Álgebra Linear I - Aula 9. Roteiro
|
|
|
- Maria da Assunção Espírito Santo Rodrigues
- 8 Há anos
- Visualizações:
Transcrição
1 Álgebra Linear I - Aula 9 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. oteiro 1 Distância de um ponto P a uma reta r Dado um ponto P e uma reta r, a distância do ponto P à reta r é a menor comprimento dos segmentos PQ onde Q é um ponto da reta. Este mínimo é atingido quando o vetor P Q é ortogonal ao vetor diretor da reta. Observe que, neste caso, dado qualquer ponto da reta r, os pontos P, Q e são os vértices de um triângulo retângulo, onde os segmentos PQ e Q são os catetos e P a hipotenusa. Portanto, temos PQ = P sen (θ), onde θ é o ângulo formado pelos segmentos P e PQ, como sen (θ) 1, temos que PQ P, o que prova a afirmação. Vejamos agora como calcular à distância no plano. Neste caso, escolhemos qualquer ponto da reta, a distância é o módulo da projeção ortogonal do vetor P no vetor normal da reta, n (em 2 a direção do vetor está bem determinada, isto não ocorre em 3, justifique). Observe que este cálculo é independente do ponto. Isto é: a projeção ortogonal de P em n é igual à a projeção ortogonal de AP em n, para qualquer ponto A de r (justifique também esta afirmação!). Vejamos agora o cálculo da distância de P a r no caso geral. Pelos comentários anteriores, o problema consiste em achar o ponto Q tal que PQ é ortogonal a r. 1
2 P Q r v Figura 1: Distância entre ponto e reta Método 1: Considere o plano π normal a r que contém P. Calcule o ponto de interseção Q de π e r. A distância procurada é a distância entre P e Q. Método 2: Considere um ponto qualquer de r e o vetor diretor v de r. Calcule o produto vetorial P v. Então a distância d procurada é d = P v. v Para ver esta afirmação observe que a área do paralelogramo determinado por P e v é P v = (base b do paralelogramo)(altura h do paralelogramo). Onde b = v e h é a distância procurada. Veja que este método é independente da escolha do ponto. Exemplo 1. Calcule a distância do ponto P = (1, 0, 1) à reta (t, 2t, 3), t. esposta: Usando o primeiro método, temos que o plano π normal a r que contém o ponto P é da forma π: x + 2 y = d. 2
3 P n A r Figura 2: Distância entre ponto e reta em 2 : usando projeções Como (1, 0, 1) π temos d = 1. A interseção de r e π ocorre para o parâmetro t que verifica t + 2 (2 t) = 1, logo t = 1/5. Temos que o ponto Q de interseçao é (1/5, 2/5, 3). Logo PQ = ( 4/5, 2/5, 10/5) que tem módulo /5 = 120/5 = 24/5. Este módulo é a distância procurada. Para o segundo método escolhemos um ponto qualquer de r (por exemplo, (0, 0, 3)). Logo P = (1, 0, 2). Temos (1, 2, 0) (1, 0, 2) = (4, 2, 2). Logo a distância é (4, 2, 2) / (1, 0, 2) = 24/ 5. Obviamente obtemos o mesmo resultado. 3
4 π Q P r Figura 3: Distância entre ponto e reta 2 Distância de um ponto P a um plano π Dado um ponto P e um plano π, a distância entre P e π é a menor das distâncias d(p, Q), onde Q é um ponto de π. Como no caso da distância de um ponto a uma reta, este mínimo ocorre quando o vetor PQ é ortogonal ao plano (ou seja, paralelo ao vetor normal do plano). Esta afirmação é obtida exatamente como no caso da distância de um ponto a uma reta. Para calcular a distância de P a π veremos dois métodos: Método 1: Considere a reta r normal ao plano π que contém P. Calcule o ponto de interseção Q de π e r. A distância procurada é a distância entre P e Q. Método 2: Considere um ponto qualquer de π e o vetor normal n de π. Calcule o vetor w obtido como a projeção do vetor P em n. O módulo de w é a distância procurada. Método 3: Usando o produto misto. Considere dois vetores v e w paralelos ao plano π e um ponto Q do plano π. Considere o paralelepípedo Π com arestas v, w e PQ. O volume do paralelepípedo Π é PQ (v w) = (área base) ([h]altura) = v w h. 4
5 A = (b)(h) P d h v b Figura 4: Distância entre ponto e reta: usando produto vetorial Temos que h é exatamente a distância de P a π. Exercício 1. Com a notação acima, que propriedade verifica o ponto T = P + w? Exemplo 2. Calcule a distância do ponto P = (1, 0, 1) ao plano π: x+2 y z = 1. esposta: Usando o primeiro método, temos que r = (1 + t, 2t, 1 t). A interseção da reta r e do plano π ocorre quando t verifica (substituindo a equação da reta na do plano) (1 + t) + 2 (2 t) (1 t) = 1, isto é, t = 1/6. Logo Q = (7/6, 2/6, 5/6) e PQ = (1/6, 2/6, 1/6). A distância é o módulo de PQ = (1/6, 2/6, 1/6), ou seja, 1/ 6. Usando o segundo método escolhemos o ponto = (1, 0, 0) do plano π, logo P = (0, 0, 1). Consideremos um vetor unitário normal ao plano n = (1/ 6, 2/ 6, 1/ 6). A projeção de P em n é (P n) n = 1/ 6(1/ 6, 2/ 6, 1/ 6) = (1/6, 2/6, 1/6). Este vetor tem módulo (que é a distância procurada) igual a 1/ 6. Obviamente, T é o ponto Q do primeiro método! (isto responde ao Exercício 1). 5
6 P d w n T Figura 5: Distância entre ponto e plano: usando projeções π 3 Distância de uma reta r a um plano π A distância entre uma reta r e um plano π é a menor das distâncias entre pontos P da reta r e Q do plano π. Obviamente, se a reta e o plano se interceptam a distância é nula. Seja n um vetor normal ao plano π e v um vetor diretor da reta r. Existem duas possibilidades: ou a reta é paralela ao plano (em tal caso n v = 0), a reta não é paralela ao plano ou não (isto ocorre se n v 0). Neste caso a reta intercepta ao plano em um ponto a distância é zero. No primeiro caso, a distância de r a π é a distância de qualquer ponto P de r a π. Logo é suficiente escolher qualquer ponto de r e calcular a distância a π, caindo em um caso já estudado. A afirmação é obtida como segue: sejam P e Q pontos da reta, e sejam T e os pontos do plano mais próximos de P e de Q, então os vetores PT e Q são paralelos e os quatro pontos determinan um retângulo, portanto, P T = Q. Exemplo 3. Calcule a distância da reta r = (1 + t, t, 1 t) ao plano π: x + 2 y z = 1. 6
7 esposta: Temos que que um vetor diretor da reta é (1, 1, 1) e um vetor normal do plano é (1, 2, 1). Como (1, 1, 1) (1, 2, 1) = 0, temos que o vetor diretor da reta é ortogonal ao vetor normal ao plano. Portanto, a reta é paralela ao plano. Como o ponto (1, 0, 1) pertence a r, o exercício já está resolvido no exemplo distância entre ponto e plano, e a distância é 1/ 6. 4 Distância entre dois planos π e ρ A distância entre os planos π e ρ é a menor das distâncias entre pontos P de π e Q de ρ. Sejam n e m vetores normais dos plano π e ρ, respectivamente. Existem duas possibilidades: ou os planos são paralelos (em tal caso n = σ m para algum σ 0) ou não. No último caso, os planos se interceptam e a distância é zero. No primeiro caso, a distância de ρ a π é a distância de qualquer ponto P de ρ a π. Logo é suficiente escolher qualquer ponto de ρ e calcular a distância a π, caindo em um caso já estudado. Exemplo 4. A distância entre os planos π: x + y + z = 0 e ρ: 2x + y z = 0 é zero, pois os planos não são paralelos (os vetores normais não são paralelos) e portanto se intersectam. Exemplo 5. Calcule a distância entre os planos paralelos π: x + y + z = 0 e ρ: x + y + z = 1. esposta: Podemos calcular a distância como segue: considere o ponto P = (0, 0, 0) π e o ponto Q = (1, 0, 0) ρ. A distância é o módulo da projeção de PQ = (1, 0, 0) no vetor nomal (1/ 3, 1/ 3, 1/ 3) do plano, w = ((1, 0, 0) (1/ 3, 1/ 3, 1/ 3))(1/ 3, 1/ 3, 1/ 3) = (1/3, 1/3, 1/3). A distância é w = 1/ 3. 7
Álgebra Linear I - Aula 6. Roteiro
Álgebra Linear I - Aula 6 1. Posições relativas e sistemas de equações. 2. Distância de um ponto a uma reta. 3. Distância de um ponto a um plano. Roteiro 1 Sistemas de equações lineares (posição relativa
Álgebra Linear I - Aula 8. Roteiro
Álgebra Linear I - Aula 8 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. 5. Distância entre duas retas.
Álgebra Linear I - Aula 10. Roteiro
Álgebra Linear I - Aula 10 1. Distância entre duas retas. 2. A perpendicular comum a duas retas. 3. Posições relativas. Roteiro 1 Distância entre duas retas r e s Calcularemos a distância entre duas retas
Álgebra Linear I - Aula 9. Roteiro
Álgebra Linear I - Aula 9 1. Distância entre duas retas. 2. A perpendicular comum a duas retas. 3. Posições relativas. Roteiro 1 Distância entre duas retas r e s Calcularemos a distância entre duas retas
5 de setembro de Gabarito. 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas. r: (2 t, 1 t, 1 + t), t R.
G1 de Álgebra Linear I 20072 5 de setembro de 2007 Gabarito 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas r: (2 t, 1 t, 1 + t), t R (a) Determine a equação cartesiana do plano
P1 de Álgebra Linear I Gabarito. 27 de Março de Questão 1)
P1 de Álgebra Linear I 20091 27 de Março de 2009 Gabarito Questão 1) Considere o vetor v = 1, 2, 1) e os pontos A = 1, 2, 1), B = 2, 1, 0) e 0, 1, 2) de R a) Determine, se possível, vetores unitários w
Álgebra Linear I - Lista 7. Respostas
Álgebra Linear I - Lista 7 Distâncias Respostas 1) Considere a reta r que passa por (1,0,1) e por (0,1,1). Calcule a distância do ponto (2,1,2) à reta r. Resposta: 3. 2) Ache o ponto P do conjunto { (x,
P1 de Álgebra Linear I
P1 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Para
Álgebra Linear I - Aula 5. Roteiro
1. Produto vetorial. 2. Aplicações. 3. Produto misto. Álgebra Linear I - Aula 5 1 Produto vetorial Roteiro Definição: Dados vetores ū = (u 1, u 2, u 3 ) e v = (v 1, v 2, v 3 ) de R 3 definimos o produto
P1 de Álgebra Linear I de setembro de Gabarito
P1 de Álgebra Linear I 2005.2 8 de setembro de 2005. Gabarito 1) (a) Considere os planos de equações cartesianas α: β : 2 x y + 2 z = 2, γ : x 5 y + z = k. Determine k para que os planos se interceptem
G1 de Álgebra Linear I Gabarito
G1 de Álgebra Linear I 2013.1 6 de Abril de 2013. Gabarito 1) Considere o triângulo ABC de vértices A, B e C. Suponha que: (i) o vértice B do triângulo pertence às retas de equações paramétricas r : (
Álgebra Linear I - Lista 5. Equações de retas e planos. Posições relativas. Respostas
Álgebra Linear I - Lista 5 Equações de retas e planos. Posições relativas Respostas 1) Obtenha equações paramétricas e cartesianas: Das retas que contém aos pontos A = (2, 3, 4) e B = (5, 6, 7), A = (
Álgebra Linear I - Aula 6. Roteiro
Álgebra Linear I - Aula 6 1. Equação cartesiana do plano. 2. Equação cartesiana da reta. 3. Posições relativas: de duas retas, de uma reta e um plano, de dois planos. Roteiro 1 Equação cartesiana do plano
Álgebra Linear I - Aula 4. Roteiro. 1 Projeção ortogonal em um vetor
Álgebra Linear I - ula 4 1. Projeção ortugonal de vetores. 2. Determinantes (revisão). Significado geométrico. 3. Cálculo de determinantes. Roteiro 1 Projeção ortogonal em um vetor Dado um vetor não nulo
Álgebra Linear I - Aula 2. Roteiro
Álgebra Linear I - Aula 2 1. Produto escalar. Ângulos. 2. Desigualdade triangular. 3. Projeção ortugonal de vetores. Roteiro 1 Produto escalar Considere dois vetores = (u 1, u 2, u 3 ) e v = (v 1, v 2,
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015
MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base
Gabarito P2. Álgebra Linear I ) Decida se cada afirmação a seguir é verdadeira ou falsa.
Gabarito P2 Álgebra Linear I 2008.2 1) Decida se cada afirmação a seguir é verdadeira ou falsa. Se { v 1, v 2 } é um conjunto de vetores linearmente dependente então se verifica v 1 = σ v 2 para algum
Álgebra Linear I - Aula 5. Roteiro
Álgebra Linear I - Aula 5 1. Produto misto. 2. Equação paramétrica da reta. 3. Retas paralelas e reversas. 4. Equação paramétrica do plano. 5. Ortogonalizade. Roteiro 1 Produto Misto Dados três vetores
2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC
1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,
Retas no Espaço. Laura Goulart. 28 de Agosto de 2018 UESB. Laura Goulart (UESB) Retas no Espaço 28 de Agosto de / 30
Retas no Espaço Laura Goulart UESB 28 de Agosto de 2018 Laura Goulart (UESB) Retas no Espaço 28 de Agosto de 2018 1 / 30 Equação Vetorial da Reta Um dos principais axiomas da Geometria Euclidiana diz que
. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança
Álgebra Linear I - Aula 4. Roteiro. 1 Determinantes (revisão rápida)
Álgebra Linear I - Aula 4 1. Determinantes (revisão). 2. Significado geométrico. 3. Cálculo de determinantes. 4. Produto vetorial. 5. Aplicações do produto vetorial. Roteiro 1 Determinantes (revisão rápida)
6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2
Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)
3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v.
1 a Produto escalar, produto vetorial 2 a Lista de Exercícios MAT 105 1. Sendo ABCD um tetraedro regular de aresta unitária, calcule AB, DA. 2. Determine x de modo que u e v sejam ortogonais. (a) u = (x
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de f 1 = 2 e 1 e 2 e 3,
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de 2015 1 Sendo E = { e 1 e 2 e 3 } F = { f 1 f 2 f 3 } bases com: f 1 = 2 e 1 e 3 f 2 = e 2 + 2 e 3 f 3 = 7 e 3 e w = e
G2 de Álgebra Linear I
G2 de Álgebra Linear I 2008.1 Gabarito 1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque COM CANETA sua resposta no quadro a seguir. Itens V F N 1.a x 1.b x 1.c x 1.d x 1.e x 1.a) Suponha
Lista de Exercícios de Cálculo 3 Primeira Semana
Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.
Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)
Álgebra Linear I - Aula 10. Roteiro
Álgebra Linear I - Aula 10 1. Combinação linear de vetores. 2. Subespaços e geradores. Roteiro 1 Combinação linear de vetores Definição 1 (Combinação linear de vetores). Dada um conjunto de vetores U =
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014
a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor
Lista 1: Vetores - Engenharia Mecânica. Professora: Elisandra Bär de Figueiredo
Professora: Elisandra är de Figueiredo Lista 1: Vetores - Engenharia Mecânica 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente
Lista 1: Vetores. Professora: Elisandra Bär de Figueiredo. 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor:
Lista 1: Vetores Professora: Elisandra är de Figueiredo 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w com
Objetivos. em termos de produtos internos de vetores.
Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes
Álgebra Linear I - Aula Bases Ortonormais e Matrizes Ortogonais
Álgebra Linear I - Aula 19 1. Bases Ortonormais e Matrizes Ortogonais. 2. Matrizes ortogonais 2 2. 3. Rotações em R 3. Roteiro 1 Bases Ortonormais e Matrizes Ortogonais 1.1 Bases ortogonais Lembre que
Retas e planos no espaço
Retas e planos no espaço Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Retas e Segmentos de Reta no Espaço 2 Equação vetorial
MAT 112 Vetores e Geometria. Prova SUB C
MAT 112 Vetores e Geometria Prof. Paolo Piccione 02 de julho de 2019 Prova SUB C Turmas: 2019146 e 2019134 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos.
GAAL /1 - Simulado - 3 exercícios variados de retas e planos
GAAL - 201/1 - Simulado - exercícios variados de retas e planos SOLUÇÕES Exercício 1: Considere as retas m e n de equações paramétricas m : (x, y, z) = (1, 1, 0) + t( 2, 1, ) (a) Mostre que m e n são retas
Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações
Q1. Considere um sistema de coordenadas Σ = (O, E) em E 3, em que E é uma base ortonormal de V 3. Sejam π 1 e π 2 os planos dados pelas equações π 1 : x 2y + 3z = 1 e π 2 : x + z = 2 no sistema de coordenadas
(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente
Universidade Federal de Uberlândia Faculdade de Matemática isciplina : Geometria nalítica (GM003) ssunto: sistemas de coordenadas; vetores: operações com vetores, produto escalar, produto vetorial, produto
Álgebra Linear I - Aula Matrizes simultaneamente ortogonais e simétricas
Álgebra Linear I - Aula 22 1. Matrizes 2 2 ortogonais e simétricas. 2. Projeções ortogonais. 3. Matrizes ortogonais e simétricas 3 3. Roteiro 1 Matrizes simultaneamente ortogonais e simétricas 2 2 Propriedade
Cálculo 3 Primeira Avaliação (A) 25/08/2016
Cálculo 3 Primeira Avaliação A) 25/08/2016 Nome / Matrícula: / Turma: AA Nota: de 4 pontos) 1. 1 ponto) Determine a equação do plano que é: perpendicular ao plano que passa pelos pontos 0, 1, 1), 1, 0,
Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 3 Vetores, Retas e lanos roduto interno em R n [3 01] Dados os vetores X =
Material Teórico - Módulo: Vetores em R 2 e R 3. Produto Vetorial. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Produto Vetorial Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto Nesta aula, estudaremos uma operação definida
Lista 3 com respostas
Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v
Geometria Analítica - Retas e Planos
Geometria Analítica - Retas e Planos Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Ângulos Turmas E1 e E3 1 / 10 Objetivos 1 Estudar ângulos entre retas, entre planos e entre retas
Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo da Reta Prof Marcelo Maraschin de Souza Reta Considere um ponto A(x 1, y 1, z 1 ) e um vetor não-nulo v = a, b, c. Só existe uma reta r que passa por A e tem a direção de v.
1 Vetores no Plano e no Espaço
1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no
Aula 22 Produto vetorial, produto misto e volume
Aula 22 Produto vetorial, produto misto e volume MÓDULO 2 - AULA 22 Objetivos Definir o produto misto de três vetores no espaço a partir do cálculo de volumes de paralelepípedos. Exprimir o produto vetorial
P2 de Álgebra Linear I Data: 10 de outubro de Gabarito
P2 de Álgebra Linear I 2005.2 Data: 10 de outubro de 2005. Gabarito 1 Decida se cada afirmação a seguir é verdadeira ou falsa. Itens V F N 1.a F 1.b V 1.c V 1.d F 1.e V 1.a Considere duas bases β e γ de
Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1
Aula 1 Sejam r 1 = P 1 + t v 1 t R} e r 2 = P 2 + t v 2 t R} duas retas no espaço. Se r 1 r 2, sabemos que r 1 e r 2 são concorrentes (isto é r 1 r 2 ) ou não se intersectam. Quando a segunda possibilidade
Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:
Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto
Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática
Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática GA3X1 - Geometria Analítica e Álgebra Linear Lista de Exercícios: Estudo Analítico de Retas e Planos Prof. Lilian
a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a)
1 a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) EB ED = GA b) EB ED = AG c) EB ED = EH d) EB ED = EA e)
Álgebra Linear I - Aula Matriz de uma transformação linear em uma base. Exemplo e motivação
Álgebra Linear I - Aula 19 1. Matriz de uma transformação linear em uma base. Exemplo e motivação 2. Matriz de uma transformação linear T na base β 1 Matriz de uma transformação linear em uma base. Exemplo
Álgebra Linear I - Aula 2. Roteiro
Álgebra Linear I - ula 2 1. Vetores. 2. Distâncias. 3. Módulo de um vetor. Roteiro 1 Vetores Nesta seção lembraremos brevemente os vetores e suas operações básicas. Definição de vetor. Vetor determinado
GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).
GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos
GAAL /1 - Simulado - 2 produto escalar, produto vetorial, retas e planos. Exercício 1: Determine a equação do plano em cada situação descrita.
GAAL - 2013/1 - Simulado - 2 produto escalar, produto vetorial, retas e planos SOLUÇÕES Exercício 1: Determine a equação do plano em cada situação descrita. (a) O plano passa pelo ponto A = (2, 0, 2) e
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos
Aula 2 A distância no espaço
MÓDULO 1 - AULA 2 Objetivos Aula 2 A distância no espaço Determinar a distância entre dois pontos do espaço. Estabelecer a equação da esfera em termos de distância. Estudar a posição relativa entre duas
Aula 6 Produto interno
MÓDULO 1 - AULA 6 Objetivos Aula 6 Produto interno Estabelecer os conceitos de norma de um vetor e de ângulo entre dois vetores do espaço. Definir o produto interno de vetores no espaço e estabelecer suas
Lista de Álgebra Linear Aplicada
Lista de Álgebra Linear Aplicada Matrizes - Vetores - Retas e Planos 3 de setembro de 203 Professor: Aldo Bazán Universidade Federal Fluminense Matrizes. Seja A M 2 2 (R) definida como 0 0 0 3 0 0 0 2
01. Determinar as equações da reta que passa pelo ponto A( 2, 3, 2) e tem a. = 2x. v são: b c
01. Determinar as equações da reta que passa pelo ponto A(, 3, ) e tem a direção do vetor v = 3 i + k. a = 3 As componentes do vetor v são: b = 0. c = Tendo em vista que b = 0, a reta se acha num plano
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u
GA - Retas no espaço euclidiano tridimensional
1 GA - Retas no espaço euclidiano tridimensional Prof. Fernando Carneiro, IME-UERJ Rio de Janeiro, Março de 014 Conteúdo 1 O que é reta Equação paramétrica de uma reta.1 Exemplos...........................
Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:
Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1
Material Teórico - Módulo: Vetores em R 2 e R 3. Módulo e Produto Escalar - Parte 1. Terceiro Ano - Médio
Material Teórico - Módulo: Vetores em R 2 e R 3 Módulo e Produto Escalar - Parte 1 Terceiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Módulo de um vetor O módulo
Produto interno e produto vetorial no espaço
14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................
Aula 10 Produto interno, vetorial e misto -
MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando
1 Matrizes Ortogonais
Álgebra Linear I - Aula 19-2005.1 Roteiro 1 Matrizes Ortogonais 1.1 Bases ortogonais Lembre que uma base β é ortogonal se está formada por vetores ortogonais entre si: para todo par de vetores distintos
P4 de Álgebra Linear I
P4 de Álgebra Linear I 2008.2 Data: 28 de Novembro de 2008. Gabarito. 1) (Enunciado da prova tipo A) a) Considere o plano π: x + 2 y + z = 0. Determine a equação cartesiana de um plano ρ tal que a distância
Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici
Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici 5 Â N G U LO S E D I ST Â N C I A 5.1 ângulos No capítulo anterior nos concentramos no estudo da posição relativa entre dois
Lista 3.2: Retas - Planos e Distâncias PARTE 1: RETAS. 1. Verificar se os pontos P 1 (5, 5,6) e P 2 (4, 1,12) pertencem à reta r : x 3 1 = y + 1
Curso:Licenciatura em Matemática Professor: Luis Gustavo Longen Lista 3.: Retas - Planos e Distâncias PARTE 1: RETAS 1. Verificar se os pontos P 1 (5, 5,6) e P (4, 1,1) pertencem à reta r : x 3 1 = y +
G3 de Álgebra Linear I
G3 de Álgebra Linear I 11.1 Gabarito 1) Seja A : R 3 R 3 uma transformação linear cuja matriz na base canônica é 4 [A] = 4. 4 (a) Determine todos os autovalores de A. (b) Determine, se possível, uma forma
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.
Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes [email protected]
Lista 3 com respostas
Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2019 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v
(e) apenas as afirmações (II) e (III) são verdadeiras.
Nas questões da prova em que está fixado um sistema de coordenadas Σ = (O, E, quando for necessário, considera-se que E é uma base ortonormal positiva. 1Q 1. Seja V um espaço vetorial e x 1, x 2,, x q,
Em cada caso, estamos interessados em achar a menor distância possível, por exemplo, de um dado ponto a cada ponto de um plano fixo.
Capítulo 4 distâncias em 3d Vamos aprender a calcular distâncias 1 de ponto a plano; 2 de ponto a reta; 3 de plano a plano; 4 de reta a plano e 5 de reta a reta Em cada caso, estamos interessados em achar
(x 1, y 1 ) (x 2, y 2 ) = (x 1 x 2, y 1 y 2 ); e α (x, y) = (x α, y α ), α R.
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2457 Álgebra Linear para Engenharia I Terceira Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Considere as retas
Aula 5 - Produto Vetorial
Aula 5 - Produto Vetorial Antes de iniciar o conceito de produto vetorial, precisamos recordar como se calculam os determinantes. Mas o que é um Determinante? Determinante é uma função matricial que associa
Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano.
CAPÍTULO VIII PLANO Consideremos em V 3 o sistema de referência (O, i, j, k ), onde E = ( i, j, k ) é base ortonormal positiva e O(0, 0, 0). 8.1. EQUAÇÕES DO PLANO plano. Apresentaremos as equações do
10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.
Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x
4 Produto de vetores. 4.1 Produto Escalar. GA3X1 - Geometria Analítica e Álgebra Linear
4 Produto de vetores 4.1 Produto Escalar Definição (Medida angular): Sejam u e vetores não-nulos. Chama-se medida angular entre u e a medida θ do ângulo PÔQ, sendo (O,P) e (O,Q), respectivamente, representantes
EQUAÇÕES DE RETAS E PLANOS
UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E FÍSICA - IMEF FABÍOLA AIUB SPEROTTO DAIANE SILVA DE FREITAS EQUAÇÕES DE RETAS E PLANOS NO ESPAÇO 1 Edição Rio Grande 2018
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. [email protected] 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática
Aula Exemplos e aplicações. Exemplo 1. Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos.
Aula 16 Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações Exemplo 1 Considere os pontos A = (1, 2, 2), B = (2, 4, 3), C = ( 1, 4, 2), D = (7, 1,
Vetores e Geometria Analítica
Vetores e Geometria Analítica Prof. Wellington Lista 1 - E para final 4 ou 5 do RGA Instruções Assinale as alternativas corretas na folha de respostas que está no final da lista. É permitido deixar questões
Jorge M. V. Capela, Marisa V. Capela. Araraquara, SP
Vetores no Espaço Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2017 1 Vetores no Espaço 2 3 4 Vetor no espaço Vetores no Espaço Operações
Aula 5 Equações paramétricas de retas e planos
Aula 5 Equações paramétricas de retas e planos MÓDULO 1 - AULA 5 Objetivo Estabelecer as equações paramétricas de retas e planos no espaço usando dados diversos. Na Aula 3, do Módulo 1, vimos como determinar
Equações da reta no plano
3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........
3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2).
Lista II: Retas, Planos e Distâncias Professora: Ivanete Zuchi Siple. Equação geral do plano que contém o ponto A = (,, ) e é paralelo aos vetores u = (,, ) e v = (,, ).. Achar a equação do plano que passa
