CPS755
Processamento de Imagens CPS755 aula 07 - modelos de câmera Antonio Oliveira Ricardo Marroquim 1 / 32 laboratório de processamento de imagens tópicos matriz de calibração câmera finita câmera projetiva
Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1
Capítulo 2 Retas no plano O objetivo desta aula é determinar a equação algébrica que representa uma reta no plano. Para isso, vamos analisar separadamente dois tipos de reta: reta vertical e reta não-vertical.
1 Representação Gráfica Aula 09/10 Espaço e Perspectiva - Prof. Luciano ESPAÇO E DIMENSÃO
1 Representação Gráfica Aula 09/10 Espaço e Perspectiva - Prof. Luciano ESPAÇO E DIMENSÃO As dimensões são as grandezas métricas que definem o espaço e os elementos visuais. O espaço pode ser definido
Representação Gráfica
Vetores Vetores: uma ferramenta matemática para expressar grandezas Grandezas escalares e vetoriais; Anotação vetorial; Álgebra vetorial; Produtos escalar e vetorial. Grandezas Físicas Grandezas Escalares:
APOSTILA GEOMETRIA DESCRITIVA
APOSTILA GEOMETRIA DESCRITIVA 1 GEOMETRIA MÉTRICA E ESPACIAL 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 SISTEMAS DE PROJEÇÃO Conforme o que foi exposto anteriormente, o estudo da Geometria Descritiva está
Lista 3 com respostas
Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v
